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Fractional diffusion in a periodic potential: Overdamped and inertia corrected solutions
for the spectrum of the velocity correlation function
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Anomalous diffusion of a particle in a cosine periodic potential is treated using fractional diffusion equations
in both phase and configuration space. Exact solutions of two distinct forms of the fractional Klein-Kramers
(Fokker-Planck) equation for the distribution function in phase space are obtained via matrix continued fractions
yielding the average velocity, the velocity autocorrelation function, its spectrum, etc. In the overdamped limit,
the results yielded by both equations agree with those from a fractional probability density diffusion equation
in configuration space. A simple analytic solution for the spectrum of the velocity correlation function is also
given using the effective eigenvalue approximation. The results represent generalizations of the conventional
solutions for the normal diffusion of a Brownian particle in a cosine potential to fractional dynamics (giving rise
to anomalous diffusion).
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I. INTRODUCTION

Both the free Brownian motion and that in a field of
force are of fundamental importance in problems involving
relaxation and resonance phenomena in stochastic systems
[1,2]. The best known example is the translational diffusion
of noninteracting Brownian particles treated by Einstein [3]
with a host of applications in physics, chemistry, biology,
etc. Einstein’s theory relies on a discrete time random walk.
Here the random walker or particle makes a jump of a fixed
mean square length in a fixed time. The Einstein theory of
normal diffusion has been generalized to fractional diffusion
(see Refs. [4–6] for a review) in order to describe anomalous
relaxation and diffusion processes in disordered complex
systems (such as amorphous polymers, glass forming liquids,
etc.) using a continuous time random walk (CTRW), a concept
introduced by Montroll and Weiss [7,8]. In the most general
case of the CTRW, the random walker may jump an arbitrary
length in arbitrary time. In the noninertial limit and in one
dimension, the dynamics of the walker are described by
a fractional diffusion equation for the distribution function
f (x,t) in configuration space incorporating both a waiting
time probability density function governing the random time
intervals between single microscopic jumps of the particles
and a jump length probability distribution [9]. A simple case
of the CTRW arises by assuming that the jump length and
jump time random variables are decoupled leading in the limit
of a large sequence of jump times to the following fractional
Fokker-Planck equation in configuration space (for a review
see Refs. [5,7])

∂f

∂t
= 0D

1−σ
t Kσ

∂

∂x

[
∂f

∂x
+ f

kT

∂V

∂x

]
. (1)

Here x specifies the position of the walker at time t,

−∞ < x < ∞, kT is the thermal energy, Kσ is a generalized
diffusion coefficient, and V (x) denotes the external potential.
The operator t0D

1−σ
t ≡ ∂

∂t t0D
−σ
t in Eq. (1) is defined via

the convolution (the Riemann-Liouville fractional integral
definition) [6],

t0D
−σ
t f (x,t) = 1

�(σ )

∫ t

t0

f (x ,t ′)dt ′

(t − t ′)1−σ
, (2)

where �(z) is the gamma function. Values of σ in the range
0 < σ < 1 correspond to subdiffusion phenomena (σ = 1
corresponds to normal diffusion).

Since inertial effects are ignored in the fractional Fokker-
Planck Eq. (1), the latter cannot describe the high-frequency
(short-time) dynamics in anomalous diffusion at all. In the
normal Brownian motion, inertial effects are included via the
Fokker-Planck equation (which for a separable and additive
Hamiltonian is known as the Klein-Kramers equation) for
the distribution function of particles W (x,p,t) in phase space
(x,p = mẋ) [1,10] (m is the mass of the particle). In order to
incorporate these effects, Metzler [12] and Metzler and Klafter
[13] have proposed a fractional Klein-Kramers equation for the
distribution function W = W (x,ẋ,t), viz.,

∂W

∂t
= 0D

1−α
t τ 1−α

[
− ẋ

∂W

∂x
+ 1

m

dV

dx

∂W

∂ẋ

+β

(
∂

∂ẋ
(ẋW ) + kT

m

∂2W

∂ẋ2

)]
, (3)

where τ is the mean time between successive trapping
events (waiting time between jumps) and β is a friction
coefficient arising from the heat bath. Equation (3) describes a
multiple trapping picture, whereby the tagged particle executes
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translational Brownian motion. However, the particle gets
successively immobilized in traps whose mean distance apart
is (kT /m)τ . The time intervals spent in the traps are governed
by the waiting time probability density function w(t) ∼
Aαt−1−α (0 < α < 1). Now the entire Klein-Kramers opera-
tor in the square brackets of Eq. (3) acts nonlocally in time (i.e.,
drift friction and diffusion terms are under the time convolution
and are thus affected by the memory). However, a model
based on a fractional Fokker-Planck-like Eq. (3) may provide a
physically unacceptable picture of the behavior of observables
such as the dynamic susceptibility in the high frequency limit
ω → ∞ [14]. The root of this difficulty apparently being that
in writing Eq. (3), the convective derivative or Liouville term,
in the underlying Klein-Kramers equation, is operated upon by
the fractional derivative. However, this problem does not arise
in the fractional Fokker-Planck equation proposed by Barkai
and Silbey [15]:

