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Analysis of intermittency in under-resolved smoothed-particle-hydrodynamics direct numerical
simulations of forced compressible turbulence
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We perform three-dimensional under-resolved direct numerical simulations of forced compressible turbulence
using the smoothed particle hydrodynamics (SPH) method and investigate the Lagrangian intermittency of the
resulting hydrodynamic fields. The analysis presented here is motivated by the presence of typical stretched tails in
the probability density function (PDF) of the particle accelerations previously observed in two-dimensional SPH
simulations of uniform shear flow [Ellero et al., Phys. Rev. E 82, 046702 (2010)]. In order to produce a stationary
isotropic compressible turbulent state, the real-space stochastic forcing method proposed by Kida and Orszag is
applied, and the statistics of particle quantities are evaluated. We validate our scheme by checking the behavior of
the energy spectrum in the supersonic case where the expected Burgers-like scaling is obtained. By discretizing the
continuum equations along fluid particle trajectories, the SPH method allows us to extract Lagrangian statistics
in a straightforward fashion without the need for extra tracer particles. In particular, Lagrangian PDF of the
density, particle accelerations as well as their Lagrangian structure functions and local scaling exponents are
analyzed. The results for low-order statistics of Lagrangian intermittency in compressible turbulence demonstrate
the implicit subparticle-scale modeling of the SPH discretization scheme.
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I. INTRODUCTION

The numerical investigation of the statistical properties of
turbulence from the Lagrangian point of view is becoming
increasingly accessible due to the recent improvement of
experimental equipment [1] and computational capabilities
for direct numerical simulation (DNS) [2]. The Lagrangian
properties of turbulence are important for understanding tur-
bulent diffusion and turbulent mixing. Although experimental
techniques have improved considerably in the last few years,
there are still several limitations, such as particle size [3,4],
spatial resolution [5], and maximal number of tracked particles
[6].

Numerical simulations allow to access multitime, multipar-
ticle correlations statistics in a straightforward manner. From
the computational point of view a major limitation of DNS
is the rapid increase in computational cost with increasing
Reynolds number, so that in practice only moderate Reynolds
numbers can be reached. Another issue is the need for gener-
ating sufficient independent statistical samples for analysis.
Lagrangian simulations for very high resolutions currently
cover only a few large-eddy turnover times. Advantages and
limitations of particle tracking based on Eulerian DNS have
been recently reviewed by Toschi and Bodenschatz [7].

In recent years many methods have been developed to
simulate fluid flow in a Lagrangian framework. Among them
the smoothed particle hydrodynamics (SPH) is a popular mesh-
free, Lagrangian particle method which has been originally
designed to address astrophysical flow problems on three-
dimensional unbounded domains [8,9]. Later it has been
applied for the modeling of fluids in a wide range of complex
situations [10]. For the simulation of turbulence, Price [11]
compared the statistics of driven, supersonic turbulence at
high Mach number using the piecewise parabolic method
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(PPM) Eulerian grid-based code and a Lagrangian SPH code at
resolutions of up to 5123 in both grid cells and SPH particles.
Excellent agreement was found between the two methods on
the basic statistical properties, such as the probability density
function (PDF) of the density, and the power spectrum. This
implies that Lagrangian DNS using SPH can be a feasible
alternative to grid-based methods.

Although having the noticeable advantage to operate
directly in a Lagrangian framework, high-resolution DNS
using SPH are nevertheless very time consuming, and this
computational bottleneck does not usually allow for fully
resolved simulations at desirable Reynolds numbers even on
the largest particle resolution considered, N = 5123 [11].
However, it might be not necessary to have fully resolved
results when studying qualitatively the basic phenomena of
intermittency, where reasonable accurate estimates of low-
order statistics could be sufficient. This is the motivation for
the present paper, namely, to explore whether low-resolution
SPH simulations are a suitable tool for such a purpose.

