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A numerically stable method to solve the discretized Boltzmann-Enskog equation describing the behavior
of nonideal fluids under inhomogeneous conditions is presented. The algorithm employed uses a Lagrangian
finite-difference scheme for the treatment of the convective term and a forcing term to account for the molecular
repulsion together with a Bhatnagar-Gross-Krook relaxation term. In order to eliminate the spurious currents
induced by the numerical discretization procedure, we use a trapezoidal rule for the time integration together
with a version of the two-distribution method of He et al. [J. Comput. Phys. 152, 642 (1999)]. Numerical tests
show that, in the case of a one-component fluid in the presence of a spherical potential well, the proposed method
reduces the numerical error by several orders of magnitude. We conduct another test by considering the flow of a
two-component fluid in a channel with a bottleneck and provide information about the density and velocity field
in this structured geometry.
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I. INTRODUCTION

Liquids often appear as homogeneous on a macroscopic
scale, but not when observed on a microscopic scale, where
they may display density oscillations extending over a few
molecular diameters. Equilibrium statistical-mechanics the-
ories such as density-functional theory (DFT) or integral
equations can deal routinely with the presence of such inho-
mogeneities in density, concentration, or other kinds of order
parameters and predict the ensemble-average microscopic
profiles and the associated surface and line tension, while a
similar situation does not occur in nonequilibrium systems
[1–3]. In this case, the presence of inhomogeneities often
causes difficulties in the numerical solution of the associated
evolution equations.

It is well known that the conventional hydrodynamic
description, based on the Navier-Stokes equation, faces dif-
ficulties when fluids are confined within a small volume
or when the boundaries of the container have complicated
shapes with typical lengths of the order of a few molecular
diameters. Such a picture, while valid on a macroscopic
scale, fails to describe very small systems [4–6]. In contrast,
the kinetic approach based on the distribution functions
formalism and on the Boltzmann equation and its refinements
represents a convenient description of both homogeneous
and inhomogeneous systems. Among the existing numerical
approaches used to solve the Boltzmann equation, the lattice
Boltzmann (LB) method plays a prominent role [7–9]. It is
a discretized version of the continuous Boltzmann equation
and gives good results in the homogeneous phases [10–12].
However, the numerical solution of inhomogeneous systems
within the LB scheme is challenging: As reported by several
authors [13–18], a straightforward application of the LB
equation (LBE) leads to the observation of an unphysical
effect, the so-called spurious currents, resulting from the
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discretization procedure. To resolve this difficulty, molecular
interactions must be handled with care.

In the literature, internal forces are accounted for in two
different ways: either by imposing the condition that the
equilibrium distribution gives the desired form of the pressure
tensor or introducing an appropriate forcing term [19,20].
The forcing term can be chosen in two different manners:
proportional to either the gradient of the pressure excess over
the ideal gas value or the product of the density times the
gradient of the excess chemical potential, that is, by using
the Gibbs-Duhem condition in differential form. Actually, the
second choice is consistent with microscopic theories, such as
DFT [1], where the equilibrium condition is given by requiring
that the gradient of the local chemical potential is locally
balanced by the external forces.

In the present paper, we discuss a LBE algorithm based
on the Boltzmann-Enskog transport equation [21–25]. The
approach is particularly convenient when the packing effects
are relevant, that is, from moderate to high fluid densities.
A straightforward application of the LBE algorithm leads to
numerical instabilities, so we introduce a numerical scheme
that employs a trapezoidal time discretization plus an extension
of a procedure, originally proposed by He et al. [26], that
uses two distribution functions, instead of one, to reduce the
spurious current phenomenon. In this scheme, one distribution
function tracks the local-density profile while the other
tracks the local momentum density. The standard phase-space
distribution function f (r,v,t) evolves concurrently with an
auxiliary distribution function g(r,v,t), whose zeroth-velocity
moment is the hydrodynamic pressure and its first moment is
identical to the corresponding moment of f (r,v,t). According
to previous authors, the reason for the increased stability of
the double-distribution method stems from the fact that the
forcing term in the g equation is multiplied by the difference
between the local and the global Maxwellian distributions,
thus reducing its importance with respect to the original f

equation, where the forcing term is multiplied by the local
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Maxwellian distribution. The method was later extended and
generalized by Lee et al. [27–29].