∂W

∂t
= −ẋ

∂W

∂x
+ 1

m

dV

dx

∂W

∂ẋ

+ 0D
1−α
t τ 1−αβ

[
∂

∂ẋ
(ẋW ) + kT

m

∂2W

∂ẋ2

]
. (4)

Here the fractional derivative term acts solely on the
dissipative part of the normal Klein-Kramers operator so that
the Liouville term retains its classical form. In order to justify a
diffusion equation like Eq. (4), Barkai and Silbey [15] consider
a “Brownian” test particle moving freely in one dimension and
colliding elastically at random times with particles of the heat
bath which are assumed to move much more rapidly than the
test particle. The times between collision events are assumed
to be independent, identically distributed, random variables,
implying that the number of collisions in a time interval (0,t)
is a renewal process. This hypothesis is reasonable, according
to Barkai and Silbey, if the bath particles thermalize rapidly
and if the motion of the test particle is relatively slow. Various
applications of the above fractional diffusion equations to
anomalous diffusion in a potential as well as alternative
versions of fractional Klein-Kramers equations have been
given (e.g., in Refs. [14–21]).

Fractional diffusion equations, such as Eqs. (1), (3), and (4),
can be solved just as the normal diffusion equation [1,10] (e.g.,
by the method of separation of the variables). The separation
procedure yields an equation of Sturm-Liouville type and
has been extended to analogous fractional diffusion models
involving a potential by Metzler et al. [17], Coffey et al.
[14,19], and others. Furthermore, the numerically efficient
solution method based on ordinary and matrix continued
fractions, which has been developed for normal diffusion
[1,10], can be directly applied to the problem of fractional
diffusion [10,14].

Here we shall consider fractional diffusion in a cosine
periodic potential, viz.,

V (x) = −V0 cos(2πx/a). (5)

The normal diffusion in this potential can be applied to the
noise driven motion in areas as diverse as the motion of the
defects or interstitials in crystalline materials, diffusion of ions
in (so-called) superionic conductors, atomic surface diffusion,

etc. [1,22,23]. For normal diffusion in a periodic potential,
a large number of specialized solutions exist usually for
particular observables (see, e.g., [1,10,23,24]). For example,
the average velocity 〈ẋ〉(t) and the spectrum of the velocity
autocorrelation function (ACF) 〈ẋ(0)ẋ(t)〉0, were treated in
Refs. [1,10,23,24]. Furthermore, certain characteristics of the
fractional diffusion in periodic potentials, such as the anoma-
lous diffusion coefficient, have been studied in Refs. [25–27].
However, our main objective here is to ascertain how inertial
effects in anomalous diffusion modify the dynamical charac-
teristics [〈ẋ〉(t), etc.] in a periodic potential, a problem which
has hitherto received little attention. With this goal in mind, we
shall present both matrix continued fraction solutions of the
fractional diffusion equations (1), (3), and (4) as well as simple
approximate formulas. We shall first evaluate the spectrum of
〈ẋ(0)ẋ(t)〉0 using the noninertial fractional diffusion Eq. (1),
which provides us with a benchmark solution. Moreover, the
inertial effects will be treated using both the Barkai-Silbey and
Metzler-Klafter fractional Fokker-Planck equations (3) and
(4). The differential-recurrence relations generated from these
equations will be solved for bounded periodic initial conditions
using ordinary and matrix continued fractions yielding both the
time-independent and the time-dependent periodic solutions.
These solutions will then be used to determine the relevant
dynamical quantities.