An analysis of Lagrangian intermittency in three-
dimensional forced compressible turbulence is performed
intentionally using under-resolved SPH simulations. The
analysis presented here is motivated by the presence of typical
stretched tails (namely, high probability of large acceleration
events compared to a Gaussian distribution) in the PDF of
particle accelerations previously observed in two-dimensional
simulations under constant shear flow [12] which qualitatively
resemble those obtained for Lagrangian tracers in fully
developed incompressible turbulence [7]. In order to produce
a steady isotropic compressible turbulent state, the stochastic
forcing scheme proposed by Kida et al. [13] and the statistics of
particle quantities are analyzed. In particular, energy spectra,
PDF of the density and particle accelerations, as well as their
Lagrangian structure functions are analyzed, and the impact
of Reynolds and Mach numbers on the observed intermittent
behavior is discussed.
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The paper is organized as follows. In Sec. II the basic
SPH formulations used in this work are reviewed. In Sec. III
the forcing scheme used in our simulation is discussed.
Results of our simulations in the case of forced isotropic
compressible turbulence are presented in Sec. IV, where the
energy spectrum, PDF of density, PDF of acceleration, and
scaling exponents are studied in detail. Finally, conclusions
are given in Sec. V.

II. SPH METHOD

Smoothed particle hydrodynamics (SPH) is a fully La-
grangian technique for modeling fluids where the numerical
solution is obtained by interpolation on an arbitrary set of
points instead of a fixed grid. The basic ingredient of SPH
is represented by an interpolation process which allows any
function A to be expressed in terms of its values defined
on a set of disordered points (particles) [8,9]. The integral
interpolations of A(r) reads therefore

A(r) =
∫

A(r′)W (r − r′,h)dr′. (1)

If we define a set of points rj (j = 1,2, . . . ,N ) arbitrarily
distributed in the domain, the integral interpolations in Eq. (1)
can be approximated by a summation

A(r) ≈
∑

j

VjAjW (|r − rj |,h), (2)

where the index j runs over all the particles present in
the influence area (estimated by the length h) centered in
r, and Vj = mj/ρj is the volume associated to particle j .
Analogously, the derivatives of A(r) can be written as

∇A(r) ≈
∑

j

VjAj∇W (|r − rj |,h). (3)

A. Equations of motion

The compressible Navier-Stokes equations in a Lagrangian
framework can be formulated as

dv
dt

= −∇p

ρ
+ η

ρ
∇2v + 1

ρ

(
ξ + η

3

)
∇∇ · v + F, (4)

where v and ρ are the fluid velocity and density, respectively,
p is the pressure, η and ξ are the dynamic shear and bulk
viscosity, and F is an external body force. A simple equation
of state relating pressure to density is, for example,

p = c2
s ρ0

γ

[(
ρ

ρ0

)γ

− d

]
, (5)

where ρ0 is a reference density, cs the speed of sound, and γ

the ratio of specific heats. Values considered here are γ = 7
and d = −1.

B. Density equation

In SPH the mass density of particle i can be evaluated in
conservative fashion as

ρi =
∑

j

mjWij , (6)

where mj is the mass associated to particle j and Wij =
W (|ri − rj |) is a suitable kernel function.

C. Momentum equation

The SPH momentum equation (4) evaluated on particle i

can be divided into three parts:

dvi

dt
=

(
dvi

dt

)p

+
(

dvi

dt

)v

+ Fi . (7)

The SPH discretization of the pressure term can be written as(
dvi

dt

)p

= −
∑

j

mj

(
pi

ρ2
i

+ pj

ρ2
j

)
W ′

ij eij , (8)

where W ′
ij = ∂W (r)

∂r
|r=rij

and eij = rij /rij . For the discretiza-
tion of the viscous term, the formulation proposed by Español
[14] is chosen, which reads(

dvi

dt

)v

= −5

3
η

∑
j

mi

1

ρiρj

[vij + eij eij · vij ]
W ′

ij

rij

, (9)

where the bulk viscosity ξ was set to zero. Notice, however,
that, according to Español and Revenga [14] the compressible
term η

3ρ
∇∇ · v is still included in our model [Eq. (9)],

which introduces a dissipation on the dilatational part of the
velocity field. Therefore, this formulation is applicable to both
incompressible and compressible flows. The external force F
will be discussed in the next section.