The main difference between our approach and previous
ones, besides the bottom-up microscopic modeling of the fluid
proposed in earlier work [30–32], consists in the choice of
the function employed to define the g-distribution function.
As we shall see, with the present choice it is straightforward
to generalize the method to multicomponent fluids, while
in the original formulation such a generalization is not
straightforward. In this way, our method leads naturally to
a form of the forcing term similar to that in the Gibbs-Duhem
route. This strategy can also be generalized to multicomponent
fluids, whereas the pressure route cannot.

The paper is organized as follows. In Sec. II we present the
evolution equation for the one-particle distribution function f

and for the auxiliary distribution g for both the simple fluid
and the fluid mixture. In Sec. III we discuss the discretization
procedure. In Sec. IV we present numerical tests of the
proposed method. Finally, in Sec. V we present a summary.

II. EQUATIONS FOR THE DOUBLE-DISTRIBUTION
FUNCTIONS

We start the discussion with the set of Boltzmann-Enskog
equations characterizing a mixture of M species, labeled
with an upper index α = 1,M . The evolution equation for
a particular distribution function f α(r,v,t) can be written as

D

Dt
f α(r,v,t) = −Fα(r)

m
· ∂

∂v
f α(r,v,t) +

∑
β

J αβ(r,v,t),

(1)

where the material derivative is given by

D

Dt
= ∂

∂t
+ v · ∇, (2)

Fα(r) is an external velocity-independent force field acting
on component α, and J αβ represents the effect on the single-
particle distribution function of the interactions among the
fluid particles of type α and β. Using a separation of the
interaction term into a kinetic rapidly varying part and an
hydrodynamic part originally introduced by Santos and co-
workers [22,23] and extended to mixtures later [33,34], we
rewrite Eq. (1) as

Df α

Dt
= −ω

(
f α − f α

eq

) + Sα
f (r,v,t). (3)

The first term on the right-hand side (rhs) of Eq. (3) is a
Bhatnagar-Gross-Krook (BGK) relaxation term [35], ω is
the inverse relaxation time, and Sα

f is a source term due to
external forcing and molecular interactions, which according
to Ref. [36] can be written as

Sα
f (r,v,t) = −Fα(r)

m

∂

∂v
f α + β(v − u) · Cα(r,t)�u(r,v,t),

(4)

with β = 1/kBT , T the temperature, and kB the Boltzmann
constant. In addition, �u is a Maxwellian velocity distribution
whose mean velocity is the local fluid velocity u(r,t),

�u(r,v,t) =
(

1

2πv2
T

)3/2

e−[v−u(r,t)]2/2v2
T , (5)

where mv2
T = kBT for particles of common mass m and

f α
eq(r,v,t) = nα(r,v,t)(1 + β{[uα(r,t) − u(r,t)]

·[v − u(r,t)]})�u(r,v,t), (6)

with uα the average velocity of the component α. The term Cα

is a collisional kernel describing the change of f α due to the
interactions.

We first rewrite Eq. (3) in a form that is equivalent up to
terms of third order in the Hermite expansion

Sα
f = β

(
Cα + nα Fα

m

)
· (v − u)�u. (7)

From the phase-space distribution function f α(r,v,t) we can
compute the particle partial density

nα(r,t) =
∫

dvf α(r,v,t) (8)

and the momentum current carried by particles of type α,

nα(r,t)uα(r,t) =
∫

dvf α(r,v,t)v, (9)

which from Eq. (3) satisfies the continuity equation

∂nα

∂t
+ ∇ · (nαuα) = 0. (10)

The average fluid velocity is obtained from

u =
∑

α nαuα

n
,

with the global density given by

n =
∑

α

nα.

The numerical solution of Eq. (3) is plagued by numerical
instabilities, as reported in Ref. [26], because the term Sα

f

featured on the rhs is quite large in the interfacial regions
since the main contribution to Cα , which is proportional to
the gradient of the local chemical potential, varies rapidly.
Alternatively, following the seminal idea put forth by He
et al. in Ref. [26] and pursued by Lee [29] to stabilize the
numerical solution the one-component version of Eq. (3), it is
possible to employ an auxiliary distribution function, namely
gα(r,v,t), such that the role of the forcing term featured in
its evolution equation is effectively reduced. Such a heuristic
recipe stabilizes the numerical solution by decoupling the
density and the momentum equations. In the present treatment,
we will handle the stabilizing terms in an effective way,
without relying on any heuristics. Let us introduce the auxiliary
distribution

gα(r,v,t) = f α(r,v,t) + [�α(r,t) − nα(r,t)]�0, (11)

where �α(r,t) is a function of the partial densities, to be
determined in the following, and �0 indicates the velocity
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distribution at global equilibrium, that is, the Maxwellian
corresponding to u = 0. One assumes that the function �α

depends on its argument through {nα(r,t)}. From the definition
(11) one can see that gα differs from f α with respect to the
zeroth moment ∫

dvgα(r,v,t) = �α(r,t), (12)

but shares the same first moment∫
dvgα(r,v,t)v = nα(r,t)uα(r,t). (13)