II. OVERDAMPED ANOMALOUS DIFFUSION
IN A PERIODIC POTENTIAL

It is convenient to introduce in Eq. (1) the normalized
coordinate 2πx/a → x and potential V (x)/(kT ) → V (x) =
−b cos x [b = V0/(kT ) is the barrier or inverse temperature
parameter]. We are interested in the linear response to a
small ac force b
eiωt . Thus we suppose that the potential
V (x) = −b cos x is augmented by a small ac term −xb
eiωt

which has been applied in the infinite past t0 = −∞ so that all
transients have died away. Then, Eq. (1) becomes

τσ ∂f

∂t
= −∞D1−σ

t

∂

∂x

(
∂f

∂x
+ f

∂V

∂x

)
, (6)

where τσ = a2/(4π2Kσ ). For the periodic (in x) solution of
Eq. (6) [i.e., f (x,t) = f (x + 2π,t)], the distribution function
f (x,t) can be expanded in a Fourier series in x as

f (x,t) = 1

2π

∞∑
n=−∞

cn(t)einx, (7)

where cn(t) = 〈e−inx〉(t) and the angular brackets 〈〉(t) denote
the ensemble averaging, viz.,

〈(·)〉(t) =
∫ π

−π

(·)f (x,t)dx. (8)

Furthermore, in the linear approximation in 
, we may now
seek a solution of Eq. (6) as f (x,t) = f0(x) + f1(x,ω)
eiωt ,
where f0(x) = Z−1 exp(b cos x) is a stationary (equilibrium)
solution in the absence of the ac force so that

cn(t) = c0
n + cn(ω)
eiωt , (9)
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where Z is the partition function,

c0
n =

∫ π

−π

e−inxf0(x)dx and cn(ω) =
∫ π

−π

e−inxf1(x,ω)dx.

On substituting Eqs. (7) and (9) into Eq. (6), we have
by orthogonality the three-term recurrence relations for the
Fourier coefficients c0

n and cn(ω), viz.,

b

2

(
c0
n−1 − c0

n+1

) − nc0
n = 0, (10)

[n2 + (iωτ )σ ]cn(ω) − bn

2
[cn−1(ω) − cn+1(ω)] = −ibnc0

n.

(11)

The frequency independent Eq. (10) has a closed form
solution [10], Chapter 5,

c0
n = In(b)/I0(b), (12)

where In(z) is the modified Bessel function of the first kind
of order n [28]. By invoking the general method for solving
nonhomogeneous differential-recurrence equations [1,10] and
since c0(ω) = 0, we have the solution of Eq. (11) for the
Fourier coefficient c1(ω) in terms of continued fractions,

c1(ω) = 2i

∞∑
n=1

(−1)nc0
n

n∏
p=1


p, (13)

where 
n are infinite continued fractions defined by the
recurrence equation,


n = 1

2

[
(iωτ )σ

nb
+ n

b
+ 1

2

n+1

]−1

.

Furthermore, by symmetry, we have c−1(ω) = c∗
1(−ω),

where the asterisk denotes the complex conjugate. If all the
other Fourier coefficients are required, cn(ω) (n = 2,3,..), for
example, for the calculation of f (x,t) from Eq. (7), they can
also be calculated in terms of the continued fractions 
n as
described in detail in Refs. [1,10].

In the noninertial limit, the mean drift velocity 〈ẋ〉(t) for the
linear response to a probing ac force b
eiωt can be calculated
as

〈ẋ〉(t) = −τ 1−σ −∞D1−σ
t 〈∂xV 〉(t)

= b τ 1−σ −∞D1−σ
t [
eiωt − 〈sin x〉(t)]

= b
(iωτ )1−σ

[
1 − c−1(ω) − c1(ω)

2i

]
eiωt . (14)

The definition of 〈ẋ〉(t) embodied in Eq. (14) is simply a
fractional generalization of the definition of the mean drift
velocity of a Brownian particle in the normal noninertial
diffusion in a potential, viz., 〈ẋ〉(t) = −〈∂xV 〉(t) [1]. We
remark that in the overdamped (noninertial) limit, the velocity
ẋ is not an independent variable; it is defined formally via the
coordinate-dependent drift coefficient [1]. Such a definition
implies that ẋ = 0 in the absence of a potential. Now, 〈ẋ〉(t)
from Eq. (14) can be written as

〈ẋ〉(t) = C̃v(ω)b
eiωt , (15)

where

C̃v(ω) = (iωτ )1−σ

[
1 − c−1(ω) − c1(ω)

2i

]
. (16)

According to Kubo’s linear response theory [1,29], C̃v(ω)
in Eq. (15) has the meaning of a generalized dynamic suscep-
tibility, which is related to the one-sided Fourier transform
of the equilibrium velocity ACF 〈ẋ(0)ẋ(t)〉0 via C̃v(ω) =∫ ∞

0 〈ẋ(0)ẋ(t)〉0e
iωtdt (the angular brackets 〈〉0 denote equilib-

rium ensemble averaging). We remark that in the noninertial
limit, the velocity ACF 〈ẋ(0)ẋ(t)〉0 has a meaning only in the
presence of a potential and is defined just as that of any other
coordinate-dependent dynamic variable A(x), viz. [1],

〈A(0)A(t)〉0 =
∫ x2

x1

∫ x2

x1

A(x0)A(x)f (x,t |x0,0)f0(x0)dxdx0,

(17)

where A(t) =A[x(t)], x0 = x(0), x1 � x0,x � x2,f (x,t |x0,0)
is the Green function of Eq. (1) satisfying the initial condition
f (x,0|x0,0) = δ(x − x0), and δ(x − x0) is the Dirac delta
function.