III. FORCING SCHEME IN STEADY FORCED
TURBULENCE

The forcing scheme adopted in this work to produce a
steady homogeneous isotropic turbulent state corresponds to
the method proposed by Kida and Orszag [13]. Originally
developed for compressible turbulence it can be applied to
excite dilatational and solenoidal modes separately. It consists
of the following force F applied in real space (domain [0,L]3,
with L = 2π ):

Fα(x,t) = Aαβ(t) sin xβ + Bαβ(t) cos xβ, (10)

where α,β denote Cartesian components, and Einstein sum-
mation over repeated indices has been adopted. A(t) = Aαβ(t)
and B(t) = Bαβ(t) are matrices of Gaussian random variables
with zero mean. The elements of A(t) and B(t) are mutually
statistically independent.

The diagonal and off-diagonal elements are responsible for
the forcing of dilatational and solenoidal modes, respectively.
For isotropy the following relation must be satisfied:

A2
αβ = B2

αβ =

⎧⎪⎨
⎪⎩

2FC

3
t
, α = β

FR

3
t
, α �= β

. (11)

Accordingly, the total energy increases as

ε0 = d

dt
〈ET 〉 = 〈ρ〉(FC + FR), (12)

where ε0 is the energy injection rate. For stationary turbulence,
the energy dissipation rate ε = ν〈|∇v|2〉 equals ε0, so that the
total kinetic energy satisfies dEk/dt = ε − ε0 = 0.
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IV. NUMERICAL RESULTS

We used the standard SPH method to simulate forced
compressible turbulence in a periodic cubic box of size
(L = 2π ). Two sets of simulations are considered, with a
total number of particles N = Nx × Ny × Nz = 323 and N =
Nx × Ny × Nz = 643, respectively. Initially all the particles
are placed on a cubic lattice with uniform spacing 
x = L/Nx ,
and with zero velocities. The Kida-Orszag forcing eventually
produces a stationary turbulent motion. In order to eliminate
effects of dilatational modes we set FC = 0 and FR = 0.01 in
Eq. (11), which gives a dissipation rate ε = 0.01, assuming
that 〈ρ〉 ≈ 1. The input viscosity considered is in the range
ν ∈ [10−4 − 2 × 10−3], which allows us to define a nominal
Reynolds number 150 � Re = Lv′/ν � 70 000, where L is
the energy-injection length scale and v′ is the root-mean-
square velocity. The corresponding nominal Taylor-Reynolds
numbers for isotropic and homogeneous turbulence are in
the range 40 � Reλ � 1000. Note that in SPH models using
artificial viscosity [11], the minimum employed coefficient is
about α ∼ 0.1, which corresponds to a physical viscosity of
ν = αcshρ0

10 . The comparison with equivalent artificial viscosity
values corresponding to α > 0.1 gives in our case a minimal
meaningful viscosity in the range 10−5–10−4.

The smallest turbulent length and time scales that would
define the necessary resolution limit of fully resolved direct
numerical simulations are on the order of the Kolmogorov
length scale η = (ν3/ε)1/4 and the Kolmogorov time scale
τη = (ν/ε)1/2. A speed of sound cs in Eq. (5) is considered
such that the corresponding root-mean-square Mach number
is Ma = v′/cs = 0.1,0.5,1,3,10. A commonly used kernel
function in SPH is the Lucy kernel with overlap κ = 3, which
gives a smoothing length h = κ
x = 3
x,

W (r,h) = w0

{
(1 + 3r/h)(1 − r/h)3, r/h < 1

0, r/h � 1
, (13)

where w0 is 105/16πh3 in three dimensions. Simulations are
performed for eight dynamical times TD = L/2v′.