By using Eqs. (11) and (3), the evolution equation for gα(r,v,t)
reads

Dgα

Dt
= Df α

Dt
+ D

Dt
(�α − nα)�0, (14)

D

Dt
[�α(r,t) − nα(r,t)]

= (v − u) · ∇(�α − nα) −
∑

β

nβ

(
d�α

dnβ
− δαβ

)
∇ · uβ

−
∑

β

(
d�α

dnβ
− δαβ

)
(uβ − u) · ∇nβ. (15)

One obtains the evolution equation (14) for gα(r,v,t) as

Dgα

Dt
= −ω

(
gα − gα

eq

) + Sα
g , (16)

with

Sα
g (r,t) = β

(
Cα + nα Fα

m

)
· (v − u)(�u − �0)

+
(

∇�α − ∇nα + βCα + nα Fα

m

)
· (v − u)�0

−
∑

β

nβ

(
d�α

dnβ
− δαβ

)
[∇ · (nβuβ) − u · ∇nβ]�0

(17)

and

gα
eq(r,v,t) = nα(r,t){1 + βm[uα(r,t) − u(r,t)]

·[v − u(r,t)]}�u + [�α(r,t) − nα(r,t)]�0. (18)

It can be checked that the evolution equation for gα or the one
for f α leads to the same balance equation for uα . In practice, in
the numerical work we shall use the f α equation to determine
the density nα and track the formation of interfaces and the gα

equation to determine the velocity field uα .
The main motivation behind the transformation from f α to

gα is that the effect of the forcing term Sα
g featured in Eq. (16)

can be rendered smaller than the corresponding effect due to
the forcing term Sα

f in the original equation (3) for f α by an
appropriate choice of the function �α(r,t). In fact, the first
term in Sα

g is of order (v − u)2 because it contains the product
of (v − u)(�u − �0), whereas the second term can be rendered
small using the arbitrariness of the function �α . As far as the
last term is concerned, we shall verify that the last term in
Sα

g is actually small in our numerical simulation. One expects
that a weaker forcing term helps the stability of the numerical

solution. In the one-component case He et al. suggested that
β−1�α be replaced by the thermodynamic pressure pt . In order
to see that we use the explicit representation of the function
Cα , which represents the effect of the molecular interactions
in the model studied.

We first separate the effective field Cα into three separate
contributions, the separation being quite generic and not
determined by the particular model used:

Cα(r,t) = Cα,mf (r,t) + Cα,drag(r,t) + Cα,visc(r,t). (19)

The first term can be written as

Cα,mf = −nα(r,t)∇μα
int(r,t), (20)

where μα
int is the nonideal part of the chemical potential of the

α component. For sufficiently smooth density profiles we can
write

Cα,drag(r,t) � −γ nα(r,t)
∑

β

[uα(r,t) − uβ(r,t)] (21)

and for the viscous part

C
α,visc
i (r,t) ≈ −nα(r,t)

∑
β

[
ηαβ∇2u

β

i (r,t)

+
(

η
αβ

b + 1

3
ηαβ

)
∇i(∇ · uβ)

]
. (22)

The coefficients γ and η depend on the specific model. In the
Appendix we report their explicit representation for a system
of hard spheres with attractive interactions.

In the case of a one-component fluid it is straightforward
to derive the equation for the g distribution, which closely
resembles the equation derived by He et al. After dropping the
unnecessary index α one has

Dg

Dt
= −ω(g − geq) + Sg, (23)

Sg = β

(
C + n

F
m

)
· (v − u)(�u − �0)

+
[
∇� − ∇n + βC + n

βF
m

]
· (v − u)�0

− n

(
d�

dn
− 1

)
(∇ · u)�0. (24)

Using Eq. (20) and neglecting the nonequilibrium contribu-
tions to C we have

−∇n + βC = −βn∇μ, (25)

where μ is the total chemical potential. Finally, with the help
of the Gibbs-Duhem relation we introduce the thermodynamic
pressure

∇pt = n∇μ. (26)

Hence, requiring the vanishing of the term in square brackets
in Eq. (24) is equivalent to the condition

β∇� = ∇pt − n
F
m

. (27)

In other words, choosing β� to be the thermodynamic
potential augmented by the contribution due to the external
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field makes the second term of Eq. (24) vanish. From the
physical point of view, such a condition is a consequence of
the hydrostatic equilibrium condition [1].