Just as normal diffusion, we can also obtain a simple
approximate equation for the velocity ACF and its spectrum
using the effective eigenvalue method [29]. Thus we suppose
that the recurrence Eq. (11) for n = ± 1 can be replaced by
the approximate equation,

[λ±
ef + (iωτ )σ ]c±1(ω) = ∓ibc0

±1,

or

c±1(ω) = ∓ ibI1(b)/I0(b)

λef + (iωτ )σ
, (18)

where λef = λ+
ef = λ−

ef is the effective eigenvalue for the
normal diffusion given by (see Appendix A)

λef = bI0(b)I1(b)

I 2
0 (b) − 1

. (19)

Here we have noticed that c0
1 = c0

−1 = I1(b)/I0(b).
For b � 1 and b � 1, λef ≈ 1 + 3b2/16 and λef ∼ b, re-
spectively. Hence, using Eqs. (16), (18), and (19), we have

C̃v(ω) = (iωτ )1−σ

(
1 − bI1(b)/I0(b)

λef + (iωτ )σ

)
. (20)

The approximation, Eq. (18), implies that in linear
transient responses, the relaxation functions c±1(t) =∑

p c±
p Eσ [−λp(t/τ )σ ] comprising a superposition of an in-

finite number of Mittag-Leffler functions Eσ [−λp(t/τ )σ ] [10]
may be approximated by a single Mittag-Leffler function
c±1(t) ≈ c±1(0)Eσ [−λef (t/τ )σ ] only [λp are the eigenvalues
of the normal diffusion operator (σ = 1) and Eσ (z) is the
Mittag-Leffler function [4].

The real and imaginary parts of C̃v(ω) calculated from the
continued fraction solution, Eqs. (13) and (16), and from the
approximate Eq. (20) are shown in Fig. 1. Apparently,
the agreement between the numerical calculations and Eq. (20)
is good (the maximum relative deviation between the corre-
sponding curves does not exceed a few percent). Similar (or
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FIG. 1. Re[C̃v(ω)] and Im[C̃v(ω)] vs ωτ for various of σ and
b = 5: comparison of the continued fraction solution Eq. (16) and
approximate Eq. (20) (symbols).

even better) agreement exists for all b and σ . Thus, one may
conclude that Eq. (20) accurately describes Re[C̃v(ω)] and
Im[C̃v(ω)] for all frequencies of interest in wide ranges of the
barrier height (b) and anomalous exponent (σ ) parameters. We
remark that the effective eigenvalue approximation also works
well for normal diffusion (σ = 1).

III. INERTIAL EFFECTS IN ANOMALOUS DIFFUSION

The above solution only holds at low frequencies because
it completely ignores inertial effects. We now consider these
effects in the translational Brownian motion of a particle in a
periodic potential Eq. (5) using the Metzler-Klafter and Barkai-
Silbey kinetic models. In the normalized variables,

x → 2πx

a
, t → t

η
, b = V0

kT
, β ′ = ηζ

m
, η = a

2π

√
m

2kT
,

the fractional Fokker-Planck equations (3) and (4) for the
distribution function W (x,ẋ,t) may be written as

∂W

∂t
= (τ/η)1−α−∞D1−α

t

[
− ẋ

∂W

∂x
+ 1

2

dV

dx

∂W

∂ẋ

+β ′ ∂

∂ẋ

(
ẋW + 1

2

∂W

∂ẋ

) ]
, (21)

and

∂W

∂t
= −ẋ

∂W

∂x
+ 1

2

dV

dx

∂W

∂ẋ
+ (τ/η)1−α−∞D1−α

t

×β ′ ∂

∂ẋ

(
ẋW + 1

2

∂W

∂ẋ

)
, (22)

where τ = 2β ′η. The distribution function W (x,ẋ,t) for both
equations can then be expanded in a generalized Fourier series

as

W (x,ẋ,t) = 1

2π3/2
e−ẋ2

∞∑
n=0

∞∑
q=−∞

1

2nn!
cn,q (t)Hn(ẋ)eiqx,

(23)

where Hn(z) are the Hermite polynomials [28] and

cn,p(t) = 〈e−ipxHn(ẋ)〉(t) =
∫ π

−π

∫ ∞

−∞
e−ipxHn(ẋ)

