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Excitation gap from optimized correlation functions in quantum Monte Carlo simulations
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We give a prescription for finding optimized correlation functions for the extraction of the gap to the first
excited state within quantum Monte Carlo simulations. We demonstrate that optimized correlation functions
provide a more accurate reading of the gap when compared to other “nonoptimized” correlation functions and are
generally characterized by considerably larger signal-to-noise ratios. We also analyze the cost of the procedure
and show that it is not computationally demanding. We illustrate the effectiveness of the proposed procedure by
analyzing several exemplary many-body systems of interacting spin-1/2 particles.
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I. INTRODUCTION

Quantum Monte Carlo (QMC) simulations have become
the method of choice for studying large equilibrium quantum
many-body systems without approximations in more than one
dimension [1,2] (in one dimension, the density matrix renor-
malization group has proven to be an extremely powerful tool
[3,4]). While for small system sizes one may employ exact-
diagonalization techniques, for larger ones, QMC methods
provide, in most cases, the only numerical method available
for exact numerical investigation. However, employing Monte
Carlo techniques comes at a cost. As the name itself might
indicate, QMC methods are stochastic in nature as they are
based on sampling the exponential number of states of the
Hilbert space of the system, and there are, therefore, statistical
errors associated with every measured quantity.

QMC methods are usually considered ideal for measure-
ments of ground-state properties or for the determination of
thermodynamic properties of physical systems, as these can
usually be measured to a high degree of accuracy, i.e., with
very small statistical errors. While this is true, QMC methods
are also known to be less suited for extracting information
about excited states, which tend to be rather cumbersome to
obtain and are typically measured with much less accuracy.

Excited states play a central role in many areas of physics
and chemistry of many-body systems. Among these are
critical phenomena and phase transitions in condensed matter
physics [5], mass gap calculations in high-energy physics
[6–8], various calculations pertaining to the properties of
nuclei in nuclear physics [9,10], and the vibrational modes
of large molecules in chemistry [11,12], to mention some
diverse examples. Naturally, numerous attempts have been
made to utilize quantum Monte Carlo methods to compute
excited-state energies as well. However, this has turned out
to be a difficult task because obtaining information about
excited states involves “isolating” specific regions within the
spectrum of the Hamiltonian—something which cannot be
done by simple measurements of thermodynamic properties
(except maybe the ground state at ultralow temperatures).

As quantum Monte Carlo methods have evolved over the
years, techniques to extract information about excited states
have been continuously developed. Most of these were based
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on some form of analysis performed on measurements of
imaginary-time correlation functions as these provide indirect
access to the spectrum of the system Hamiltonian [13–15]
(this will be explained in more detail in the next section).
Despite these elaborate manipulations on the measured data,
an accurate prediction of even the lowest excitation energies
still remains a challenge—and under some circumstances
an impossibility—due to the large statistical errors associ-
ated with correlations with large imaginary-time differences,
although methods to reduce these errors in certain cases
through the use of improved estimators in cluster-based QMC
methods [16] or the use of “smeared” operators in lattice gauge
theories [17,18] have been devised.

In what follows, we propose a remedy to these difficulties
by suggesting a way to partially optimize the manner in which
excited-state energies, specifically the gap to the first excited
state, are calculated from imaginary-time correlation func-
tions. We do this by providing a prescription to find and then
measure the most suitable correlation function available for
this purpose (within some stated limitations). The method we
suggest here is based on finding the operator whose imaginary-
time correlation function is optimal for the extraction of
excited-state energies, where the optimization is based on the
maximization of the integrated susceptibility within a space
of “basic operators” and under appropriate constraints. As we
shall demonstrate, this type of optimization removes, or at
least substantially reduces, some of the difficulties associated
with dealing with the large statistical errors that characterize
correlations with large imaginary-time separations.

The paper is organized as follows. In Sec. II we discuss
in some detail the basics of extracting excited-state energies
from imaginary-time correlation functions, focusing on the
extraction of the gap to the first excited state. We also list
some of the difficulties involved in doing so. In Sec. III
we shall present a method to find a measurable operator
whose imaginary-time correlation function is optimal for the
extraction of the gap. We provide several illustrative examples
of the method in Sec. IV and summarize the results in Sec. V
along with some conclusions.

II. ACCESSING THE EXCITATION GAP-CORRELATION
FUNCTIONS IN IMAGINARY TIME

Let us consider a many-body system described by the
Hamiltonian Ĥ (imagine, say, an N -body system of interacting
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spin-1/2 particles) at inverse temperature β = 1/T (in our
units, kB = 1). The thermal averages of physical observables
are given by:1

〈Ô〉 = 1

Z
Tr[Ôe−βĤ ], (1)

where Ô is the operator associated with the physical observ-
able in question. Here Z is the partition function Z = Tr[e−βĤ ]
and Tr is the trace operation.

If the system is small enough, these thermal averages
may be computed rather easily by exact-diagonalization
techniques, with which the full matrix of the Hamiltonian
is spectrally decomposed. In this case, excited-state energies
would simply be obtained by subtracting the lowest eigenvalue
of the Hamiltonian matrix from other eigenvalues. For bigger
systems, however, where exact-diagonalization methods are
unfeasible, one must almost always resort to QMC techniques
to obtain accurate results. While the thermal averages of most
operators of potential interest are usually very easy to obtain
within QMC simulations (as discussed in the Introduction),
in order to evaluate excited-state energies of the system, only
somewhat-indirect methods are available.