Unfortunately, in the multicomponent fluid the identifica-
tion of �α with the pressure is not possible. The reason is
that in this case, for the distribution functions one needs a �α

function for each component, whereas one can find only one
pressure, through the Gibbs-Duhem relation

∇pt =
∑

α

nα∇μα. (28)

Moreover, by using the pressure route it is very difficult to
obtain a satisfactory numerical solution in the general case,
as in the presence of confining walls, spontaneous layering
mechanisms, or free interfaces. Alternatively, we choose the
unknown function �α as the potential function associated with
the vector field ∇nα − βCα in such a way as to cancel this term
from Eq. (17). More precisely, the function �α is chosen to be

�α(r,t) = nα(r,t) − β

∫ r

dr′
(

Cα,mf (r′,t) + nα(r′,t)
Fα(r′)

m

)
.

(29)

Therefore, since Cα,mf is a functional of density, �α is
chosen to be a nonlocal function of density, in stark contrast
with previous proposed approaches that are based on a local
compensating pressure term [26,29,37,38]. Equation (29) also
provides the operational route to our approach. In fact, the
integral is evaluated numerically using trapezoidal spatial
integration, which provides a satisfactory numerical solution
in terms of accuracy. It should be noted that, since it is an
integral over a vector field, the integration depends on the
origin and the specific path of the integral. However, this aspect
is not problematic for systems where a symmetry point can be
found. In addition, the integration constant never appears in the
evolution equation and thus does not need to be determined.
Although Eq. (16) looks more complicated than the original
one, it behaves better in numerical terms and gives rise to
smaller interfacial currents, as shown in the following.

III. NUMERICAL SOLUTION

We illustrate the numerical solution of the proposed method
by considering explicitly the one-component case, while the
multicomponent case can be easily deduced. Let us consider
again the integration of the generic evolution equation

Df

Dt
= �(f,M)(r,v,t), (30)

where the unspecified kernel � contains the collisional term,
the BGK term, and the external force F · ∂vf . As is customary
in the derivation of the lattice Boltzmann method (LBM), the
distribution function is first projected on a finite Hermite basis
set to handle the dependence on velocity [39,40]. By taking
Eq. (30) as our reference equation, the rhs depends on f as
well as on its moments M = {Mp}, with

Mp(r,t) = 〈f |Hp〉, (31)

where Hp is the pth Hermite polynomial and

〈A|Hp〉 ≡
∫

dvA(r,v,t)Hp(v) (32)

expresses the Hermite scalar product.
In order to discretize Eq. (30), we start by considering the

truncated Hermite expansion

f̄ (r,v,t) = �0(v)
K∑

p=0

1

v
2p

T 2p!
Mp(r,t)Hp(v), (33)

where K is the order of truncation of the Hermite expansion
and Mp = 〈f |Hp〉 = 〈f̄ |Hp〉. In fact, from the definitions it
follows that the original and the truncated forms of the singlet
distribution share the same moments up to p � K . By the same
token, we consider the expansion of the collisional kernel

�̄(r,v,t) = �0(v)
K∑

p=0

1

v
2p

T p!
Op(r,t)H(p)(v), (34)

with Op = 〈�|H(p)〉. As for the distribution function, �

has moments O = {Op} shared by the full and truncated
representations of the kernel �.

The LBM is based on replacing the Hermite scalar products
by Gauss-Hermite quadratures to evaluate its moments

Mp = 〈f̄ |Hp〉 =
G∑

p=0

fpH(p)(cp), (35)

where the vectors cp are a set of quadratures nodes, wp

are the associated weights, and G is the order of the
quadratures. The operational version of the LBM scheme is
provided by the quantities fp(r,t) = wpf̄ (r,cp,t)/�0(cp) and
�p(r,t) = wp�(r,cp,t)/�0(cp). From these transformations,
the evolution equation of the new representation reads

∂

∂t
fp(v,t) + cp · ∇fp(v,t) = �p(fp,M)(r,t), (36)

where we have rewritten the streaming term v · ∇f in its
Hermite form. The exact time evolution of the populations
over a time step h then reads

fp(r + cph,t + h) = fp(r,t) +
∫ t+h

t

ds �p(fp,M)(r,s).