×W (x,ẋ,t)dxdẋ, (24)

due to the orthogonality properties of the Hn and e−ipx while
the angular brackets 〈〉(t) denote ensemble averaging, viz.,

〈(·)〉(t) =
∫ π

−π

∫ ∞

−∞
(·)W (x,ẋ,t)dxdẋ. (25)

In particular, because H1(ẋ) = 2ẋ [28],

c1,0(t)/2 = 〈ẋ〉(t). (26)

yields the average velocity.
Just as the noninertial case, in order to evaluate the linear

response to a small alternating force b
eiωt , we may seek a
solution of the fractional Fokker-Planck Eqs. (21) and (22) as

W (x,ẋ,t) = W0(x,ẋ) + W1(x,ẋ,ω)
eiωt , (27)

where

W0(x,ẋ) = Z−1 exp(−ẋ2 + b cos x) (28)

is the (equilibrium) Boltzmann distribution in the absence of
the ac force (Z is the partition function) so that the Fourier
coefficients cn,p(t) from Eq. (24) become

cn,p(t) = c0
n,p + cn,p(ω)
eiωt , (29)

with

c0
n,p =

∫ π

−π

∫ ∞

−∞
e−ipxHn(ẋ)W0(x,ẋ)dxdẋ = δn0

Ip(b)

I0(b)
(30)

(δnm is Kronecker’s delta) and

cn,p(ω) =
∫ π

−π

∫ ∞

−∞
e−ipxHn(ẋ)W1(x,ẋ,ω)dxdẋ. (31)

On noting that the potential V (x) = −b cos x is augmented
by a small ac term −xb
eiωt and substituting Eqs. (23) and
(27)–(31) into Eqs. (21) and (22), we have after some algebra
the recurrence equations for cn,q(ω), viz.,[

(iωτ )α

2β ′ + nβ ′
]

cn,q(ω) + iq

2
[cn+1,q (ω) + 2ncn−1,q (ω)]

+ inb

2
[cn−1,q+1(ω) − cn−1,q−1(ω)] = bn(iωτ )1−αc0

n−1,q ,

(32)

and[
iωτ

2β ′ + nβ ′(iωτ )1−α

]
cn,q(ω) + iq

2
[cn+1,q (ω)+2ncn−1,q (ω)]

+ inb

2
[cn−1,q+1(ω) − cn−1,q−1(ω)] = bnc0

n−1,q , (33)
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for the Metzler-Klafter and Barkai-Silbey models, respec-
tively. Here we have used the relations [28],

d

dx
Hn(x) = 2nHn−1(x) and

Hn+1(x) = 2xHn(x) − 2nHn−1(x).

Equations (32) and (33) can be solved for cn,q(ω) using
matrix continued fractions as described in Appendix B. Having
calculated c1,0(ω), we can evaluate the mean drift velocity
〈ẋ〉(t) = β ′c1,0(ω)
eiωt and velocity ACF spectrum C̃v(ω) =∫ ∞

0 〈ẋ(0)ẋ(t)〉0e
iωtdt via

C̃v(ω) = (β ′/b)c1,0(ω). (34)

We remark that the ACF 〈ẋ(0)ẋ(t)〉0 is now defined as

〈ẋ(0)ẋ(t)〉0 =
∫ π

−π

∫ π

−π

∫ ∞

−∞

∫ ∞

−∞
ẋ0ẋW (x,ẋ,t |x0,ẋ0,0)

×W0(x0,ẋ0)dxdx0dẋdẋ0, (35)

where x0 = x(0), ẋ0 = ẋ(0), W (x,ẋ,t |x0,ẋ0,0) is the Green
function of Eq. (21) or (22) satisfying the initial condition,

W (x,ẋ,0 |x0,ẋ0,0) = δ(x − x0)δ(ẋ − ẋ0).

To compare the above results with the overdamped (nonin-
ertial) case (β ′ � 1) given above by Eq. (20), we note that in
order to describe subdiffusion in configuration space using the
Barkai-Silbey model, one must write the fractional exponent as
σ = 2 − α [14]. Thus in calculations, we will take σ = 2 − α

and σ = α for the Barkai-Silbey and Metzler-Klafter models,
respectively [14], yielding Re[C̃v(ω)] and Im[C̃v(ω)] vs ω for
various values of the barrier height b, friction coefficient β ′,
and fractional exponent σ as shown in Figs. 2–5. Apparently
for β ′ � 1, the low-frequency part of the ACF spectrum may
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FIG. 2. Re[C̃v(ω)] and Im[C̃v(ω)] vs ωη for β ′ = 0.1, σ = 0.8,
and various barrier heights b for the Barkai-Silbey (solid lines) and
Metzler-Klafter (dashed lines) models.
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FIG. 3. Re[C̃v(ω)] and Im[C̃v(ω)] vs ωτ for β ′ = 1, b = 5, and
various σ for the Barkai-Silbey (solid lines) and Metzler-Klafter
(dashed lines) models.

