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Boltzmann-type approach to transport in weakly interacting one-dimensional fermionic systems
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We investigate transport properties of one-dimensional fermionic tight binding models featuring nearest
and next-nearest neighbor hopping, where the fermions are additionally subject to a weak short range mutual
interaction. To this end we employ a pertinent approach which allows for a mapping of the underlying Schrödinger
dynamics onto an adequate linear quantum Boltzmann equation. This approach is based on a suitable projection
operator method. From this Boltzmann equation we are able to numerically obtain diffusion coefficients in the
case of nonvanishing next-nearest neighbor hopping, i.e., the nonintegrable case, whereas the diffusion coefficient
diverges without next-nearest neighbor hopping. For the latter case we analytically investigate the decay behavior
of the current with the result that arbitrarily small parts of the current relax arbitrarily slowly which suggests
anomalous diffusive transport behavior within the scope of our approach.
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I. INTRODUCTION

Considerable effort has been dedicated to the investigation
of the transport behavior of one-dimensional quantum wires.
While it is accepted that the transport behavior of the electrons
will be normal (diffusive) if the electrons are coupled to the
phonons of the supporting lattice [1], there is a discussion on
whether or not electron-electron interaction alone will render
the transport diffusive, i.e., nonballistic. If the electrons are
subject to a periodic potential, as implied by any standard tight
binding model, the total electron momentum is not necessarily
conserved and one would expect diffusive transport. However,
one-dimensional (1D) spinless fermionic models with nearest
neighbor hopping and mutual interactions are accessible by a
Bethe ansatz, which means that very many local conserved
quantities exist, thus they are called “integrable” [2]. As
follows from the Mazur inequality the transport will be
ballistic if there is a significant overlap of the current with any
conserved quantity thus leading to a finite Drude weight [3,4].
Such a finite Drude weight has been found for zero temperature
and small interactions (gapless regime) for all fillings [5]. A
finite Drude weight has also been found for finite temperatures
and all fillings but half filling [3,4]. Recently there have been
papers arguing in both directions for half filling and finite
temperature (in the gapless regime): in favor of diffusive
transport (in spite of integrability) [6–8] and in favor of ballistic
transport [9–16].

Furthermore, the question how transport behavior changes
if integrability is continuously broken has been addressed. In
the low temperature regime an argument based on bosonization
shows that at least two noncommuting umklapp processes
are required for nonballistic transport [17]. In all temperature
regimes diffusion coefficients may scale as λ−4 (as opposed to
λ−2) with λ quantifying the integrability breaking term if the
perturbation allows for the construction of new approximately
conserved quantities [18].

In the paper at hand we investigate a 1D model of spinless
fermions with nearest neighbor hopping (nn), next-nearest
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neighbor hopping (nnn) and a short ranged, perturbatively
weak particle-particle interaction. In this model the nnn term
is the one that breaks integrability. We address transport
behavior by (approximately) mapping the quantum dynamics
onto a linear Boltzmann equation via a projection operator
technique [19]. For simplicity all calculations are done at
infinite temperature. Within this framework we find concrete
transport coefficients and evidence that they diverge as the
nnn term goes to zero. This suggests nondiffusive transport
in the gapless regime at all temperatures. The time scales,
however, at which this “high-mobility” behavior emerges
become infinitely long. Results from (approximate) projection
techniques may be wrong if the projected subspace does not
include all relevant slow hydrodynamic modes. As may be
inferred from a paper by Belitz [20], however, projective results
may at least be viewed as reliable lower bounds to the transport
coefficients. Furthermore, in our projection we do not only
keep, say, the particle and the energy current but all individual
occupation numbers of momentum modes.

II. INTRODUCTION OF THE MODEL

In this paper we investigate 1D models of weakly mutually
interacting spinless fermions. I.e., we consider fermions on
a periodic 1D crystal lattice. The total system consists of a
hopping model, which describes the noninteracting fermions,
and a nearest neighbor interaction term. The Hamiltonian reads

H = J

N∑
n=1

[
1

2
(a†

nan+1 + b a†
nan+2 + H.c.)