(37)

In contrast, a second-order accurate O(h2) numerical integra-
tion can be obtained via the trapezoidal rule [41],∫ t+h

t

ds �p(fp,M)(r,s) = h

2
[�p(fp,M)(r + cph,t + h)

+�p(fp,M)(r,t)] + O(h3)

≡ h

2

(
�t+h

p + �t
p

) + O(h3), (38)

where �t
p ≡ �(fp,M)(r,t).

Equation (38) is apparently implicit. However, the scheme
can be rendered explicit by using the following exact mapping
to transform the original populations into the new set:

f̃p = fp − �p(fp,M)

2
h. (39)
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FIG. 1. Numerical error in the (a) density, (b) velocity, and (c) current for the ideal-gas system in the presence of the central potential well.
See the text for details. The dashed and dot-dashed lines represent the power-law dependence of the numerical error, as reported in the legends.

The moments in the f̃ representation, collectively called
M̃p = {〈f̃ |Hp〉}, are related to those in the f representation by

M̃p = Mp − Op

2
h. (40)

In many circumstances, both relations (39) and (40) are
invertible, that is, we can obtain explicitly the populations
fp as a function of f̃p and the moments M as a function of
M̃ . This is the case, for example, for BGK or Fokker-Planck
kernels [42] and in the presence of external forces.

Finally, the temporal evolution for the populations f̃p if
given by the updating scheme

f̃p(r + cph,t + h) = f̃p(r,t) + �p(fp,M)(r,t)h, (41)

which provides a way to integrate the equation via the
trapezoidal route. It is practical to work in the f̃ representation
and substitute the quantities fp and M in the collisional kernel
featured on the rhs of Eq. (41).

For the collisional kernel C appearing in Eq. (3), however,
the relation is noninvertible since C is a functional of
the hydrodynamic moments. Yet, by decomposing O(M) =
Ores(M) + C[M], where Ores(M) is the residual part of
the collisional moments, which is a function (rather than

a functional) of the hydrodynamic moments, a workable
algorithm is obtained via the scheme

M̃p = Mp − Ores
p (M)

2
h − Cp[M̃]

2
h (42)

so that the original moments M are expressed as functionals
of M̃ and substituted in Eq. (41). It is straightforward to show
that for C = 0, the BGK and external forcing components give
rise to the second accurate integration method introduced by
Guo et al. [42].

IV. RESULTS

In the following we will analyze an ideal fluid with both
the Euler integration (EI) and trapezoidal integration (TI).
Subsequently, we will consider the hard-sphere system and
compare the simulations obtained via the single-distribution
(SD) method (without the auxiliary distribution) and the
double-distribution (DD) method. By distinguishing the case
of Euler integration from the trapezoidal integration we
have four combinations, for example, the double-distribution
method with the trapezoidal rule and analogously for the other
combinations such as SD EI, SD TI, and DD EI.

FIG. 2. Numerical error in the fluid velocity in the presence of the central potential well for the one-component fluid (left panel) and the
binary mixture with diameters of σA = 4 and σB = 8 (right panel).
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FIG. 3. Sketch of the channel flow system in the presence of an
obstacle. The channel is filled with either a one-component fluid or a
binary mixture. For the simulations we have set the geometry equal to
L = 120, l = 30, H = 35, and h = 28 in lattice units. The diameters
of the large and small particles are denoted σA and σB , respectively.

A. Ideal fluid in a potential well

To illustrate the numerical capabilities of the LBM, let
us first consider an ideal fluid (by setting the collisional
kernel C = 0) in the presence of an external central potential,
expressed as

U ext =
⎧⎨
⎩

−ε

[
1 + cos

(
πr

ξ

)]
if r < ξ

0 otherwise,
(43)

where the potential depth is taken to be ε = 0.3 × kBT and
the well size ξ is varied in order to compare the standard Euler

versus the trapezoidal integration rules. The external force is
expressed as Fext = −∇U ext acting on particles of unit mass.
At global equilibrium, the density should be distributed as
n

eq
0 exp(−U ext/v2

T ), with n0 = 1
V

∫
V

dr n(r), and the current
should be zero everywhere.

By applying the trapezoidal rule, the populations f̃p

are updated in time and at every time step the density
and current are computed as ñ = ∑

p f̃p and J̃ = ∑
p cpf̃p.