be approximated by the noninertial Eq. (20) (see Figs. 4
and 5). For very small friction β ′ � 1 (large inertial effects),
a sharp resonance peak appears at high frequencies (see
Figs. 2–4). This high-frequency resonance band is due to
the fast inertial oscillations of the particles in the potential
wells and appears in the vicinity of the fundamental frequency
of the almost free periodic motion of the particle in the
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FIG. 4. Re[C̃v(ω)] and Im[C̃v(ω)] vs ωη for b = 5, σ = 0.8, and
various damping β ′ for the Barkai-Silbey (solid lines) and Metzler-
Klafter (dashed lines) models. (Symbols) The effective eigenvalue
Eq. (42) which is a good approximation for the low-frequency
behavior for β ′ � 1.
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FIG. 5. Comparison of the matrix continued fraction solution
Eq. (B2) and the approximate Eq. (42) (symbols) in the high damping
limit and low frequencies for the Barkai-Silbey and Metzler-Klafter
FKKEs (for high damping, both models yield results coinciding to
graphical accuracy).

(anharmonic) potential V (x) = −b cos x. For b � 1, β ′ � 1,
and α = 1, the characteristic frequency of the high-frequency
oscillations ωL can be estimated from the analytic solution [1]
for the velocity correlation function 〈ẋ(0)ẋ(t)〉0 for vanishing
damping, β ′ → 0, as ωL ∼ √

b/2η−1 [1]. Furthermore, as
in normal Brownian dynamics, inertial effects cause a rapid
falloff of Re[C̃v(ω)] at high frequencies. However, for the
Barkai-Silbey model, this falloff is far more rapid than that
for the Metzler-Klafter model. Moreover, at small σ , say
σ = 0.25, for the Metzler-Klafter model, Re[C̃v(ω)] increases
with increasing ω. This leads to the (unphysical) divergence
of the spectral moment

∫ ∞
0 Re[C̃v(ω)] dω of the velocity ACF

just as noninertial diffusion (both normal and anomalous).
For the Barkai-Silbey model, this moment is finite (= π/2
in our normalized variables) and coincides with that for the
normal diffusion. The root of this problem appears to be
that in the Metzler-Klafter model, the convective derivative
or Liouville term in the Klein-Kramers Eq. (3), is operated
upon by the fractional derivative as previously noted. As far
as the behavior of the high-frequency band as a function of
the damping parameter β ′ is concerned, the half-width of its
resonance band increases progressively with increasing β ′, as
one would intuitively expect.

IV. MEAN-SQUARE DISPLACEMENT

The mean-square displacement defined as

〈x2(t)〉0 =
∫ π

−π

∫ π

−π

∫ ∞

−∞

∫ ∞

−∞
x2W (x,ẋ,t |x0,ẋ0,0)

×W0(x0,ẋ0)dxdx0dẋdẋ0, (36)

can also be calculated via the Einstein-Kubo relation [10,13],

〈x2(t)〉0 = 2
∫ t

0

∫ t ′

0
〈ẋ(0)ẋ(u − t ′)〉0 dudt ′

= 2
∫ t

0
(t − u)〈ẋ(0)ẋ(u)〉0du, (37)

which is in the frequency domain,

〈̃x2〉(ω) = 2(iω)−2C̃v(ω). (38)

Equation (21) first derived for the normal diffusion pro-
cesses is also valid for anomalous diffusion. This is demon-
strated in Ref. [13] for the Barkai and Silbey model. Here we
have noted that 〈x(t)〉0 = 0.

In the inertial case, the calculations of 〈x2(t)〉0 can
be accomplished numerically by determining the inverse
Fourier-Laplace transform of Eq. (38). In the noninertial
limit, 〈x2(t)〉0 can be calculated analytically. Noting that the
one-sided Fourier transform of the Mittag–Leffler function
Eσ [−a(t/τ )σ ] is

1

iω + aτ−σ (iω)1−σ
,

we then have from Eqs. (20) and (38),

〈x2(t)〉0 = 2[I0(b)]−2(t/τ )σ

+ 2
1 − [I0(b)]−2

λef

{1 − Eσ [−λef (t/τ )σ ]}. (39)

From the properties of Eσ (z), which has long-time inverse
power-law behavior Eσ (− tσ ) ∼ t−σ /�(1 − σ ) at long times,
we have for t/τ � 1,