+�a†
nana

†
n+1an+1

]
. (1)

In the hopping term we incorporate nearest neighbor hop-
ping determined by the parameter J , according to a standard
tight binding model, and also allow for some next-nearest
neighbor hopping measured by the parameter b. � corresponds
to the interaction strength. N is the number of lattice sites.
One may diagonalize the noninteracting system via Fourier
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transformation and arrives at

H =
∑

k

εka
†
kak + 1

2

∑
k,l,q

W (q)

N
a
†
k+qa

†
l−qakal,

(2)
εk = J [cos(k) + b cos(2k)], W (q) = −2J� e−ıq .

This Hamiltonian describes an interacting quantum gas
model with the dispersion relation of the noninteracting
fermions εk and the interaction parameter W (q). (The in-
teraction of course obeys quasimomentum conservation with
the quasimomentum transfer q.) For vanishing next-nearest
neighbor hopping (b = 0), εk corresponds to a cosine band, as
usually obtained from a tight binding model.

This model may describe, e.g., weakly interacting electrons
on some 1D atomic wire, possibly deposited on some substrate,
or, e.g., as further discussed below, interacting spin systems,
like for example an anisotropic spin 1/2 Heisenberg chain (by
implementing some mapping of spins onto spinless fermions
via Jordan-Wigner-transformation).

III. TRANSPORT AND DIFFUSION COEFFICIENT

In this section we investigate the transport behavior of
the above introduced system by directly following a scheme
described in Ref. [21]. Basically, this perturbative approach is
composed of two steps. First, we map the underlying quantum
dynamics of a certain set of “occupation number deviations
from equilibrium” in momentum space onto some pertinent
master equation, which may in some sense by interpreted as
a scattering term of a corresponding linear(ized) Boltzmann
equation. Further information about the mapping of quantum
dynamics onto Boltzmann equations may be found in Ref. [21]
and references therein. In the approach at hand the number of
variables of the master equation is determined by the (finite)
number of lattice sites N . The occupation number deviations
from thermal equilibrium are described by operators

�j := (1 − fj )a†
j aj − fjaja

†
j = a

†
j aj − fj , (3)

where fj actually corresponds to the equilibrium Fermi
distribution.

Note that throughout this paper we focus on the case of
infinite temperature, i.e., in the following we assume fj = 1/2.
As dynamical variables we consider the time dependent ex-
pectation values of these operators, i.e., dj (t) := Tr{�jρ(t)},
where ρ(t) is the density operator which describes the actual
state of the system as resulting from the unitary Schrödinger
dynamics.

Our approach is based on a pertinent projection operator
technique (for details, see Ref. [19]). Within this framework
one has to define a suitable projection operator, which maps the
current system’s state ρ(t) onto a density-matrix-like object
that only contains the variables of interest [here dj (t)] as
time dependent quantities. In this context the projection is
chosen as

Pρ(t) = ρeq +
∑

j

ρeq�j

Tr
{
ρeq�2

j

}dj (t). (4)

The resulting master equation reads

ḋi(t) =
∑
k �=i

Rik(t)dk(t) −
∑
k �=i

Rki(t)di(t), (5)

where the corresponding rates (T = ∞, k �= i) are given by

Rki(t) =
∫ t

0
dτ

2

h̄2

× 1

4

∑
l

{Re[W (i − k)] − Re[W (k − l)]}2

× 1

N2
cos

(
1

h̄
(εi + εl − εk − εi−k+l)τ

)

− 1

2
{Re[W (l − i)] − Re[W (k − l)]}2

× 1

N2
cos

(
1

h̄
(εk + εi − εi+k−l − εl)τ

)
. (6)

I.e., every element of the rate matrix (6) is given by an integral
over a certain correlation function. We especially intend to
evaluate Eq. (6) in the limit of small interactions and large
time t .