The first step toward finding excited-state energies is
the calculation of the thermal averages of different-time
correlations of measurable operators that do not commute
with the Hamiltonian (and, hence, are not conserved in time).
Consider the imaginary-time “two-point” correlation of the
measurable operator Ô, namely 〈Ô(τ )Ô(0)〉, where τ is the
imaginary-time coordinate. This expression may be expanded
in the eigenenergy basis to give,

〈Ô(τ )Ô(0)〉 = 〈eĤτ Ô(0)e−Ĥ τ Ô(0)〉

=
(∑

k=0

e−βEk

)−1 ∑
n,m=0

|〈n|Ô|m〉|2

× e−(Em−En)τ e−βEn, (2)

where {En} and {|n〉} are the eigenvalues and matching
eigenstates of the Hamiltonian Ĥ . Now, if β is chosen such
that β�E1 � 1, where �En = En − E0 is the gap to the n-th
excited state (and, in particular, the excitation gap is �E1), it
is expected that the system will eventually relax to its ground
state |0〉.2 Under this condition, which we shall assume to hold
henceforth, one could define the following correlation function
with the associated series expansion,

CÔ(τ ) ≡ 〈Ô(τ )Ô(0)〉 − 〈Ô〉2

≈
∑
n=1

|〈0|Ô|n〉|2(e−�Enτ + e−�En(β−τ )). (3)

Information about excited-state energies (or, equivalently, the
gaps �En) is usually extracted by fitting measurement data

1For the discussion here we shall consider the canonical ensemble
scheme, although the following may just as well be applied to the
grand-canonical ensemble.

2Of course, in some cases where critical slowing down is un-
avoidable, especially in the vicinity of first-order phase transitions,
relaxation to the ground state may take an exponentially long amount
of time.

of the correlation function, or some transformation thereof,
to an expression similar to the sum in the above equation,
where usually the free parameters of such fits correspond
to the energy gaps �En and the matrix elements |〈0|Ô|n〉|.
For obvious reasons, finding more than a few excited-state
gaps is unfeasible because of the exponential number of free
parameters involved in the fit and the finite number of available
uncorrelated measurement data points (although attempts to
model the some of the spectrum by a continuum of states has
also been suggested [19]).

Here, we shall focus the discussion on a rather basic type of
analysis of the imaginary-time correlation function data with
which the gap to the first excited state is extracted, although it
should be noted that more sophisticated methods of analysis
exist and may be employed just as easily. In fact, these methods
are expected in most cases to perform better than the simple
analysis and provide better estimates of the excitation gap
and possibly also limited information on higher energy levels
[13–15]. However, application of these methods of analysis
and comparison between them is complementary to the discus-
sion here and, therefore, will remain outside the scope of this
paper.

Examination of the form of the correlation function given
in Eq. (3) suggests that it might be possible to extract the
excitation gap by analyzing the behavior of the correlation
function at long imaginary times where the slowest-decaying
exponent dominates the series and, as a result, the correlation
function may be approximated in that region by

CÔ(τ ) ≈ |〈0|Ô|1〉|2e−�E1τ . (4)

In this case, the simplest and most straightforward method of
analysis for extracting the gap �E1 would simply be fitting
the logarithm of the obtained measurement data of CÔ(τ )
acquired in the simulation with a straight line in the said region.
For the gap to be obtained accurately, however, in addition to
being dominated by the slowest-decaying term, the correlation
function must also have small relative statistical errors, i.e.,
a large signal-to-noise ratio—which is usually a feature of
short imaginary-time correlations. Normally, then, one looks
for an intermediate region between τ = 0 and τ = β/2 (the
correlation function is symmetric about β/2) that satisfies both
of the above demands. It should also be noted that the choice
of β also plays a role in finding an appropriate region: If β

is chosen to be too small, there will be no region where only
the slowest-decaying exponent survives. On the other hand,
if β is chosen to be too big, the system will take longer to
equilibrate.

An illustrative example of the method is given in Fig. 1.
In the figure, results of the above analysis applied to a
system of 64 interacting spin-1/2 particles encoding a 64-bit
one-in-three-satisfiability (1-in-3SAT) problem augmented by
transverse fields is presented. (The specific structure of the
Hamiltonian of the system is discussed in Sec. IV.) The figure
shows the correlation function of the diagonal part of the
Hamiltonian of the system accompanied by a linear fit in an
intermediate region aimed at evaluating the gap of the system.

As the figure indicates, choosing the appropriate region in
imaginary time is not always a simple task: At small τ , all
the exponents in the sum given in Eq. (3) are expected to
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FIG. 1. A log-linear plot of a time-dependent correlation function
for an N = 64 spins system of one instance of the 1-in-3SAT problem
with β = 1024 (further details of the problem can be found in
Sec. IV). While at early times there are contributions from several
energy levels, there is a region where the correlation function may
be fit with a simple straight line (on a log-linear scale) from which
the energy gap which is the negative of the slope could be obtained
(giving here �E1 = 0.0364). At still later times where the correlation
function is significantly attenuated, the statistical errors become huge.

contribute significantly to CÔ(τ ) in proportion to the square
of their respective matrix elements |〈0|Ô|n〉|2. At the other
end of the range, at times closer to β/2, it is very likely that
the slowest-decaying exponent will be the only surviving one
(provided that β is large enough); however, in practice, it may
also be very difficult to obtain an accurate estimate of the
correlation function there, since the signal-to-noise ratio of
correlations with significant time differences is typically very
small due to the exponential decay of the function (this is also
evident in Fig. 1).

Possible improvements over the above method of analysis
would involve, for example, fitting the correlation function
with hyperbolic cosines that would account for the signal
coming from β/2 < τ < β or adjusting the fit to partially
account for contributions of higher-energy excitations. These
methods will not be discussed further here.

