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Traveling kinks in cubic nonlinear Ginzburg-Landau equations
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Nonlinear cubic Euler-Lagrange equations of motion in the traveling variable are usually derived from
Ginzburg-Landau free energy functionals frequently encountered in several fields of physics. Many authors
considered in the past damped versions of such equations, with the damping term added by hand simulating the
friction due to the environment. It is known that even in this damped case kink solutions can exist. By means
of a factorization method, we provide analytic formulas for several possible kink solutions of such equations of
motion in the undriven and constant field driven cases, including the recently introduced Riccati parameter kinks,
which were not considered previously in such a context. The latter parameter controls the delay of the switching
stage of the kinks. The delay is caused by antikink components that are introduced in the structure of the solution
through this parameter.
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Nonlinear field excitations occur in a rich variety of
collective phenomena. Perhaps the most prominent are the
fields with cubic nonlinear equations of motion because they
have effective potential energy with two minima of the type
Bψ4 − Aψ2 and are commonly used as order parameters in
the frame of the Ginzburg-Landau theory for the study of
ferrodistortive domain walls [1], in the analysis of the phase
separation in binary mixtures [2], for diamagnetic (Condon)
domains [3], and in more general situations, such as domain
walls in nonequilibrium systems [4]. A recently proposed
discrete model for the curvature modes along protein backbone
chains used by Chernodub et al. [5] to explain protein folding
belongs to the same approach. The dynamics of all these
systems can be treated variationally as a relaxation process
toward one of the stationary states in the potential wells.
This relaxation is governed by equations of the type ∂ψ/∂t ∝
−δF/δψ , where F is the free energy of these systems.

In this work, we focus on the solutions of the following
equations of motion in the traveling coordinate ξ = x − vt

and with rescaled coefficients:

ψ ′′ + ρψ ′ − B1ψ
3 + A1ψ = 0 (1)

and

ψ ′′ + ρψ ′ − B1ψ
3 + A1ψ + γ1η = 0 (2)

if a constant external field η multiplied by its scaled coupling
constant γ1 is added.

Except for the friction term, these equations are Euler-
Lagrange equations of motions corresponding to Ginzburg-
Landau functionals. The derivation of such equations can be
found, for example, in Ref. [1] in the context of ferrodistortive
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domain walls, while recently, Mavromatos [6] discussed a
well-known counterpart of (2) in the case of microtubules
where the friction is attributed to the so-called ordered water
molecules. We make clear that the friction coefficient ρ,
although constant, depends on the (constant) velocity of
the frame. Both relativistic and nonrelativistic dependencies
can be encountered in the literature. For example, in the
case of ferrodistortive materials ρ ∝ v(c2

0 − v2)−1/2, where c0

is the limiting velocity of the system, whereas ρ ∝ v(D −
mv2/2)−1, where D is a diffusion coefficient and m is the
inertia parameter, in the case of fast, nonoverdamped motion
of spin domain walls in Ising ferromagnetics [7]. For equations
without the friction term, kink solutions have been well known
for at least 40 years [8]. In fact, Montroll [8] mentions that
Fisher already investigated numerically solutions of the Fisher
equation with a first derivative term. The existence of kink
solutions in the presence of friction terms has been well settled
since the works of Lal [9], Geicke [10], and Kashcheev [11].
The first goal of this work is to show that for Eqs. (1) and (2)
various kink solutions can be easily obtained by a factorization
technique that we introduced previously [12] for equations of
the form (Ds = d/ds)

D2
s ψ + ρDsψ + F (ψ) = 0, (3)

where F (ψ) is a polynomial function, which in the case of
Eqs. (1) and (2) is a cubic polynomial. Equation (3) can be
factorized as follows:

[Ds − f2(ψ)][Ds − f1(ψ)]ψ(s) = 0. (4)

Expanding (4), one can use the following grouping of terms
[12]:

D2
s ψ −

(
f1 + f2 + df1

dψ
ψ

)
Dsψ + f1f2ψ = 0, (5)
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and comparing Eq. (3) with Eq. (5), we get the conditions

f1(ψ) f2(ψ) = F (ψ)

ψ
, (6)

f2(ψ) + d[f1(ψ) ψ]

dψ
= −ρ. (7)

Any factorization like (4) of a scalar equation with polynomial
nonlinearities of the form given in Eq. (3) allows us to find a
compatible first order nonlinear differential equation,