In the f representation, the hydrodynamic moments that
contain the second-order accuracy in space and time are
computed by reversing Eq. (42) so that n = ∑

p fp = ñ and

J = ∑
p cpfp = J̃ + Fext h

2 .
Finally, the expression of the external forces up to second

Hermite order reads

F ext
p = wp

[
Fext · H(1)

p + 2Fextu : H(2)
p

]
, (44)

where H(1)
p = H(1)(cp) = cp

v2
T

and H(2)
p = H(2)(cp) = cpcp−v2

T I
2v4

T

,

which are a vector and a tensor of rank 2, respectively, and I
is the unit tensor. By using Eq. (41), it follows that fp = (1 +
ωh
2 )−1[f̃p + ωh

2 f
eq
p + Fp] and the populations are updated to

the postcollisional term

f̃ ∗
p = f̃p + ωh

1 + ωh/2

[
f eq

p (n,u) − f̃p

] + h

1 + ωh/2
F ext

p ,

(45)

which is to be contrasted with the standard Euler integration,
reading

f ∗
p = fp + ωh

[
f eq

p (n,u) − fp

] + hF ext
p . (46)

Both the trapezoidal and Euler evolutions are then completed
by the streaming stage, reading f̃p(r + hcp,t + h) = f̃p(r,t)
and fp(r + hcp,t + h) = fp(r,t), respectively.

FIG. 4. (Color online) One-component system: comparison of streamlines for packing fractions of 0.13 as obtained with the SD-EI
(top panel) and the DD-TI (bottom panel) methods.
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FIG. 5. One-component system: density profiles for different
values of the x coordinate as obtained with and without forcing.
The profiles for x = 40 and 80 correspond to positions right before
and right after the corners of the obstacle. For all x values, the profiles
with and without forcing are basically indistinguishable. Profiles have
been shifted upward for the sake of clarity.

We simulate a three-dimensional system and in Fig. 1 we
report the error on density as Err(n) = maxr(|n − neq|/n0),
the error on fluid velocity arising from parasitic effects, as
Err(u) = maxr(|u|/vT ), and the error on current as Err(J) =
maxr(|J|/n0vT ). The data show that the numerical errors
in the density, velocity, and current decrease systematically
with the mesh resolution for both the EI and TI methodologies.
The error is reduced by about two orders of magnitude for
the TI method as compared to the EI scheme. In particular,
the error in density decreases as ∼ 1/�x2 for both methods,
while the error in current drops as ∼ 1/�x2 and ∼ 1/�x4

for the EI and TI methods, respectively. These preliminary
results provide a reference for the subsequent simulations of
the hard-sphere system and an important indication of the
quality of the trapezoidal evolution method.

B. Hard-sphere fluid mixture in a potential well

We now consider a nonideal fluid mixture of hard spheres
and numerically solve the statics of the problem in the presence
of the same central external potential of Eq. (43) and integrate
the dynamics with and without the auxiliary distribution
method. The trapezoidal integration for the two distributions
generalizes Eq. (41) to

f̃ α
p (r + cph,t + h) = f̃ α

p (r,t) + h �α
f,p

(
f α

p ,{M})(r,t), (47)

g̃α
p(r + cph,t + h) = g̃α

p(r,t) + h �α
g,p

(
gα

p,{N})(r,t), (48)

where

�α
f,p(fp,{M}) = ω

(
f α,eq

p − f α
p

) + Sα
f,p, (49)

�α
g,p(gp,{N}) = ω

(
gα,eq

p − gα
p

) + Sα
g,p. (50)

Here {M} and {N} refer to the set of moments of the
populations f α

p and gα
p , respectively.

FIG. 6. One-component system: divergence of velocity
D ≡ ∇ · u/(vT /�x) computed at midchannel (x = 60) for the
system in the flow condition. The two profiles correspond to the
DD-TI (circles) and SD-EI (squares) methods. The inset displays
the ratio |DDD TI/DSD EI|.

We compute the relevant moments, that is, densities, hard-
sphere chemical potentials, and currents, as

ñα =
∑

p

f̃ α
p , (51)

�̃α =
∑

p

g̃α
p, (52)

J̃α = ñũα =
∑

p

cpg̃α
p. (53)

Then

nα =
∑

p

f α
p , (54)

�α =
∑

p

gα
p = �̃α − h

2
Cα,mf · uα, (55)

Jα = nαuα =
∑

p

cpgα
p = J̃α + h

2
[Cα,mf + Cα,visc + nαFα].