Data are extracted after the initial transient, when the
simulation achieves the stationary state. This was monitored
through the variation of the kinetic energy EK . Note that the
Kolmogorov scale is much smaller than the initial particle sep-
aration 
x; therefore the current setup intentionally considers
under-resolved discretizations. Simulations are stable over the
entire duration of the run, and we did not observe any blowups.
Figure 1 (a) shows the logarithm of the column density field in
the xy plane at time t = 3TD for Ma = 3. Figure 1(b) shows
the projection of the divergence of the corresponding velocity
field.

A. Energy spectrum

For isotropic turbulence, kinetic-energy spectra exhibit an
inertial-range scaling

E(k) ∝ kα, (14)

where k is a wave number. For incompressible flow α = −5/3
is predicted by the Kolmogorov theory. For increasing Mach
number the dilatational components of the velocity become

more significant, and at highly supersonic flow it is expected,
although not shown experimentally, that the kinetic-energy
spectrum may be closer to shock-dominated turbulence with
α = −2 [15].

We have computed the energy spectrum for different time
steps and have averaged the results when the flow had achieved
a stationary state. The nominal Reynolds number was Reλ =
983 for a Mach number Ma = 10. This setup corresponds to
the choice of a Kolmogorov wave number kη = π/η ≈ 980 �
kmax = 16 for an SPH-particle number N = 323.

The energy spectrum is calculated as follows: The ve-
locity field has first been interpolated onto a grid. For each
velocity component, Fourier transforms of the velocity field
v = (vx,vy,vz) [denoted as V = (Vkx

,Vky
,Vkz

)] have been
computed. Using these definitions the velocity spectrum tensor
is evaluated as

E(k) = 1
2 |V(k) · V∗(k)| , (15)

where V∗ is the complex conjugate of the transformed velocity.
k = (kx,ky,kz) is the wave number. The energy spectrum
E(k) is finally obtained as E(k) = 4πk2〈E(k)〉, where 〈· · · 〉
denotes an average over the thin spheric shells of radius
k = |k|.

Figure 2(a) shows the evolution of the instantaneous energy
spectrum from the initial state to the stationary state. The
dashed (blue) lines correspond to spectra evaluated at different
snapshots during the transient, and the dash-dot lines (red
and light blue) indicate that a self-similar spectrum evolves
gradually. In order to extract the slope, we have averaged
70 snapshots of the energy spectrum at the steady state,
between t = 2TD − 8TD every 
T = 0.1TD , as shown in
Fig. 2(b). The slope obtained in our simulation is α = −1.9,
which is in good agreement with previous results reported in
Refs. [11,16], where α ∈ [−1.87,−1.95]. Note that the energy
spectrum deviates slightly from the power scaling for wave
numbers k > 10. The deviation may either be due to numerical
dissipation at large wave numbers due to the SPH discretization
scheme, or it may be due to interpolation of particle data from
random locations back to a grid for postprocessing for which
high-order M ′

4 moments-preserving kernel [17] were used.
Note that there are currently no techniques which allow us
to perform an accurate estimate of the energy spectrum from
Lagrangian velocity field up to the maximum wave number
kmax = N/2, e.g., in Ref. [18] the use of discrete Fourier
transform allows to obtain an accurate spectrum up to k =
0.26N , substantially smaller than kmax [18]. This represents a
potential drawback for the evaluation of turbulence models in
SPH which needs to be addressed in the future.

B. Density PDF

The PDF of the density is important for characterizing
supersonic turbulence. Previous studies [19–21] have shown
that the density PDF of flows is well represented by a
lognormal distribution

p(ρ) = 1√
2πσ 2

exp

[
− 1

2

(
ln ρ − ln ρ

σ

)2]
, (16)

where the standard deviation σ and the mean ln ρ are functions
of the fluctuating Mach number (i.e., the root mean square of
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FIG. 1. (Color online) (a) column density from a snapshot at time t = 3TD for Ma = 3. (b) Projected divergence of the velocity field ∇ · v.
Negative (positive) values correspond to regions of local compression (rarefaction), respectively.