III. OPTIMIZED CORRELATION FUNCTIONS

In the previous section, we saw that our capability of
accurately extracting the gap depends on the existence of a
region where the correlation function can be nicely fit with
a straight line (on a log-linear scale). The expression for the
correlation function given in Eq. (3) shows that for a given
value of β, the exact shape of the correlation function is
dependent on two sets of values. The first is the spectrum
of Ĥ , which is a given property of the system. The second
set of values is the matrix elements |〈0|Ô|n〉|2, which, on
the other hand, can be partially manipulated by different
choices of the operator Ô whose different-time correlations
are being measured. The general guideline for choosing the
most suitable operator to measure the correlation function
of for the extraction of the gap would naturally be based
on bringing the matrix element |〈0|Ô|1〉|2 to a maximum
while keeping the other matrix elements |〈0|Ô|n〉|2 for n > 1

constrained. Doing so would have a two-pronged effect on
the correlation function: It would yield a more dominant
slowest-decaying exponent at short times and will also make
the correlations stronger throughout. This would, in turn, sub-
stantially reduce the statistical errors at intermediate and long
times.

A. Maximizing the integrated susceptibility

The matrix elements |〈0|Ô|n〉| discussed above cannot,
however, be accessed or manipulated directly within quantum
Monte Carlo simulations, as this requires knowledge of the
excited states of the system—knowledge that one does not
have when the system is in its ground state.

A question then arises as to how one could determine
which measurable operator Ô has the optimal imaginary-time
correlation function for the extraction of the excitation gap.
As it turns out, there is a measurable thermodynamic physical
quantity associated with every operator that may provide
indirect access to these matrix elements and, as we shall see,
will prove to be key in finding a well-suited operator for the
extraction of the gap [20]. This quantity is the “integrated
susceptibility” of the operator which is defined by

χÔ ≡
∫ β

0
CÔ(τ )dτ

≈
∑
n=1

|〈0|Ô|n〉|2
�En

2(1 − e−�Enβ). (5)

The above quantity has two very favorable properties. First, it
is a zero-frequency quantity, and while it involves integration
over the entire range of imaginary time, it can still be very
easily and efficiently measured in the course of a simulation
within a variety of QMC algorithms [see Appendix for a
description of its measurement within the stochastic series
expansion (SSE) algorithm]. Second, as the sum in the above
equation indicates, the integrated susceptibility may be viewed
as an estimator or measure of the (squared) matrix element
to the first excited state |〈0|Ô|1〉|2: In particular, in cases
where the second and higher excited states have considerably
higher energies than that of the first excited state, χÔ could be
approximated by

χÔ ≈ 2
|〈0|Ô|1〉|2

�E1
, (6)

and, therefore, one could use the integrated susceptibility as
an indication for the magnitude of 〈0|Ô|1〉|2. The integrated
susceptibility thus may be used as a “figure of merit” for
the effectiveness of any candidate CÔ(τ ): The larger χÔ is,
the better CÔ(τ ) would be for extracting the gap. Graphi-
cally, maximizing χÔ corresponds to “lifting” the correlation
function curve as much as possible above the horizontal
axis, thereby maximizing the area underneath in the region
[0,β].

Given the above discussion, we are now at a point
where we can reformulate in a more concrete manner the
question of finding the optimal correlation function CÔ(τ ) =
〈Ô(τ )Ô(0)〉 − 〈Ô〉2 for the extraction of the excitation gap:
Suppose that within a QMC simulation there exists a set
of M basic observables {Â1, . . . ,Âi , . . . ,ÂM} that can be
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easily measured in the course of the simulation.3 What would
be the operator Ô = ∑M

i=1 αiÂi , where αi are real-valued
coefficients, such that χÔ is maximal?

Expressing the integrated susceptibility of the operator Ô

in terms of the coefficients αi , we have

χÔ =
∑
ij

αiαjχij , (7)

where

χij =
∫ β

0
Cij (τ )dτ. (8)

Here, the “basic” correlation functions Cij (τ ) are defined as

Cij (τ ) = 1
2 [〈Âi(τ )Âj (0)〉 + 〈Âj (τ )Âi(0)〉]
−〈Âi(0)〉〈Âj (0)〉. (9)

Next, we note that multiplication of the correlation function
CÔ(τ ) by an arbitrary constant factor simply corresponds to
multiplying the operator Ô by the square of that constant,
and, therefore, we should restrict the discussion to normalized
correlation functions. This is done by the natural requirement
that the value of the correlation function at τ = 0, namely
CÔ(0), be one. In terms of the coefficients αi , this translates
to the condition ∑

ij

αiαjηij = 1, (10)

where

ηij = Cij (0) = 1
2 (〈ÂiÂj 〉 + 〈Âj Âi〉) − 〈Âi〉〈Âj 〉. (11)

Note that unlike the matrix elements χij that depend on the
long-time behavior of the system, i.e., on the entire spectrum
of the Hamiltonian, the matrix elements ηij are ground-state
properties.

Interestingly, the above normalization condition can be
expressed as an inner product in this “space of basic operators”
{Âi}. For any two arbitrary measurable operators Â and B̂, this
inner product is simply the equal-time covariance,

Â ∗ B̂ ≡ 1
2 (〈ÂB̂〉 + 〈B̂Â〉) − 〈Â〉〈B̂〉, (12)

from which the norm

||Â|| ≡ (Â ∗ Â)1/2 = (〈Â2〉 − 〈Â〉2)1/2 (13)

is immediately derived.
Denoting the vector of the coefficients of Ô by α =

(α1, . . . ,αi, . . . ,αM ), our problem translates to maximizing
the quantity 〈α|χ |α〉, where χ is the positive definite matrix
whose ij -th entries are χij , supplemented by the normalization
condition ||Ô|| = 1 that translates to

〈α|η|α〉 = 1, (14)

where η is the equal-time covariance matrix whose entries
are, analogously, ηij . It, too, is a positive definite matrix. Both

3Obviously, one could choose to work with only a subset of the
available operators or rather with combinations of them, thereby
reducing the total number of operators M .

matrices η and χ fall under the category of Gramanian matrices
for which each entry can be viewed as an inner product of two
elements chosen from a set of M elements. As we shall see
later, the two sets of entries, χij and ηij have something else
is common: both can be very easily measured within QMC
simulations.