[Ds − f1(ψ)]ψ = Dsψ − f1(ψ)ψ = 0, (8)

whose solution provides a particular solution of (3). In other
words, if by some means we are able to find a couple of
functions f1(ψ) and f2(ψ) such that they factorize Eq. (3)
in the form (4), solving Eq. (8) allows us to get particular
solutions of (3). The advantage of this factorization is that
the two unknown functions f1(ψ) and f2(ψ) can be found
easily by factoring the polynomial expression (6) in terms of
linear combinations in rational powers of ψ . This technique
is used in the following to find kink solutions in the undriven
case and the constant field driven case. We also discuss the
kinks based on the general Riccati solution, which depend
on a control parameter of the switching features. The latter
kinks, which we call Riccati parameter kinks, have not been
discussed previously in the Ginzburg-Landau framework and
drawing the attention to them is another important motivation
for this work.

We first consider the case of zero external field. Montroll
showed that Eq. (1) has a unique bounded (kinklike) solution
of the form [8]

ψM (ξ ) = a +
√

2α

1 + exp(αξ )
, (9)

where α = (b − a)/
√

2 and the parameters a and b are two of
the solutions of the cubic equation

(ψ − a)(ψ − b)(ψ − d) = ψ3 − ψ. (10)

Taking a = 0, b = 1, and d = −1 gives α = 1√
2
. The Montroll

kink ψM can be easily derived through the factorization
procedure just described. Indeed, Eq. (1) can be factorized
in the following two forms (Dξ = d

dξ
):

[
Dξ ± 2

1
2 (

√
A1 +

√
B1ψ)

]

× [
Dξ ± 2− 1

2 (
√

A1 −
√

B1ψ)
]
ψ = 0 (11)

and

[
Dξ ± 2

1
2 (

√
A1 −

√
B1ψ)

]

× [
Dξ ± 2− 1

2 (
√

A1 +
√

B1ψ)
]
ψ = 0. (12)

However, factorizations (11) and (12) are only possible for
ρ± = ± 3

√
2

2

√
A1 as obtained from (7).

Equation (11) is compatible with the Riccati equations

ψ ′ ± 2− 1
2 (

√
A1ψ −

√
B1ψ

2) = 0, (13)

whose (particular) solutions are

ψ1,2 =
√

A1√
B1 + e±√

A1(ξ−ξ0)/
√

2
≡

√
A1√

B1 + k1e±√
A1ξ/

√
2
,

(14)
k1 = e∓√

A1ξ0/
√

2.

On the other hand, the compatible Riccati equations for
(12) are

ψ ′ ± 2− 1
2 (

√
A1ψ +

√
B1ψ

2) = 0, (15)

with the particular solutions

ψ3,4 =
√

A1

−√
B1 + e∓√

A1(ξ−ξ0)/
√

2

≡
√

A1

−√
B1 + 1

k1
e∓√

A1ξ/
√

2
. (16)

All these solutions are similar to those given by Geicke
[10] for this case, and one can notice that ψ1 corresponds
to the Montroll kink of parameters (0,1,−1) when A1 = 1
and B1 = 1.

Moving now to the more complicated case given by Eq. (2),
let γ1η = A1ε − B1ε

3 and ϕ = ψ + ε (see also Ref. [13]).
Then, we get

ϕ′′ + ρϕ′ − ϕ[B1ϕ
2 − 3B1εϕ + (3B1ε

2 − A1)] = 0. (17)

Case I. The factorization of (17) can be achieved with f1 =
a1i[

√
B1ϕ − r+(ε)] and f2 = a−1

1 i[
√

B1ϕ − r−(ε)], where

r±(ε) = 3
√

B1ε ± (4A1 − 3B1ε
2)

1
2

2
≡ 3

√
B1ε ± √

�ε

2
.