the local Mach number) M ′:

ln ρ = −σ 2

2
(17)

and

σ 2 = ln(1 + b2M ′2). (18)

Figure 3 presents the time-averaged density PDF p(ρ)
obtained for solenoidal random forcing and two particle
numbers N = 323 and 643. The PDF in the inset of Fig. 3
shows clearly a lognormal distribution in agreement with

previous calculations and with theoretical expectations, except
for very small probabilities (see the main plot of Fig. 3),
where our simulation indicates deviations from the lognormal
distribution. Federrath and coauthors also found a deviation
from the lognormal distribution near the PDF tails [16].
The deviations were explained by rare events caused by
strongly intermittent fluctuations during head-on collisions of
strong shocks and oscillations. Shock-induced intermittency
should be therefore the basis of non-Gaussianity in the
density PDF and can be quantified by the onset of a weak
correlation between density and velocity fields as discussed in
Ref. [20].
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FIG. 2. (Color online) Energy spectrum at Ma = 10. (a) Time evolution of the energy spectra (dashed blue line) evaluated at different
snapshots during the transient. The blue and red dashed-dot lines indicate the self-similar spectrum. (b) Averaged energy spectrum at steady
state.
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FIG. 3. (Color online) PDF of ln ρ at Ma = 3 with resolutions
of 323 and 643 and Reλ = 943. The inset shows clearly a lognormal
distribution for large probabilities of the density PDF. Deviations
from the lognormality appear at smaller probabilities.

It should be noted that, although exhibiting intermittency,
the maximum density fluctuations in our simulation are not
as large as those reported in Refs. [11,16], and the best-
fitting lognormal distribution gives b ≈ 0.14, which is smaller
than 0.33 as in Ref. [22]. In order to check the reason
for this discrepancy, we have performed a systematic study
to investigate the effect of several SPH model parameters.
We have insignificant changes of the results when different
parameters γ and d in the equation of state were used
(values γ = 1,7 and d = 0, − 1 were tested) provided that
the effective speed of sound was kept constant. The same
holds also for the PDF of acceleration and scaling exponent,
discussed in the following sections. Furthermore, one can see
from Fig. 3 that an increased particle resolution only slightly
affects the density PDF and thus cannot explain the differences
from Ref. [11]. Although different particle resolutions affect
the tails of the density PDF, low-order moments of the PDF are
hardly affected: We have evaluated the skewness of the PDF
in Fig. 3 for N = 323,643 giving, respectively, s1 = 0.833
and s2 = 0.838, and the relative error of skewness for two
resolutions is consistently less than 1%. For the Reynolds
number in the range Reλ ∈ [200 − 1000], there are only very
slight differences of density PDF among various Reλ. In
conclusion, we identify the real-space forcing scheme used
here as the only possible main cause of the discrepancy with
respect to the results reported in Ref. [11] where a spectral
forcing scheme was adopted. Some evidence supporting this
view can be found for example in Ref. [23]. In this work
the authors obtain b = 0.26, even though the forcing was not
purely solenoidal, suggesting that for a pure solenoidal forcing,
an even smaller b value could be expected. Also, the strong
influence of the forcing scheme on the density PDF has been
already reported in Ref. [16] and should be carefully taken into
account when aiming at quantitative comparisons.
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FIG. 4. (Color online) PDF of acceleration for different Reynolds
numbers.

C. Acceleration PDF

The PDF of particle accelerations is very important for the
development of phenomenological and stochastic models of
turbulent mixing. With previously employed forcing scheme
problems can arise when studying the acceleration PDF of SPH
particles. Due to the fact that the forcing scheme introduces
a Gaussian acceleration, it is difficult to observe typical non-
Gaussian “stretched tails” that are found in experiments [24]
and DNS [25]. In order to avoid the effect of the Gaussian
distributed external force, we remove the background Gaussian
accelerations from the total acceleration acting on the particles;
that is, we consider statistics of a′

j (t) = aj (t) − Fj (t) where
Fj (t) is the stochastic forcing term at time t acting on the
particle j .