〈x2(t)〉0 ≈ 2[I0(b)]−2(t/τ )σ , (40)

allowing us to define, following [26], the diffusion coefficient
Kσ for anomalous diffusion in a cosine periodic potential as

Kσ = �(σ + 1) lim
t→∞

〈(
x)2〉
2(t/τ )σ

= �(σ + 1)

[I0(b)]2
, (41)

where �(z) is the gamma function [28]. For σ = 1, Eq. (41)
yields

K1 = [I0(b)]−2, (42)

which is the known result for the diffusion coefficient K1 =
C̃v(0) = ∫ ∞

0 〈ẋ(0)ẋ(t)〉0dt for normal diffusion, viz., ([1],
p. 289). We remark that in the opposite very low damping
limit, β ′ � 1, K1 can be estimated via ([1], p. 312)

K1 ≈ e−b

I0(b)

[
0.855

√
β ′

4
√

b
+ e2b

√
πb

2

∫ 1

0

e−2b/xdx

x3/2E(x)

]
, (43)

where E(x) is the complete elliptic integral of the second kind.

V. CONCLUSIONS

The models just outlined concern both low- and high-
frequency relaxation processes for anomalous diffusion in
a periodic potential and, inter alia, constitute a didactic
example of exact continued fraction solutions of fractional
diffusion equations for both noninertial and inertial anomalous
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translational diffusion in periodic potentials. The results for
inertial anomalous diffusion are obtained from two distinct
fractional forms of the Klein-Kramers equations (3) and (4),
for the evolution of the single-particle distribution function
in phase space. In Eq. (4), the fractional derivative acts only
on the diffusion or nonconservative term so that the form of
the Liouville operator, or convective derivative representing
Hamilton’s equations for the single particle is preserved. Thus
Eq. (4) has the conventional form of a Boltzmann equation
for the single-particle distribution function. The preservation
of the Liouville term in Eq. (4) means that the high-frequency
behavior is entirely controlled by the inertia of the system
and so is largely governed by the Newtonian dynamics in a
well yielding a physically acceptable result for the dynamic
susceptibility. On the other hand for high damping, inertial
effects may be ignored (at low frequencies) so that the
anomalous relaxation in a periodic potential is just as the
normal relaxation, accurately determined by the effective-
eigenvalue approximation Eq. (20). In this approximation the
characteristic time of the normal diffusion process, namely,
the inverse of the effective eigenvalue appears as an overall
time parameter. Our results may therefore be regarded as
a generalization of the solutions for the normal Brownian
motion in a periodic potential to fractional dynamics (giving
rise to anomalous diffusion) so that one can explain in
quantitative fashion the anomalous relaxation of systems,
where the anomalous exponent σ differs from unity (i.e., the
relaxation process is characterized by a broad distribution of
relaxation times). Our methods may also be applied to related
problems such as anomalous diffusion in tilted periodic and
ratchet potentials. Finally, we have confined ourselves to the
periodic (phase locked) solutions only. However, the methods
can be also generalized to calculate nonperiodic (or running)
solutions so as to treat fractional diffusion of the particle as it
wanders from well to well of the potential [1].

APPENDIX A: EFFECTIVE EIGENVALUE
FOR NORMAL DIFFUSION

To evaluate the effective eigenvalue for normal diffusion
in a cosine periodic potential, we suppose that the potential
V (x) = −b cos x is augmented at the instant t = 0 by a small
term −xb
. Following the exposition of Ref. [30] (see also
[10], Chap. 5), we may write the coefficients cn(t) in Eq. (7) as

cn(t) = c

n (t) + c∞

n ; (A1)

the superscript “
” denotes the portion of the statistical
average which is linear in 
, and the superscript “∞” denotes
the statistical average in the stationary state,

c∞
n =

∫ 2π

0
e−inxf∞(x)dx;

evaluated using the stationary distribution function f (x,t →
∞) = f∞(x) [1,10],

f∞(x) = C−1e−V (x)

[
1 − (1 − e−2πb
)

×
∫ x

0
eV (x ′)dx ′

/∫ 2π

0
eV (x ′)dx ′

]
, (A2)

with C = ∫ 2π

0 f∞(x)dx and V (x) = −b(
 + cos x). As t →
∞, we have lim

t→∞ c

n (t) = 0. Substituting Eq. (A1) into Eq. (6)

(with σ = 1), we obtain an algebraic recurrence equation for
c∞
n :

(n + ib
)c∞
n + b

(
c∞
n+1 − c∞

n−1

)
/2 = 0, (A3)

and a differential-recurrence relation for c

n (t):

d

dt
c

n (t) + n2c


n (t) = bn

2

[
c

n−1(t) − c


n+1(t)
] − inb
c


n (t).