(18)

From the second factorization condition (7), we get

a1 = ±2− 1
2 i −→ ρ

(−)
± = ±2− 1

2 [r−(ε) −
√

�ε]. (19)

To have real values of the parameter ρ
(−)
± , one requires ε2 �

4A1/3B1, and one gets a positive-valued friction parameter

if ε ∈ (
√

A1
B1

, 2√
3

√
A1
B1

] for the positive front sign of ρ and ε ∈
[− 2√

3

√
A1
B1

,

√
A1
B1

) for the negative front sign of ρ. We are led

to the following Riccati equations:

ϕξ ±
√

B1

2
ϕ2 ∓

√
B1

2
r+(ε)ϕ = 0, (20)

having as particular solutions

ϕ±
1 = 1√

B1

2r+(ε)

2 + e∓α1(ξ−ξ0)
, α1 = r+(ε)√

2
, (21)

where ξ0 is a constant of integration. The last step is to go
back to the ψ solution, ψ±

1 = ϕ±
1 − ε. Solutions (21) were

first found by Geicke through an ansatz method [10].
Case II. The factorization of (17) can be also achieved with

f ′
1 = a2

1f2 and f ′
2 = a−2

1 f1. Using condition (7), one gets

a1 = ±2− 1
2 i −→ ρ

(+)
± = ±2− 1

2 [r+(ε) +
√

�ε]. (22)

Real values of the parameter ρ
(+)
± are again obtained for

ε2 � 4A1
3B1

, which implies a positive-valued friction parameter
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FIG. 1. (Color online) Case I. Plot of ψ+
λ (ξ ) for λ = 0.125 (solid

line), 0.2 (long-dashed line), 0.5 (short-dashed line), and 10 (dotted
line). A1 = 3, B1 = 0.7, ρ = 0.90326 (ε = 2.2772), and ξ0 = 0.

if ε ∈ (−
√

A1
B1

, 2√
3

√
A1
B1

] for the positive front sign of ρ and if

ε ∈ [− 2√
3

√
A1
B1

, −
√

A1
B1

) for the negative front sign of ρ.

This factorization implies Riccati equations of the form

ϕξ ± 2− 1
2 ϕ2 ∓ 2− 1

2 r−(ε)ϕ = 0, (23)

whose particular solutions are

ϕ±
2 = 1√

B1

2r−(ε)

2 + e∓α2(ξ−ξ0)
, α2 = r−(ε)√

2
. (24)

The factorization method allows even more general solu-
tions, the so-called Riccati parameter solutions introduced by
Reyes and Rosu [14], which are based on the general Riccati
solution. Indeed, all Riccati equations in this Brief Report
are of constant coefficients, say y ′ − c1y

2 − c2y = 0, and if
a particular solution y1 is known, then the general solution
depending on a free parameter denoted by λ can be written as

yλ,c1,c2 = y1 + eI1

λ − c1I2
, (25)
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FIG. 2. (Color online) Case I. Plot of ψ−
λ (ξ ) for λ = 0.01 (solid

line), 0.1 (long-dashed line), 0.5 (short-dashed line), and 10 (dotted
line). A1 = 3, B1 = 0.7, ρ = 2.39335 (ε = 1.0351), and ξ0 = 0.
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FIG. 3. (Color online) Case II. Plot of ψ+
λ (ξ ) for λ = 0.77 (solid

line), 0.9 (long-dashed line), 2 (short-dashed line), and 10 (dotted
line). A1 = 0.7, B1 = 3, ρ = 1.51635 (ε = 0.5313), and ξ0 = 0.

where I1 = ∫ ξ

ξ0
(2c1y1 + c2)dx and I2 = ∫ ξ

ξ0
eI1(x)dx. For the

nonlinear equations of motion discussed here the formulas for
the kinks given by Eq. (25) are as follows.

(a) Zero field (kinks having mixtures of rising and decaying
exponentials, both of width α−1 = √

2/A1):

ψ+
1,λ =

√
A1

∓√
B1 + eα(ξ−ξ0)

×
[

1 + 1

λ
√

A1(1 ∓ √
B1e−α(ξ−ξ0)) ∓ √

B1e−α(ξ−ξ0)

]
,

(26)

where the minus sign corresponds to the first factorization and
the plus sign corresponds to the second one.