First, we consider results with the largest Mach number
in our simulation, Fig. 4 shows the PDF of accelerations
for different Reynolds numbers at Ma = 10. For moderate
Reynolds numbers, 45 � Reλ � 300, the tails of the accelera-
tion PDF extend dramatically, whereas at larger Reλ they seem
to tend toward a limit curve. In order to quantify the degree
of intermittency of the accelerations, we calculate the flatness
(〈a4〉/〈a2〉2) of their distributions as a function of the Reynolds
number.

The slow statistical convergence of the flatness can be
remedied by fitting first the scattered data with an analytical
function P (a) = C exp{−a2/[(1 + |aβ/σ |γ ]σ 2)} as used in
Ref. [24] and then evaluating the corresponding flatness.

As a cross-check, we have also computed the flatness
directly from the scattered data and indicate error bars in
the respective figures. Figure 5(a) shows that the flatness
of the acceleration PDF increases significantly in the small
Reynolds number range, tending to a finite value at large
Reynolds numbers. These results show a similar trend as the
measured flatness reported for incompressible turbulence [26].
Note that approaching a limiting curve for increasing Reλ

is not a numerical artifact due to under-resolution. In Fig. 6
the acceleration PDF evaluated from two simulations with
particle resolution N = 323,643 is shown. Good collapse of
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FIG. 5. Flatness of the acceleration PDF: Reynolds- and Mach-number dependence. (a) Flatness with different Reynolds number at
Ma = 10. (b) Flatness with different Mach number, the maximal Reynolds number has been chosen at each Mach number, such that Reλ = 932,
Reλ = 946, Reλ = 978, Reλ = 940, Reλ = 983 for Ma = 0.1, 0.5, 1.0, 3.0, 10, respectively.

the results is obtained up to acceleration events corresponding
to dimensionless |ã| ≈ 10, showing that the main intermittent
behavior is correctly captured. For very large values of the
acceleration, the two curves depart slightly; they correspond,
however, to very rare events which do not contribute much
to the fourth-order moment of the PDF. We have explicitly
checked that the relative difference in flatness between the
two curves in Fig. 6 was below 5% indicating that the
particle resolutions adopted were large enough to extract
the statistics considered here. In particular, N = 323 and 643

give f1 = 47.327 and f2 = 49.284, respectively.
The effects of Mach number on the acceleration PDF

have been rarely considered in the literature. Figure 7 shows
the acceleration PDF for Ma = 0.1,0.5,1,3 at N = 323.
For small Mach number Ma = 0.1, the PDF exhibits slight

−20 −15 −10 −5 0 5 10 15 20
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

a
x
/<a

x
2>

1/2

P
(a

x)

 

 

323

643

Gauss Distribution

FIG. 6. (Color online) Flatness of PDF of acceleration.

deviations from the Gaussian distribution. With increasing
Mach number the PDF becomes much more intermittent.
This trend levels off at large Mach numbers; see Fig. 5(b).
Unlike for incompressible flow, intermittency in compressible
turbulence can by caused by shocks and rarefaction waves,
as discussed in Ref. [16]. We have checked the effect of
SPH-model parameters, and have found no significant changes
of the PDF except for very rare events at the PDF tails.

D. Lagrangian scaling exponents

Scaling exponents, defined as the logarithmic derivative of
the Lagrangian structure functions of the respective order, also
serve to analyzed intermittency

ζp(τ ) = d log[Sp(τ )]

d log[S2(τ )]
. (19)

Here

Sp(τ ) = 〈[v(t + τ ) − v(t)]p〉 (20)

is the Lagrangian structure function of order p and τ is the
time lag. ζp(τ ) is a local scaling exponent, and its variation
with τ indicates anomalous scaling, a typical manifestation of
intermittency.