(56)

The explicit form of the rhs of Eqs. (49) and (50) reads

f α,eq
p = wp

[
nα + nαuα · H(1)

p + nα(2uαu − uu) : H(2)
p

]
,

(57)

gα,eq
p = wp

[
�α + nαuα · H(1)

p + nα(2uαu − uu) : H(2)
p

]
,

(58)

Sα
f,p = wp

{
(Cα,mf + Cα,visc + nαFα) · [

H(1)
p + 2H(2)

p · uα
]}

,

(59)

Sα
g,p = wp

{
Cα,mf ·

[
uα

v2
T

+ 4H(2)
p · uα

]

+ (Cα,visc + nαFα) · [
H(1)

p + 2H(2)
p · uα

] }
. (60)
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FIG. 7. (Color online) One-component system: streamlines for packing fractions of (a) 0, (b) 0.13, (c) 0.26, and (d) 0.34. The color map
represents the modulus of the flow velocity, normalized by its maximum.

In Fig. 2 the numerical error in the computed velocity pro-
files is reported for the one-component and the two-component
fluids. The error decreases with increasing resolution and is
smaller by factors of 10 and 50 for the cases of SD-TI and
DD-TI simulations, respectively, as compared to the SD-EI
method. The data are similar for the one- and two-component
systems, follow the same behavior observed for the ideal gas,
and the error in velocity decreases steadily with increasing
resolution. The spurious velocities are about 50 times smaller
for the DD-TI case as compared to the SD-EI case. A major
advantage of the trapezoidal integration alone is the possibility

to work at high packing fractions, up to about 0.35, whereas
with standard Euler integration, the maximal packing fraction
before numerical instabilities develop is 0.27.

C. Channel flow with a bottleneck

We now consider the flow of a one-component hard-sphere
fluid and a binary mixture in a channel flow, in the presence
of a bottleneck, as depicted in Fig. 3. Flows in the presence
of a sharp obstacle represent a critical test to the numerical
methodology due to the harsh collisions that the particles
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experience with the corners of the obstacle. In particular,
we choose a rather strong forcing term, equal to 10−3 in
lattice units, in order to obtain large impinging velocities
against the obstacle. We further impose no-slip boundary
conditions on the fluid populations at the solid wall for
both the f and the g distributions. For this we employ the
midpoint bounce-back rule on the populations [7]. We initially
simulate a one-component system composed of hard spheres of
diameter σ = 8 and make complementary simulations with a
two-component mixture with hard-spheres diameter of σA = 4
and σB = 8.

As Fig. 4 demonstrates, the naive SD-EI method provides
strong spurious velocities arising from the presence of the wall.
In fact, away from the obstacle, the streamlines are expected to
be parallel to the wall, whereas we observe strong nonparallel
streamlines near the wall that confirm the low quality of this
type of simulation. Conversely, the DD-TI method provides
well-aligned streamlines near the wall and far away from the
bottleneck. From these observations, we decided to consider
further benchmarks by looking at the results obtained with the
DD-TI methodology alone.

Hard spheres in proximity to an irregular surface present
an interesting phenomenon in itself. In fact, in proximity to
the obstacle, the fluid particles go around the obstacle with
nontrivial patterns. In particular, as the flow lines in Fig. 5
reveal, a first bounce back is found near the convex corner.
Entropic forces have a strong influence on the spatial distribu-
tion of the particles and, as previous studies demonstrate [43],

the concave corners effectively attract particles, while convex
corners exert repulsive forces. Such dual behavior is recovered
by our simulations, as revealed by the density profiles in Fig. 5,
where the accumulation of particles toward the edges of the
obstacle is clearly visible. In addition, we observe that the
density profiles have a very weak dependence on the forcing
term, with a somehow stronger variation in proximity to
the corners for the incoming particles, as compared to the
static case. A further validation of the method is given by
the computation of the divergence of velocity, as reported
in Fig. 6. For the compressible system considered here, the
quantity ∇ · u should be zero everywhere, while spurious
compressibility effects are clearly visible when employing the
SD-EI method. The DD-TI method minimizes such error up
to three order of magnitudes.

For the system at hand, the simulations provide interesting
information about the fluid velocity in this geometry, as shown
in the following. The simulations provide the fine details
of flow pattern for the one-component system at varying
packing fraction, as illustrated in Fig. 7. For increasing packing
fraction, the streamlines become more and more disordered in
proximity to the convex corners of the bottleneck. A quite
disordered pattern is observed already at a packing fraction of
0.26, with flow separation appearing in correspondence with
the impinged corner. The dynamical disorder appears to initiate
at the faraway edge of the obstacle with respect to the incoming
flow direction. At a packing fraction of 0.34, the disorder has
propagated to the whole region of the bottleneck with rough

FIG. 8. (Color online) Binary mixture with σA = 8 (left column) and σB = 4 (right column): streamlines for packing fractions of (a) 0.0,
(b) 0.13, (c) 0.26, and (d) 0.34 and for 50% composition.
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FIG. 9. (Color online) Binary mixture with σA = 8 (left column) and σB = 2 (right column): streamlines for packing fractions of (a) 0.13,
(b) 0.26, and (c) 0.34 and for 50% composition.

recirculation patterns. It should be noted that, for increasing
packing fraction, the modulus of velocity is reduced overall,
with strong peaks localized near the corners.