B. Projecting out conserved quantities

Before moving on to the maximization procedure, however,
there is another delicate issue that needs to be addressed: It
may very well be the case that the Hamiltonian governing
the physical system in question has a set of conserved
quantities associated with it (one of whom would usually be the
Hamiltonian itself). Let us denote the operators corresponding
to these quantities by the set {B̂k} with k = 1, . . . ,Nc, where
Nc is the “number of linearly independent constraints” or,
equivalently, the “number of conserved quantities,” and rewrite
each of those if possible as a linear combination of the set of
the basic operators {Âi} that comprise Ô:4

B̂k =
∑

β
(k)
i Âi , (15)

where β
(k)
i are real-valued coefficients. The normalized corre-

lation functions corresponding to these conserved quantities
are all simply CB̂k

(τ ) = 1, i.e., they are constant in imaginary
time.

It is important to note, then, that maximizing χÔ without
taking these operators into account is guaranteed to produce
the “optimized” correlation function CÔ(τ ) = 1, with the
maximal value of χÔ = β corresponding to an operator
that is an arbitrary linear combination of these conserved
quantities. This, of course, is a situation that one would wish
to avoid, as the gap could not be extracted from a constant
correlation function. It is, therefore, necessary to “remove”
the above conserved quantities from the optimized operator
Ô. Interestingly, in terms of the newly defined inner product,
this condition may be formulated very naturally by requiring
that Ô be orthogonal to, or, in other words, uncorrelated with,
each of the operators corresponding to the various conserved
quantities, namely by requiring that Ô ∗ B̂k = 0 for each k. In
vector notation, these requirements translate to

〈α|η|β (k)〉 = 0. (16)

The careful reader will notice that there is a certain subtlety
associated with the condition Eq. (16), which is important to
address. As discussed earlier, it is crucial for the extraction of
the gap that our system be strictly in its ground state, as we
shall assume it is for all practical purposes. In the ground state,
the conserved quantities {B̂k} do not fluctuate. They obey〈

B̂2
k

〉 − 〈B̂k〉2 = 0. (17)

In terms of the equal-time covariance matrix η (and also in
terms of the matrix χ) this translates to 〈β (k)|η|β (k)〉 = 0. The
above equation implies that η is in practice no longer strictly

4It should be noted that, in principle, there could be a situation
where a conserved quantity could not be constructed from the set of
basic operators.
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positive definite but only positive semidefinite and the set of
vectors {β(k)} spans its kernel (and also that of χ ). In this case,
it would be impossible to require that the condition Eq. (16)
be satisfied. For the optimized operator Ô to be orthogonal to
those, we must restrict Ô to the subspace orthogonal to the
kernel of η, that is, to require that the vector α satisfies the
amended conditions

〈α|β (k)〉 = 0 , (18)

for all k = 1, . . . ,Nc.
In passing, we note the following: It may very well be

the case that one would not be aware of all the conserved
quantities associated with a given Hamiltonian and that can be
given as linear combinations of the basic operators. Therefore,
in the course of optimizing the correlation function for the
extraction of the gap, the to-be-optimized operator Ô will
not be orthogonal to all conserved quantities. In this case,
the maximization of χÔ will yield some linear combination
of operators from the set {Âi} that would again give CÔ = 1.
The resulting operator will produce a correlation function with
which one could not extract the gap, as the latter would just be
a constant. The procedure would, however, yield the unknown
conserved quantity. Put differently, the maximization process
described above may be used to detect unknown conserved
quantities of the system (although this would probably require
very accurate measurements and, therefore, may turn out to be
a numerically very demanding task). Once all the conserved
quantities are revealed, they may then be removed from Ô by
suitable orthogonality conditions.

C. The optimization process

At this stage, we can reformulate the problem at hand
in a purely mathematical form: Given two symmetric
M × M square matrices χ and η and a set of vectors
(β(1), . . . ,β (k), . . . ,β (Nc)) with Nc < M , find the vector α that
maximizes 〈α|χ |α〉 given the constraints 〈α|η|α〉 = 1 and
〈α|β (k)〉 = 0 for all k = 1, . . . ,Nc.

The solution to the above problem is easily obtainable and
is given by the following prescription:

(i) Using a Gram-Schmidt orthonormalization process,
find a set of (M − Nc) orthonormal vectors {β(k)

⊥ } with
k = 1, . . . ,M − Nc, that span the subspace orthogonal to that
spanned by the set {β (k)}. Construct then the (M − Nc) × M

matrix P⊥ whose rows are the vectors {β (k)
⊥ }.

(ii) Define the “reduced” matrices η̄ = P⊥ηP†
⊥ and χ̄ =

P⊥χ P†
⊥. These are just η and χ with the subspace spanned

by the set {β(k)} removed. In our case, this ensures that η̄ is
a positive definite matrix. The dimensionality of each of the
new matrices is (M − Nc) × (M − Nc).

(iii) Now the problem reduces to finding a vector ᾱ that
maximizes

〈ᾱ|χ̄ |ᾱ〉
〈ᾱ|η̄|ᾱ〉 . (19)

The above expression would be maximal if we set |ᾱ〉 to
be the eigenvector of η̄−1/2χ̄ η̄−1/2 belonging to the largest
eigenvalue.

(iv) Switching back to the full Hilbert space, the vector

|α〉 = P
†
⊥η̄−1/2|ᾱ〉 (20)

is then the solution to our problem.