Figure 8 shows the local scaling exponent for differ-
ent Mach numbers as a function of τ normalized by the
Kolmogorov scale, τ/τη. A nonintermittent behavior would
correspond to a constant value ζp(τ ) = p/2. In the range
of τ where the scaling exponents ζp(τ ) differ from this
value, the velocity field is temporally intermittent. From
Fig. 8 it is evident that there is a tendency toward the
nonintermittent case ζ4(τ ) = 2 only for very small time lags
τ � τη for all the Mach numbers considered. The strongest
deviation from the nonintermittent value is observed in the
range τη � τ � 5τη, where a minimum in ζ4(τ ) is visible.
Again, the dip behavior is qualitatively similar to that reported
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FIG. 7. (Color online) PDF of acceleration for different Mach numbers.

for incompressible turbulence in Ref. [7], where, however,
intermittency is rather caused by coherent structures of intense
vorticity. Such structures intentionally are not resolved by
the present SPH simulations, so that they cannot be the
reason for the observed intermittency in our case. Evidence
of strong correlation between vortical structures and high
acceleration events in the incompressible case was reported,
for example, in Ref. [27]. The intermittent behavior observed
here has a different origin, being caused by strong compression
(rarefaction) waves (∇ · v) of the type discussed, for example,
in Ref. [28]. It can be seen that with increasing Mach number
intermittency becomes increasingly significant, as the acceler-
ation PDF changes its shape with Mach number in Fig. 7.
Larger time lags τ � 5τη cannot be resolved numerically
by the current setup. Note that the resolutions used here
are insufficiently to obtain statistically fully converged result
[11], which has to be taken into account when assessing the
results.

V. CONCLUSIONS

The observation of typical stretched tails in the probability
distribution function of particle accelerations made in previous
two-dimensional simulations under constant shear flow [12]
motivated the research reported here. By discretizing the
continuum equations following the motion of fluid particles
the SPH method allows us to extract easily Lagrangian
statistics, such as multitime correlations and Lagrangian
scaling exponents, without the need to introduce extra tracer
particles on a precalculated Eulerian velocity fields. When
performing under-resolved simulations, the typical cutoff in
the Fourier space is at much smaller wave numbers than
those for the smallest physical scales characterized by the
Kolmogorov length. For creating a stationary statistically
isotropic flow field the stochastic forcing scheme proposed
by Kida et al. [13] is applied. The stationary energy spectrum
produces a Burgers-like scaling behavior with an exponent
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FIG. 8. (Color online) scaling exponent.

α ≈ 1.9 for most of the resolved wave-number range (k =
10 for N = 323) without introducing an explicit turbulent
model. At larger k exponential decay is observed. It is,
however, difficult to say whether this behavior is the result
of an implicit dissipation contained in the SPH method or
whether it originates from the particle-grid interpolation used
to for evaluating the energy spectra. A lognormal distribution
is obtained for most of the density PDF. Deviations from
lognormality are observed at the PDF tails, which differ,
however, quantitatively from previously reported results. This
difference can be attributed to the different forcing scheme
used here.

Concerning the PDF of the particle accelerations, we have
observed a tendency toward intermittency when increasing
Reynolds and Mach numbers. In both cases the flatness of
the PDF increases dramatically for low to moderate values
of Re and Ma and eventually levels off. Sensitivity tests

on the evaluated PDF flatness to SPH resolution have been
performed showing no significant effect on the results and
indicate that low-order statistics are statistically converged.
Intermittent behavior has been analyzed also for Lagrangian
structure functions and relative scaling exponents. Anomalous
scaling is observed corresponding to departures of ζ4 from
the nonintermittent value 2. Moreover, the slope of ζ4(τ )
shows a qualitative behavior that agrees with incompressible
results [7]. The magnitude of the ζ4(τ ) minimum decreasing
with increasing Mach number. It is important to note that
the increasing intermittency here is generated by shocklets
in the density and pressure fields rather than by coherent
vortical structures mentioned in Ref. [7]. Further tests for
decaying turbulence as well as for wall-bounded shear flow
will be performed in the future in order to study the
behavior of compressible intermittency under anisotropic
conditions.
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