Our approach to transport applies if all rates become
constant in this limit for times larger than some correlation
times τc,ik . If this is the case, we may view the rate matrix
Rki as the collision term of a Boltzmann equation from
which a diffusion coefficient may be obtained using a type of
Chapman-Enskog-like approach; see Ref. [21]. We omit any
details here for brevity. We find for the diffusion coefficient
(to the order of �−2 and for T = ∞)

D = − 1

N
vkR

−1
ki vi, (7)

where R−1 is the inverse matrix to R neglecting the eigenspace
corresponding to the equilibrium distribution fj . vi is the
momentum dependent velocity or current vector, the individual
velocities are given by the slope of the dispersion relation
of the noninteracting system vi = ∂εi/∂i. (Hereby we follow
the common idea of identifying particle velocities with group
velocities.) Although we consider finite lattices, the obtained
diffusion coefficients have to be robust against upscaling of
the system in terms of N → ∞ in order that our results are
reasonable for large (“realistic”) crystals.

IV. NUMERICAL RESULTS FOR THE DIFFUSION
COEFFICIENT FOR b �= 0

For b �= 0 the analytical evaluation of the long time limit
of the rates (6) is not directly accessible. Instead we determine
Rki(t) numerically for finite time t . (Numerics, which we
omitted here, suggest that the rate matrix elements Rki(t) may
be expected to become time independent after some correlation
times τc,ik .) Based on this time dependent rate matrix we may
determine an initially also time dependent diffusion coefficient
D(t) by directly evaluating formula (7), which is our first main
numerical result.

Figure 1 demonstrates these time dependent diffusion
coefficients for different next-nearest neighbor hoppings b.
One finds that for all analyzed b the diffusion coefficients
D(t) reach plateau levels and therefore become approximately
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FIG. 1. Time dependent diffusion coefficients for system with
next-nearest neighbor hopping b = 0.2 (white triangles), b = 0.3
(black triangles), b = 0.4 (white squares), b = 0.5 (black squares),
b = 0.6 (white circles), b = 0.8 (black circles). N = 500, � = 0.01.

time independent for large enough times. The constancy of D

of course indicates that the elements of the rate matrix Rki

have converged, too. I.e., within this framework we are able to
numerically determine finite long time diffusion coefficients
for nonvanishing next-nearest neighbor hopping b �= 0.

We essentially find the following two quantitative results.
The long time diffusion coefficients become larger for smaller
b. This finding clearly demonstrates the quantum nature of the
model and the approach, because it seems counterintuitive in
the sense that it does not fit the (classical) perspective that an
increased hopping would lead to a higher diffusion.

Additionally, Fig. 2 shows the dependence of the long time
diffusion coefficients on the next-nearest neighbor hopping b.
The plot suggests a dependence D(b) ∝ b−1/2 (although we

D
(b

)Δ
2
/
J

b
0.1 1
1

10

100

FIG. 2. Long time diffusion coefficients versus next-nearest
neighbor hopping b. The numerics (points) are well approximated
by the function 4/

√
b (solid line). D(b) diverges for b = 0.

do not have an analytical proof for this type of relation), which
would mean that the diffusion coefficient diverges for b = 0.

Second, the time, after which the diffusion coefficient is
approximately constant, becomes larger for smaller b. I.e., to
analyze the interesting limit b → 0 (see below) we have to
evaluate longer and longer times to obtain the plateau level
(which goes along with larger chain lengths N ; recall that the
results should be robust against upscaling of N ).

Since for b = 0 the plateau is reached only at infinite times
and the plateau height is expected to be infinite, which is
in some sense equivalent, we cannot numerically extract finite
diffusion coefficients in this case. The findings may rather sug-
gest that the transport is possibly nondiffusive for b = 0. Some
analytical treatment of this case can be found below in Sec. V.

At this point this result should be compared to a recent,
related result by Steinigeweg and Schnalle [7]. They consider
the same model class but only for b = 0 and employ a related
projection technique. However, other than in the work at
hand, they do not keep all individual momentum occupation
numbers but project onto a single variable, namely the current
j = ∑

i via
+
i ai . Doing so they find a finite diffusion coefficient

emerging at short time scales for all � including arbitrarily
small ones. We checked that this scenario gradually transforms
into the picture we find as more and more observables in
addition to the current are kept in the projection, i.e., time
scales become longer and diffusion constants increase. This,
however, is, according to Belitz [20], not a contradiction since
results from projections onto subsets of observables yield
reliable lower bounds to the true transport coefficients. Thus
we conclude, in spite of the findings by Steinigeweg and
Schnalle that there is no regular diffusive transport for b = 0.