D. Practical guidelines and cost of the procedure

Taking time-correlation measurements of the optimized
composite operator Ô = ∑M

i=1 αiÂi using the optimal set {αi}
requires, first, knowing the values of these coefficients up to an
acceptable statistical error. In the previous section, we saw that
the values of these coefficients are given as functions of the
matrix elements χij and ηij and these need to be determined
beforehand. Thus, measuring the imaginary-time correlations
of Ô requires that the QMC simulation has two “phases”
as far the gap calculations are concerned: In the first phase,
the optimal set {αi} needs to be determined by performing
measurements of χij and ηij until the desired accuracy is
reached. At the end of this phase, the set of parameters {αi}
is calculated according to the prescription given in Sec. III C.
Thus, during the first phase of the simulation no imaginary-
time correlations are measured; the actual measurements of
the correlation function corresponding to the optimal operator
are performed in a second phase of the simulation.

Measurements of M2 physical quantities during the first
phase of the simulation may seem a bit costly at first due to
the fact that the number of independent “basic” operators in
a given problem usually scales like the number of particles
in the system N , that is, M2 ∼ N2. However, we note that
this seemingly high cost is compensated by the fact that the
number of operations needed for this measurement process
does not scale with, and, in fact, is independent of, the inverse
temperature β. For ground-state measurements, the appropri-
ate inverse-temperature β normally grows polynomially or
even exponentially with N . This is because of the condition of
β�E1 � 1 which needs to be maintained while the gap to the
first excited state �E1 usually decreases at least polynomially
fast in N . It is, therefore, plausible to assume that M2 < Nβ

and so the procedure of calculating the above matrix entries
comes at a rather low price: It requires less than O(Nβ)
operations.

In practice, finding the kernel (i.e., the subspace spanned
by the vectors representing conserved quantities) of the equal-
time covariance matrix η numerically may turn out to be a
rather difficult task especially for large system sizes. This is
because of the statistical errors associated with the measured
matrix elements of η that may eventually lead to negative
eigenvalues, despite the fact that η should be strictly positive
definite. The existence of negative eigenvalues implies that the
errors and corresponding negative eigenvalues are comparable
in size. Existence of negative eigenvalues also has harsh
consequences as far as the maximization procedure detailed in
the previous section is concerned, as the process requires that η
be a positive-definite matrix. Therefore, a practical resolution
of the above difficulties would be to simply add the eigenstates
associated with the negative eigenvalues to the set of vectors
{β (k)}, thereby ensuring that the subspace spanned by the
remaining eigenstates of η has strictly positive eigenvalues
as required by the maximization process. As we shall later
see, this solution works very well in practice.
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Moving on to the second phase of the simulation, the
operator Ô is constructed using the optimized set of parameters
whose values were set at the end of the first phase of the simula-
tion, and its time correlations are measured. The construction
of the composite operator Ô consists of O(Nβ) operations
corresponding to its evaluation (M ∼ N operations) at each
“time slice” of which there are of the order of β. Since the
time correlations of only one operator are being measured,
calculation of the actual correlation data requires of the order
of 2β log β operations if one uses the fast Fourier transform
algorithm to compute them. Therefore, this procedure may be
considered cheap computationally as well.

Since the measurement of the optimized correlation func-
tion requires two phases of the simulation, it may seem
that it also demands more computation time as compared
to correlation function measurements that do not require
optimization. In practice, however, one finds that this is not
the case. When using an optimized correlation function, two
effects come into play. First, the slowest-decaying exponent
of the correlation function becomes dominant at much shorter
imaginary times and, second, the correlation function being
“lifted” above the horizontal axis results in a much less noisy
curve. In practice, as we shall see in the next section, these
effects translate to an overall effect of a much shorter needed
computation time.

E. The two-operator case

The simplest nontrivial example for a somewhat-optimized
measurable operator one can think of, and that can be given
a closed-form expression, is one in which the operator to
be optimized is a combination of only two other operators,
namely Ô = α1Ô1 + α2Ô2, where Ô1 and Ô2 correspond to
two measurable quantities, each corresponding to some linear
combination of the basic operators. Assuming also that the
Hamiltonian is a linear combination of the two operators,
namely Ĥ = β1Ô1 + β2Ô2, the condition 〈α|β〉 = 0, along
with the normalization condition of Ô and the fact that the
vector (β1,β2) spans the kernel the associated 2 × 2 matrix η,
yields the answer,

(α1,α2) =
√

−β1β2

η12

(−β2,β1)

β2
1 + β2

2

, (21)

where no maximization of 〈α|χ |α〉 is needed. In this case,
the simulation need not be split into two phases in order to
determine the optimal coefficients.

IV. ILLUSTRATIVE EXAMPLES

In what follows, we demonstrate the effectiveness of using
an optimized imaginary-time correlation function to extract
the excitation gap. We do this by considering several problems
taken from the field of quantum adiabatic computation, in
the context of which the quantum adiabatic algorithm (QAA)
[21] has been devised to solve hard optimization problems
efficiently on a quantum computer.

Within the framework of this approach, the efficiency,
or complexity, of the QAA for a given input problem is
often studied by analyzing the behavior of the excitation
gap of a one-parametric family of Hamiltonians that forms

a linear interpolation between an easily solvable transverse-
field Hamiltonian Ĥd (commonly referred to as a “driver”
Hamiltonian) and a diagonal “problem” Hamiltonian Ĥp

whose ground state encodes the solution to the optimization
problem. Put explicitly, the linear interpolation is

Ĥ (s) = sĤp + (1 − s)Ĥd , (22)

where s ∈ [0,1]. In these problems, the gap usually needs to
be calculated for several values of s where the objective is to
find the minimal gap among these (the reader is referred to
Refs. [21–24] for a more detailed description of the process).