(A4)

Using the effective eigenvalue, we now replace the exact
Eq. (A4) for n = 1 by the approximate equation,

d

dt
c


1 (t) + λef c

1 (t) = 0, (A5)

where λef is the effective eigenvalue. The approximation
Eq. (A5) implies that in the linear transient responses, the
relaxation function c


1 (t) comprising a superposition of an
infinite number of exponentials c


1 (t) = ∑
p cpe−λpt may be

approximated by a single exponential c

1 (t) ≈ c


1 (0)e−λef t

only [10]. Equations (A5) and (A4) for n = 1 yield at
t = 0,

λef = − ċ

1 (0)

c

1 (0)

= 1 + b

2

c

2 (0)

c

1 (0)

. (A6)

Because c

n (0) = c0

n − c∞
n , Eq. (A6) further simplifies to

λef = 1 + b

2

(
c0

2 − c∞
2

c0
1 − c∞

1

)
. (A7)

The averages c∞
1 and c∞

2 in Eq. (A7) are taken over the
stationary distribution P∞(x) [Eq. (A2)]. However, since we
are interested only in the linear response to 
, we can express
c∞
n as

c∞
n ≈ c0

n + 
(∂
c∞
n |
=0). (A8)

The quantities ∂
c∞
2 |
=0 = ∂
c0

2 and ∂
c∞
1 |
=0 = ∂
c0

1
may be evaluated as follows. Substituting Eq. (A8) into
Eq. (A3), we have in the linear approximation in 
,

c0
n+1 − c0

n−1 + 2nc0
n/b = 0, (A9)

∂
c0
n+1 − ∂
c0

n−1 + 2n∂
c0
n/b = −2ic0

n. (A10)

The solution of Eq. (A9) is given by Eq. (12) while the
solution of Eq. (A10) is given by

∂
c0
1 = − 2i

I 2
0 (b)

∞∑
n=1

(−1)n+1I 2
n (b). (A11)
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Now ∂
c0
2 can be obtained from the recurrence Eq. (A10)

for n = 1, namely,

∂
c0
2 = −i2c0

1 − 2∂
c0
1/b. (A12)

Substituting Eqs. (A10), (A11), and (A12) into Eq. (A7)
yields

λef = − ibc0
1

∂
c0
1

= bI0(b)I1(b)

2
∑∞

n=0 (−1)nI 2
n+1(b)

.

Because ([10], Chap. 5)

2
∞∑

n=0

(−1)nI 2
n+1(z) = I 2

0 (z) − 1 ,

we then obtain Eq. (19).

APPENDIX B: MATRIX CONTINUED FRACTION
SOLUTION OF EQ. (33)

Equations (32) and (33) can be written in matrix form in
the single variable n as

Q−
n Cn−1 + QnCn + Q+

n Cn+1 = −δn2R2, (B1)

where

Cn =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

cn−1,−1(ω)

cn−1,0(ω)

cn−1,1(ω)
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Q+
n = i

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . .

. . . −1 0
. . .

. . . 0 0 0
. . .

. . . 0 1
. . .

. . .
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Q−
n = i(n − 1)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . .
. . .

. . . −1 b/2 0
. . .

. . . −b/2 0 b/2
. . .

. . . 0 −b/2 1
. . .

. . .
. . .

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and

R2 = −b

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

c0
0,−1

c0
0,0

c0
0,1

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Qn =

[
iωτ

2β′ + (n − 1)β′ (iωτ )1−α

]
I,

for the Barkai-Silbey model and

R2 = −b(iωτ )1−α

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

c0
0,−1

c0
0,0

c0
0,1

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Qn =
[

1

2β ′ (iωτ )α + (n − 1)β ′
]

I,

for the Metzler-Klafter model. Here c0
0,q = Iq(b)/I0(b) and I

is the identity matrix.
We can then solve Eq. (33) by using matrix continued

fractions,

C2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

c1,−1(ω)

c1,0(ω)

c1,1(ω)
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
= (

�2Q−
2 �1Q+

1 + I
)
�2R2, (B2)

where �n is the infinite matrix continued fraction defined by
the recurrence equation,

�n = [−Qn − Q+
n �n+1Q−

n+1]−1.

If all the other Fourier coefficients are required cn,q (ω)
(n = 2,3,..), e.g., for the calculation of W (x,ẋ,t) from
Eq. (23), they can also be calculated in terms of the
matrix continued fractions �n as described in detail in
Refs. [1,10].

For very low damping and at low temperatures (β ′ <

0.01, b � 102, b/β ′ � 103), however, the method is dif-
ficult to apply because the matrices involved become ill
conditioned so that numerical inversions are no longer
possible.
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