We next consider a binary mixture of hard spheres of
diameters σA and σB , flowing in the same channel with the
bottleneck. An important aspect of the binary mixture is that
entropic forces play different roles in the species with different
diameters. For particles of smaller diameter, entropic forces
are smaller and these particles can distribute more uniformly
between the concave and convex corners. Consequently, the
flow pattern is expected to be more ordered. This behavior
is shown in Fig. 8 for a binary mixture with σA = 8 and
σB = 4. The streamlines of both the large and small particles
have a smoother behavior as compared to the one-component
case. The modulus of velocity of both species is more uniform
as compared to the one-component system, with a smoother
distribution around the obstacle. In Fig. 9 the binary mixture
with particles of sizes σA = 8 and σB = 2 presents even
smoother flow lines and a smoother distribution of the velocity
moduli as compared to simulations at smaller size ratio and
the corresponding packing fractions. Overall, we conclude
that in the binary mixture, the component with particles of
smaller size acts as a powerful lubricant that regularizes the
flow pattern and distributes evenly the flow velocity over the
whole system.

V. CONCLUSION

In this paper we have illustrated a numerical version of the
lattice Boltzmann method for the simulation of hard-sphere
one-component and binary mixtures that can deal with rapid
spatial variations in the number density. As well recognized
in the lattice Boltzmann community, strong inhomogeneities
in the density induce strong parasitic currents that need to be
handled with great care.

In our method we have extended the previous ideas of He
et al. [26] and Lee [29], but with some important modifications.

In particular, we computed impromptu the excess chemical
potential arising from the hard-sphere collisions, without
resorting to an educated guess of its functional form. In
addition, we have adapted the trapezoidal integration rule for
the time evolution of the populations, written as an explicit
time-stepping algorithm. The numerical results showed that at
all packing fractions considered in the benchmarks, the method
provides robust results and stable numerical behavior.

We conclude by mentioning that the present method can
be applied without major modifications to nanofluids in the
presence of electrostatic interactions, as presented in Ref. [44].
For these systems, internal electrostatic forces exerted between
charged species arise from the solution of a Poisson problem
treated at the mean-field, Vlasov level. Also in this case,
the trapezoidal and double-distribution methodologies can be
applied straightforwardly since electrostatic forces are treated
at the same level of external forces.
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APPENDIX

We report the formulas given elsewhere that have been used
to compute the various terms of the effective field. The details
have been reported in Ref. [34]. In Eq. (19) we can identify
a force acting on the particle α at r due to the influence of
all remaining particles in the system, the so-called potential of
mean force. For a hard-sphere mixture we have

Cα,mf (r,t) = −kBT nα(r,t)
∑

β

σ 2
αβ

∫
dk kgαβ (r,r + σαβk,t)nβ

× (r + σαβk,t) + nα(r,t)
∑

β

Gαβ(r,t), (A1)
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with σαβ = (σαα + σββ)/2, while the last term represents the
molecular fields associated with the attractive forces:

Gαβ(r,t) = −
∫

dr ′nβ(r′,t)gαβ(r,r′)∇Uαβ(r − r′), (A2)

with Uαβ(r) a long-range attractive potential. The drag
term is

Cα,drag(r,t)

� −nα(r,t)
∑

β

2σ 2
αβ

√
kBT

π

4π

3
gαβ[{nα(r,t)}]nβ

× (r,t)[uα(r,t) − uβ(r,t)] (A3)

and for the viscous part

Cα,visc(r,t) = nα(r,t)
∑

β

2σ 2
αβ

√
mkBT

π

∫
dk kgαβ

× (r,r + σαβk,t)nβ(r + σαβk,t)k

· [uβ(r + σαβk) − uβ(r)], (A4)

where gαβ is the pair correlation function evaluated at contact
(r = σαβ) As shown in Ref. [34], one can derive the following
expressions in the limit of a uniform system for the viscosity:

ηαβ = 4π

15
σ 4

αβ

√
mkBT

π
gαβnβ (A5)

and

η
αβ

b = 5
3ηαβ. (A6)
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