Here, we shall illustrate the advantages that come with using
the optimization method described in previous sections by
considering several typical instances of a specific optimization
problem of the “constraint satisfaction” type known as 1-in-
3SAT (for a description of the problem see, e.g., Refs. [22]
and [25]), in which the Hamiltonian is a sum of L three-local
Hamiltonians, Ĥp = ∑L

a=1 Ĥa , where each term in the sum
involves three spins picked randomly from a pool of N spins.
Each local Hamiltonian Ĥa is given in this problem by the
following expression:

Ĥa = 1
8

(
5 − σ z

a1
− σ z

a2
− σ z

a3
+ σ z

a1
σ z

a2
+ σ z

a2
σ z

a3

+σ z
a3

σ z
a1

+ 3σ z
a1

σ z
a2

σ z
a3

)
, (23)

where ai for i = 1,2,3 label the participating spins and σ z
i is

the z-component Pauli matrix acting on spin i. The second part
of the Hamiltonian is the driver Hamiltonian Ĥd . It is a simple
transverse-field Hamiltonian and is given by

Ĥd = −1

2

N∑
i=1

σx
i , (24)

where σx
i is the x-component Pauli matrix acting on spin i.

A. A 16-spin system

Here, we analyze an instance of the 1-in-3SAT problem in
which the number of spins in the system is N = 16 and the
number of clauses, each involving a randomly chosen triplet of
spins, is L = 13. The relatively small size of the system will
allow us to compare the QMC-based extracted gap against
the corresponding exact-diagonalization result. The chosen
inverse temperature is β = 128 (which, as we shall see, obeys
β�E1 � 1) and the value chosen for the parameter s in this
example is s = 0.5, which puts it very close to the location of
the minimum gap.

To illustrate the effectiveness of using an optimized corre-
lation function, we will also compare our results against those
obtained from a “partially optimized” correlation function
based on an optimization with respect to only two coefficients
and a “nonoptimized” correlation function whose coefficients
are not optimized by any means but are chosen randomly
instead.

The specific QMC method we use here to measure the
excitation gap is known as the SSE algorithm [26,27]. This
method involves a Taylor series expansion of the partition
function Z = Tr[e−βĤ ] and uses a discrete representation of
continuous imaginary time. Similarly to current path integral
formulations in continuous imaginary time [28–30], this
discretization does not introduce errors into the algorithm.
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Within the SSE scheme applied to the problem at hand,
the “natural” operators to measure are the N nondiagonal
operators Âi = − 1

2 (1 − s)σx
i with i = 1, . . . ,N and the L

diagonal operators Âi = sĤa with a = 1, . . . ,L, where i =
N + a. In the current example this amounts to a total of M =
N + L = 29 basic operators. The to-be-optimized operator Ô

will, thus, be a linear combination of those. Associated with the
model studied here is only one conserved quantity—the energy
of the system (hence, the number of conserved quantities is
Nc = 1). It corresponds to the set of coefficients β

(1)
i = 1 (with

i = 1, . . . ,M).
To obtain the optimal operator Ô, we calculated in the

course of the simulation the matrix entries χij and ηij , each
corresponding to an easily measured quantity [see Eqs. (8)
and (11)]. The expressions for the various matrix elements as
they are implemented within the SSE algorithm are derived in
Appendix for the convenience of the reader.

As a next step, we followed the procedure outlined in
Sec. III C and diagonalized the matrix η in order to find
its kernel. As expected from positive semidefinite matrices,
the resulting eigenvalues were all found to be positive.
One particularly small eigenvalue was also found and was
immediately identified as the “zero” eigenvalue corresponding
to the one conserved quantity, the energy. Numerically, the
eigenvalue was found to be of the order of 10−7, whereas,
for comparison, the next smallest eigenvalue turned out to
be about 103 times greater. We also found, as expected,
that both matrices shared the same kernel corresponding the
eigenvector (1,1, . . . ,1) which represents the Hamiltonian of
the system. After projecting out the kernel of η from the two
matrices (i.e., reducing the matrices to η̄ and χ̄), we calculated
the coefficients {αi} by maximizing the expression given in
Eq. (19) to obtain the optimal operator Ô. These coefficients
are plotted in Fig. 2 (marked by triangles). As the figure
indicates, the various coefficients αi turn out to differ markedly
from one another, revealing the nontrivial complexity of the
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FIG. 2. (Color online) Optimized (red triangles), partially opti-
mized (green squares) and nonoptimized (i.e., a randomly generated
operator, blue circles) coefficient values of the operator Ô whose
different-time correlations are used to extract the gap. The values
shown are normalized according to ||Ô|| = 1 or, equivalently,
〈α|η|α〉 = 1. The horizontal line indicates the indices of the basic
operators as they are defined in the text.
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FIG. 3. (Color online) Optimized (red triangles), partially opti-
mized (green squares), and nonoptimized (blue circles) correlation
functions as functions of imaginary time on a log-linear scale
for an instance of a 1-in-3SAT problem with N = 16 interacting
spin-1/2 particles. As the figure indicates, the optimization process
substantially reduces the contributions from higher-order coefficients
leaving even in relatively short times only the slowest-decaying
exponent. The resulting optimal correlation function was easily fit
with a linear function at the appropriate region, producing an accurate
prediction of the excitation gap (the various linear fits are the solid
lines). The partially optimized correlation function is also a vast
improvement over the nonoptimized correlation function, which, in
turn, yields results of a much poorer quality. For the latter correlation
function, there seems to be no region where a linear behavior is
obvious, as higher-order contributions are evident throughout the
(also very noisy) examined region.

optimal operator. The correlation function itself is plotted in
Fig. 3 accompanied by a linear fit with which the excitation
gap is extracted.