Concerning the short time and strong interaction behavior
of the diffusion coefficients we find that the graphs for different
b in Fig. 1 intersect at some time t . It may be thinkable that
the behavior of the diffusion coefficients reverses for small
times in the way that the diffusion coefficient for small times
becomes larger for larger b, which would be in agreement with
(or at least not contradictory to) the above mentioned intuitive
expectation. However, since in our approach the rate matrix
is not converged out at those times, we cannot assure that the
short time values are quantitatively correct, they rather serve
as an indicator for the overall qualitative behavior. For this
regime, also see Ref. [22].

V. ANALYTICAL CONSIDERATIONS ON TRANSPORT
FOR b = 0

The special case of vanishing next-nearest neighbor hop-
ping b = 0 is of particular interest because the regarded
model of spinless fermions (2) is effectively equivalent to
an anisotropic spin-1/2 Heisenberg chain. The corresponding
spin Hamiltonian

H = J

N∑
n=1

[
1

2
[s+

n s−
n+1 + H.c.] + �sz

ns
z
n+1

]
(8)

may be transformed into the Hamiltonian (1) with b = 0 via a
suitable Jordan-Wigner transformation. Note that we consider
here the case of small �, which rather corresponds to the case
of strong anisotropy in the spin picture.
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Recall that in our numerical evaluation in Sec. IV we have
found diverging long time diffusion coefficients for b = 0
which we suggested to interpret as an indicator for possibly
nondiffusive transport. If this is actually the case, one would
expect to find a number of conserved quantities, at least some
of which should have a significant overlap with the current.
[Since the model is integrable if (and only if) b = 0 (see Sec. I),
there are a large number of conserved quantities for b = 0.
The transition from nonintegrability to integrability may here
be related to the transition from diffusive to nondiffusive
transport.]

For b = 0 one may analytically determine the rates Rki

in the limit t → ∞. Assuming that the momentum modes
are lying densely in k space (i.e., assuming long chains), one
may substitute the sum over l in Eq. (6) by a corresponding
integral, i.e.,

∑
l

→ N

2π

∫
l

, (9)

and regard the energy terms e+(l) := (εi + εl − εk − εi−k+l) in
the first and e−(l) := (εk + εi − εi+k−l − εl) in the second part
of the sum as continuous functions of l. Routinely exploiting
the properties of the sinc function one may carry out the time
integration in Eq. (6) and finds that in the limit t → ∞ only
the exactly energy conserving scattering processes contribute,
i.e., only addends featuring (e+ = 0) in the first and (e− = 0)
in the second term.

The second “minus” term yields diverging δ-like contribu-
tions on lines, with respect to a graphical illustration of the
scattering operator, defined by j + k = π and j + k = −π ,
but only exactly on those lines. For all other j,k, even in
the direct vicinity of those lines, the “minus” term vanishes,
i.e., the corresponding contribution to the rate matrix from
the second term may be written as R−(j,k) ∝ −δ(j + k −
π ) − δ(j + k − π ) + δ(j − k) for t → ∞. This feature may
be illustrated by a finite time sketch of the total rate matrix
Rjk (without diagonal elements) (see Fig. 3). One finds large
negative matrix elements in the vicinity of the above mentioned
lines; for larger t the negative contributions move closer to the
lines, which eventually leads to the δ-like structure.

-0.0001

-0.00005

0

 0.00005

 0.0001

0.00015

−π

−π

0

0

π
π

FIG. 3. Finite time sketch of the rate matrix Rjk for b = 0 without
diagonal elements, the labels denote the corresponding momentum
mode numbers. There are large (absolute) negative scattering matrix
elements (here black) between modes near lines with j + k = π

and j + k = −π , which originate from the minus term in Eq. (6).
Parameters: N = 200, J = −1, � = 0.01, T = ∞.

Although these terms are problematic for the determination
of the complete rate matrix, they yield no contribution to
the diffusion coefficient (7) because of symmetry arguments
(see below) and may therefore be omitted in the transport
investigations addressed in this paper.