ψ−
1,λ =

√
A1

∓√
B1 + e−α(ξ−ξ0)

×
[

1 + 1

λ
√

A1(1 ∓ √
B1eα(ξ−ξ0)) − 1

]
, (27)

with the same rule of signs.
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FIG. 4. (Color online) Case II. Plot of ψ−
λ (ξ ) for λ = 0.53 (solid

line), 0.6 (long-dashed line), 1 (short-dashed line), and 10 (dotted
line). A1 = 0.7, B1 = 3, ρ = 0.435766 (ε = −0.5313), and ξ0 = 0.
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(b) Driving constant field.
Case I [kinks having mixtures of rising and decaying exponentials both of width α−1

1 = √
2/r+(ε)]:

ϕ+
λ = 2r+(ε)

2 + e−α1(ξ−ξ0)

[
1√
B1

+ 1

2λr+(ε)[1 + 2e+α1(ξ−ξ0)] − √
B1

]
(28)

and

ϕ−
λ = 2r+(ε)

2 + e+α1(ξ−ξ0)

[
1√
B1

+ 1

2λr+(ε)[1 + 2e−α1(ξ−ξ0)] + 2
√

B1e−α1(ξ−ξ0)

]
. (29)

These kinks do not have singularities if λ /∈ (0,
√

B1

2r+
] and λ /∈ [−

√
B1

2r+
,0), respectively. The parametric solutions ψ±

λ are obtained

immediately by downshifting the above solutions by ε. Plots of solutions ψ+
λ and ψ−

λ are displayed in Figs. 1 and 2, respectively.
Case II [kinks with mixtures of rising and decaying exponentials both of width α−1

2 = √
2/r−(ε)]: The parametric solutions

turn out to be

ϕ+
λ = 2r−(ε)

2 + e−α2(ξ−ξ0)

[
1√
B1

+ 1

2λr−(ε)[1 + 2eα2(ξ−ξ0)] − √
B1

]
(30)

and

ϕ−
λ = 2r−(ε)

2 + e+α2(ξ−ξ0)

[
1√
B1

+ 1

2λr−(ε)[1 + 2e−α2(ξ−ξ0)] + 2
√

B1e−α2(ξ−ξ0)

]
. (31)

Choosing λ /∈ (0,
√

B1

2r−
], the ϕ+

λ kink does not have any

singularities, while in the case of ϕ−
λ the forbidden interval

for λ is [−
√

B1

2r−
,0). Again, the corresponding ψ parametric

solutions are obtained by downshifting by ε. Plots of the
solutions ψ+

λ and ψ−
λ in this case are displayed in Figs. 3

and 4, respectively.
We now briefly comment on the stability of the Riccati

parameter kinks. The stability analysis depends on the form
of the velocity dependence of the friction-like parameter
ρ. If we take this dependence as in the paper of Collins
et al. [1], one can follow step by step the stability procedure
presented therein. This is because at the first step of the
stability analysis, that of writing a perturbed kink solution
y(ζ,t) = y(ζ ; λ) + δy(ζ,t), one notices that the Riccati kink
y(ζ ; λ) is a solution of the same equation as the common kink
y(ζ ; λ = ∞), and therefore the linearization leads to the same
eigenvalue problem. For a velocity dependence of ρ corre-
sponding to a driven, damped, nonlinear Klein-Gordon-type
equation, the stability analysis is somewhat more complicated
but has been sketched in the important paper of Büttiker and
Thomas [15].

In summary, using the factorization method introduced in
Ref. [12], we have obtained the analytic forms of various kink
solutions of the nonlinear cubic Euler-Lagrange equations

of the damped type in the traveling variable. The results
presented here can be directly applied to the Condon domains
if we make the following identification of our parameters with
the parameters given by Gordon et al. [3]: ρ = v/K�,A1 =
A/K,B1 = B/K,γ1 = a/k; in the case of Collins et al. [1]
one should take A1 = B1 = 1. Examining the formulas for the
Riccati parameter kinks, one can easily infer that the parameter
λ occurs as a control parameter of the initiation of the switching
stage [14]. Indeed, λ is associated with the exponentials of
opposite exponent in the denominators with respect to the
exponential of the particular Riccati solution, and this is what
generates the delay. Interestingly, we notice that although the
switching is more delayed when λ increases, this is so only at
relatively low values of the parameter, while at higher values of
λ the delay saturates. Since switching is related to microscopic
restructuring of the kink (mesoscopic domain), one may think
that the λ parameter can characterize the dependence of the
switching delay on the rate at which an applied field is
ramped up or down. Finally, all the kinks discussed here
occur in conditions of environmental friction, which is not
easy to define microscopically [6]. If the frictional effects
are considered as first derivative terms in cubic nonlinear
equations of motion as done here, then the kinks discussed in
this work occur only for very particular values of the friction
coefficient given by ρ±, ρ

(−)
± , and ρ

(+)
± .
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