For comparison, we have also considered a much simpler set
of operators, namely O1 = (1 − s)Ĥd = ∑N

i=1 Âi and Ô2 =
sĤp = ∑M

i=N+1 Âi , from which to construct the operator Ô.
For this choice of operators the coefficients of the Hamiltonian
correspond to β

(1)
1 = β

(1)
2 = 1. Plugging these into Eq. (21),

we end up with α1 = −α2 and the (un-normalized) partially
optimized (PO) operator is

ÔPO = sĤp − (1 − s)Ĥd . (25)

Measurement of the correlation function corresponding to this
operator is also depicted in Fig. 3 (square data points), and the
corresponding coefficients are plotted in Fig. 2 for comparison.
Figures 2 and 3 also show the (normalized) coefficients and
correlation function of a nonoptimized operator constructed
by random assignments of the various coefficients taken from
a uniform distribution in the range [−1,1] (these are marked
by circles in the two figures).

A side-by-side comparison of the three correlation func-
tions plotted in Fig. 3 clearly indicates that while the nonopti-
mized correlation function is very noisy and simply does not
allow for any serious calculation of the gap, at least for this
chosen running time of the simulation, the two other optimized
correlation functions are much less noisy: Both exhibit a
straight-line behavior at some point in imaginary time and
enable the extraction of the gap. That being said, it is evident

036705-7



ITAY HEN PHYSICAL REVIEW E 85, 036705 (2012)

TABLE I. Calculated excitation gaps for the 16-spin system as
they were extracted from the three tested correlation functions and
their deviation from the exact-diagonalization (ED) value measured
in number of standard deviations. As the table indicates, the optimized
correlation function yields a much better prediction of the gap
than the partially and nonoptimized correlation functions. The exact
diagonalization value is �E1 = 0.07447 and the chosen inverse
temperature here is β = 128. The requirement that the system be in its
ground state is, therefore, satisfied as β�E ≈ 10. The errors reported
here were determined by standard least-squares fitting analysis on the
correlation-function data.

Gap value and its error Deviation from
(the relative error is ED (in standard

Operator type shown in parentheses) deviations)

Fully optimized 0.0747 ± 0.0006 (0.8 %) 0.38
Partially optimized 0.076 ± 0.005 (6.6 %) 0.31
Nonoptimized 0.053 ± 0.02 (38%) 1.07

from the figure that the dominance of the slowest-decaying
exponent is apparent in the fully optimized correlation function
at much shorter times than it is for the partially optimized
correlation function. Moreover, the fully optimized correlation
function also has a superior signal-to-noise ratio at all times.

Calculation of the excitation gap by the linear fits to the
logarithm of the three (fully optimized, partially optimized,
and nonoptimized) correlation functions yields the results
summarized in Table I. As the table indicates, for the
parameters chosen here, a linear fit of the fully optimized
correlation function clearly yields the most accurate result
among the three, with a very small error (of 0.0006) and
the exact-diagonalization value falling well within the error
bar of the extracted value (0.38 standard deviations). The
partially optimized correlation function yields slightly poorer
results (an error of 0.005 and with the exact value being 0.31
standard deviations away), although one could argue that such
“partial” optimization might be enough for certain purposes.
In this case, with essentially only one adjustable parameter,
the partially optimized correlation function is only slightly
worse than the fully optimized one. The nonoptimized data,
on the other hand, produced much larger errors (0.02) and a
rather poor fit, as one would expect from such noisy correlation
function.

B. Larger spin systems

In what follows, we present the results of an analysis similar
to the one performed in the previous section but applied to
larger spin systems. For these, the expected gap is much
smaller and is also naturally more difficult to extract. Here
we shall consider two random instances of the 1-in-3SAT type
corresponding to systems with N = 48 and N = 64 spins,
and with L = 38 and L = 51 clauses, respectively. While
in these examples a comparison with exact-diagonalization
results is unavailable, it is, nonetheless, advantageous to make
a comparison among the fully optimized, partially optimized,
and nonoptimized correlation functions.

The correlation functions obtained for the N = 48 system
(the adiabatic parameter s and inverse temperature β were
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FIG. 4. (Color online) Optimized (red triangles), partially opti-
mized (green squares), and nonoptimized (blue circles) correlation
functions as functions of imaginary time on a log-linear scale for an
instance of the 1-in-3SAT problem with N = 48 interacting spin-1/2
particles. The figure shows that the optimal correlation function is
easily fit with a linear function at the appropriate region, producing
an accurate prediction of the excitation gap (the various linear fits are
the solid lines). The partially optimized correlation function is also a
vast improvement over the nonoptimized correlation function, which,
in turn, yields results of a much poorer quality.

chosen to be s = 0.5 and β = 256) are shown in Fig. 4
along with corresponding linear fits from which the gaps
are then extracted. The optimized correlation function was
obtained via the maximization of the integrated susceptibility
with respect to all of the M = 48 + 38 = 86 coefficients
αi . In this specific example, the subspace spanned by five
eigenvectors corresponding to five negative eigenvalues that
were found at the end of the first phase of the simulation
have been discarded. The second correlation function is the
partially optimized one corresponding to the operator ÔPO

given in Eq. (25), and the third correlation function tested
here is the nonoptimized one, based on randomly assigned
coefficients.

As in the previous example, it is evident from Fig. 4 that the
fully optimized correlation function is much less noisy and,
therefore, produces a much more accurate reading of the gap
with the smallest uncertainty �E1 = 0.065 ± 0.0015 (2.3%
relative error). For comparison, the partially optimized corre-
lation function yielded �E1 = 0.064 ± 0.005 (7.8% relative
error). The non-optimized correlation function turned out to

TABLE II. Calculated excitation gaps for the 48- and 64-spin
systems as they were extracted from the two tested correlation func-
tions and their relative errors. As the table indicates, the optimized
correlation function yields a much more accurate prediction of the
gap than the partially optimized correlation function for both sizes.