The complete rate matrix for b = 0 features mirror symme-
try to the band middles, i.e., lines with k = π/2 and k = −π/2,
because the cos function simply passes into its negative under
inversion on those lines. That is, every eigenvector of the rate
matrix has to transform into itself or its negative under mirror
imaging on those lines and the eigenvectors may accordingly
be classified by, say, + and −. The matrix therefore separates
into these symmetry subspaces, i.e., if one chooses a matrix
representation where all basis vectors feature either + or −
symmetry, there is no coupling between the two subspaces;
the corresponding matrix elements have to vanish. Note that
the current features + symmetry. For any + vector d(j ) one
finds that d(j ) = d(π − j ) for j > 0 and d(j ) = d(−π − j )
for j < 0. That is, the multiplication of the minus part R−(j,k)
with a + vector,

d̃(j ) =
∫

dk R−(j,k)d(k)

= −d(−j − π ) − d(−j + π ) + d(j ), (10)

is equal to 0, since two terms cancel each other, depending on
whether j is positive or negative, and the remaining term does
not contribute to the integration because the corresponding k

argument is not in the first Brillouin zone. Therefore R−(j,k)
gives no contribution to the sum evaluated in Eq. (7), which
means that R−(j,k) can be neglected.

From the remaining first “plus” term in Eq. (6) one finally
obtains from collecting and evaluating all the zeros of the
respective argument in Eq. (6)

R+(j,k) ∝ 1

N

[cos(k − j ) + cos(k + j )]2

|sin(k) − sin(j )| (11)

for t = ∞. One recognizes that the rate matrix R+(j,k) is
here a markedly complicated object, mainly because of two
reasons.

There are diverging elements of R+(j,k) in the vicinity
of lines defined by j + k = π and j + k = −π . For larger
and larger systems (N → ∞), when the momentum modes
become denser and denser in k space, there are more and more
elements in the direct vicinity of those lines, which therefore
become arbitrarily large. From this one may expect that at least
some eigenvalues of R+(j,k) diverge in the limit N → ∞.

Second, there are whole lines in the matrix (11) defined
by j,k = −π/2 and j,k = π/2 where all matrix elements
are 0, indicating conserved quantities. I.e., d(j ) ∝ δ(j −
π/2) + δ(j + π/2) is a conserved quantity, which features a
nonsingular but finite overlap with the current. This causes an
infinitely small portion of the current to decay infinitely slowly
(see Fig. 4). In Ref. [6] it is pointed out that a nondiffusive
behavior of the system would require a nonlocal conservation
law. Note, however, that the above conserved quantity features
such a spatially nonlocal structure.

To take a closer look at the concrete transport behavior we
evaluate the overlap of the current or velocity vector with the
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−2−4−6−8−10

FIG. 4. Overlap Pn := ( �j · �rn)2 of the current �j with the eigen-
vectors �rn of the matrix R+(j,k) versus corresponding “rescaled”
eigenvalue [rn�

2 are eigenvalues of R+(j,k)] for time t → ∞. There
is a finite overlap with (approximately) conserved quantities for
rn ≈ 0, i.e., parts of the current decay arbitrarily slowly. Parameters:
N = 800, J = −1, T = ∞.

eigenvectors of R+(j,k) in dependence of the corresponding
eigenvalues.

First, Fig. 4 shows that the current does not decay
monoexponentially, although an average relaxation rate may
be identified. In particular there is a finite overlap between the
current and conserved (arbitrarily slowly relaxing) quantities,
i.e., an infinitely small portion of the current does not decay at
all. This can explain why we are not able to find converging
diffusion coefficients according to formula (7) and why the
numerically calculated curve D(t) (cf. Fig. 1) does not exhibit
a plateau for b = 0. Figure 4 also demonstrates that there are
many quantities which have no overlap with the current.