System Gap value Relative
size Operator type and its error error (%)

Fully optimized 0.065 ± 0.0015 2.3
N = 48 Partially optimized 0.064 ± 0.005 7.8

Fully optimized 0.051 ± 0.001 2
N = 64 Partially optimized 0.052 ± 0.007 13
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FIG. 5. (Color online) Same as Fig. 4 but for a system with N =
64 spins. Here, too, the optimal correlation function (red triangles) is
much less noisy than the other partially optimized (green squares)
and nonoptimized (blue circles) correlation functions, eventually
leading to a more accurate prediction of the system gap. Of the
two latter correlation functions, the nonoptimized one is particularly
noisy in this example and yields an extremely poor estimation of the
gap.

have very large statistical errors and is therefore completely
unreliable for the extraction of the gap. These results are
summarized in Table II.

Similarly to the N = 48 case analyzed above, we present
in Fig. 5 the correlation functions obtained in the analysis
of a 64-spin system with 51 clauses and a total of M =
115 real coefficients (here, s = 0.52 and β = 256). In this
example, a 23-dimensional subspace has been discarded in the
maximization procedure, leaving a 92-dimensional parameter
space with respect to which maximization is performed.
As in the previous examples, here, too, the nonoptimized,
i.e., random, correlation function is practically useless for
obtaining the gap, whereas the partially optimized and fully
optimized correlation functions are much more suitable for the
task.

As expected, the fully optimized correlation function is
significantly less noisy than the partially optimized one, giving
a much more accurate value for the gap: �E1 = 0.051 ± 0.001
(2% relative error) for the fully optimized versus �E1 =
0.052 ± 0.007 (13% relative error) for the partially optimized
one. Again, the nonoptimized correlation function is much too
noisy for any reliable reading of the gap (see also Table II).

V. SUMMARY AND CONCLUSIONS

In this paper, we demonstrated the effectiveness of cal-
culating and utilizing optimized imaginary-time correlation
functions toward the extraction of excited-state information
within quantum Monte Carlo simulations. We have given a
prescription for optimizing the operator whose imaginary-time
correlation function would be best suited for gap calculations.
The optimization is based on maximizing the integrated
susceptibility of the operator whose time correlations are to
be measured. We have also illustrated the benefits associated
with evaluating optimized correlation function compared to
other nonoptimized functions and confirmed numerically that

determining the gap to the first excited state from optimized
functions is considerably more accurate than corresponding
results obtained from nonoptimized correlation functions.
We have also commented on the relatively low cost of the
procedure.

While in this study the main focus was on the extraction
of the gap to the first excited state, it should be noted that
the optimization procedure whose derivation was presented
here may, of course, be subjected to other more sophisticated
methods aimed at obtaining a fuller picture of the spectrum of
the Hamiltonian of the system, i.e., energies of more excited
states (see e.g., Refs. [13–15]). These methods of analysis can
readily be applied to the correlation function obtained in the
process described here.

The results of the analysis performed on the exemplary
problems presented in the Sec. IV show that optimization
of the correlation function results in both smaller statistical
errors of the correlation function and also a dominance of
the slowest-decaying exponent at shorter imaginary times.
This implies that in order to obtain decent results for the
gap from nonoptimized correlation functions, a substantially
longer running time of the simulation is needed (and perhaps
also a larger value of the inverse-temperature β). There-
fore, the results establish the importance of applying at
least some optimization to measured correlation functions,
as this may have considerable effects on the ability to
extract the gap and on the accuracy of the obtained value.
Therefore, we expect that the procedure presented in this
manuscript will be useful wherever gap calculations are needed
numerically.
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APPENDIX: STOCHASTIC SERIES EXPANSION
MEASUREMENTS OF THE MATRICES η AND χ

In what follows we derive the explicit expressions needed
for the measurements of the matrix entries ηij and χij within
the framework of the SSE algorithm. As discussed in Sec. III,
calculation of the optimal correlation function requires the
evaluation of the set of coefficients {αi}, which is obtained by
an algebraic manipulation of the matrix elements χij and ηij as
they are defined in the main text [see Eqs. (8) and (11)]. These
are expressed in terms of the “basic” operators of the QMC
technique being used. Within the SSE, the basic operators that
are most easily measured are the so-called bond operators,
which we denote here by Âi . These are the local operators that
comprise the Hamiltonian, namely

Ĥ =
M∑
i=1

Âi , (A1)
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where each of the bond operators Âi acts only on a limited
number of particles. The reader is referred to Sec. IV for the
bond operators of the 1-in-3SAT problem. Within the SSE,
the expectation values of the bond operators are obtained by
simply counting their occurrences in the “operator sequence”
that defines the instantaneous configuration of the system (for
a more detailed discussion of the SSE technique, see, e.g.,
Refs. [26,27]), namely

〈Âi〉 = − 1

β
〈Ni〉 , (A2)

where Ni is the number of times the operator Âi appears in the
sequence. Similarly, it is easy to show that

∫ β

0
dτ

〈
Âi1 (τ )Âi2 (0)

〉 = 1

β

(〈
Ni1Ni2

〉 − δi1,i2

〈
Ni1

〉)
, (A3)

where i1 and i2 are two arbitrary bond indices [26]. From the
above equation, it follows that the matrix elements of χ are
simply given by

χij = 1

β

(〈
Ni1Ni2

〉 − δi1,i2

〈
Ni1

〉 − 〈
Ni1

〉〈
Ni2

〉)
. (A4)

In addition, expectation values of products of bond operators
are obtained using〈

Âi1Âi2

〉 = 1

β2

〈
(n − 1)Ni12

〉
, (A5)

where Ni12 denotes the number of ordered subsequences Âi1Âi2

in the operator sequence and n = ∑M
i=1 Ni is the total number

of operators in the sequence. The matrix elements of η are,
therefore, similarly given by the following expression:

ηij = 1

β2

[
1

2

〈
(n − 1)

(
Ni12 + Ni21

)〉 − 〈
Ni1

〉〈
Ni2

〉]
. (A6)
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