Within the scope of the master equation dynamics (5)
the current autocorrelation function C(t) := 〈j (t)j 〉 decays
multiexponentially, i.e.,

C(t) =
∑

n

Pne
rn�

2t , (12)

where rn�
2 are eigenvalues of the rate matrix R+(j,k) (rn �

0) and Pn corresponds to the overlap of the current vector
with the corresponding eigenvector �rn of R+(j,k) defined by
Pn := ( �j · �rn)2. For large systems one may substitute the sum
by an integral

C(t) =
∫

P (r)er�2t dr (13)

with continuous eigenvalues r�2 and the function P (r)
essentially given by Fig. 4. The long time behavior is
mainly determined by the regime of small r . Therefore we
approximate P (r) by the corresponding Taylor expansion
around r ≈ 0,

P (r) ≈ P (0) +
∞∑

n=1

cnr
n (14)

with some coefficients cn. Inserting Eq. (14) into Eq. (13) one
finds that for times t larger than 1/�2 the behavior of C(t) is
dominated by the term C(t) ≈ P (0)/(�2t) which results from
the zeroth order term of Eq. (14). All other contributions decay
with t−2 or higher orders in t or exponentially with t . Although
C(t) is essentially a sum of exponential functions, it does not
behave exponentially in this limit. A time dependent diffusion
coefficient D(t), which may be decomposed as

D(t) =
∫ 1/�2

0
C(t ′)dt ′ +

∫ t

1/�2
C(t ′)dt ′, (15)

is dominated by the second term for times larger than 1/�2.
In this limit D(t) behaves logarithmically as

D(t) ∝ (1/�2)ln(�2t), (16)

and consequently does not become constant for t → ∞.
Also note that the integral over the current-autocorrelation

function as, e.g., given in Eq. (15) is directly related to the time
dependent growth of the mean square displacement (MSD) of
some initial distribution; the corresponding connection has
been established in Ref. [23].

Within the scope of our approach the result (16) would
lead to the conclusion that the transport is neither regularly
diffusive nor really ballistic [in this case one would find
D(t) ∝ t], but rather something in between, which may, e.g.,
be termed “anomalous diffusion” (cf. also Ref. [24]). This
characteristic behavior arises from the fact that the function
P (r) (cf. Fig. 4) exhibits a finite value at r = 0. Ballistic
transport would require a peak at r = 0. From Eq. (16) one
may suspect that the MSD would grow proportional to t ln(t).

However, our approach is restricted to diffusion coefficients
of the order of �2, i.e., there could possibly be diffusive
behavior scaling with �4 or higher orders.

VI. CONCLUSION

We demonstrated that the quantum dynamics of momentum
mode occupation numbers in a 1D quantum model for weakly
interacting fermions may be mapped onto a master equation;
the corresponding rate matrix can serve as collision term of a
linear(ized) Boltzmann equation. We numerically found that
adequately calculated diffusion coefficients become constant
in the limit of large times and large systems for finite
next-nearest neighbor hopping. These long time diffusion
coefficients are larger for smaller next-nearest neighbor
hopping. For vanishing next-nearest neighbor hopping the
diffusion coefficients diverge. In this case we have analytically
shown that arbitrarily small parts of the current do not relax
because there is a finite overlap between the current and
(approximately) conserved quantities. This result suggests
anomalous diffusive transport behavior for the model featuring
no next-nearest neighbor hopping.
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[1] J. Jäckle, Einführung in die Transporttheorie (Vieweg, Braun-
schweig, 1978).

[2] T. Giamarchi, Quantum Physics in One Dimension (Oxford
University Press, New York, 2004).

[3] X. Zotos, F. Naef, and P. Prelovsek, Phys. Rev. B 55, 11029
(1997).

[4] P. Mazur, Physica 43, 533 (1969).
[5] B. S. Shastry and B. Sutherland, Phys. Rev. Lett. 65, 243

(1990).
[6] J. Sirker, R. G. Pereira, and I. Affleck, Phys. Rev. Lett. 103,

216602 (2009).
[7] R. Steinigeweg and R. Schnalle, Phys. Rev. E 82, 040103 (2010).
[8] S. Grossjohann and W. Brenig, Phys. Rev. B 81, 012404 (2010).
[9] X. Zotos, Phys. Rev. Lett. 82, 1764 (1999).
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