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Generalized van der Waals Hamiltonian: Periodic orbits and C1 nonintegrability
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The aim of this paper is to study the periodic orbits of the generalized van der Waals Hamiltonian system. The
tool for studying such periodic orbits is the averaging theory. Moreover, for this Hamiltonian system we provide
information on its C1 nonintegrability, i.e., on the existence of a second first integral of class C1.
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I. INTRODUCTION AND STATEMENT
OF THE MAIN RESULTS

We study the generalized van der Waals problem given by
the Hamiltonian

H = 1

2

(
P 2

1 + P 2
2 + P 2

3

) − 1√
Q2

1 + Q2
2 + Q2

3

+ (
Q2

1 + Q2
2 + β2Q2

3

)
, (1)

depending on the parameter β ∈ R. This Hamiltonian is a
generalization of the Hamiltonian which studies the clas-
sical dynamics of a hydrogen atom in the presence of
a uniform magnetic and quadrupolar electric field. With
some restrictions the motion of the system is described
by a Hamiltonian system with two degrees of freedom.
For more details see Refs. [1–4] and the references
therein.

Particular cases connected with problems of physical
interest are β = 0 (the Zeeman effect) and β = √

2, which
corresponds to the van der Waals effect (see Elipe et al. [5]
and references therein). For the values β2 = 1/4, 1, and 4, the
Hamiltonian system is integrable (see Farrelly et al. [6] and
Ferrer et al. [7,8]).

Introducing the canonical change of coordinates given by
the cylindrical coordinates Q1 = R cos θ , Q2 = R sin θ , and
Q3 = Z, the Hamiltonian (1) becomes

H = 1

2

(
P 2

R + P 2
θ

R2
+ P 2

Z

)
− 1√

R2 + Z2
+ (R2 + β2Z2).

(2)

Since the momentum Pθ is a first integral of the Hamiltonian
system associated to the Hamiltonian (2), this Hamiltonian
system can be reduced to a system with two degrees of
freedom. The dynamics of the so-called polar problem (see
Elipe [5]) is considered when Pθ = 0. In this case the
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Hamiltonian (2) reduces to

H = 1

2

(
P 2

R + P 2
Z

) − 1√
R2 + Z2

+ (R2 + β2Z2). (3)

Our main objective is to prove analytically the existence
of periodic solutions of the Hamiltonian system associated
to the Hamiltonian (3), and as a corollary to provide infor-
mation about the C1 nonintegrability of such a Hamiltonian
system.

In this work we use as a main tool the averaging
method of first order to find analytically periodic orbits of
the Hamiltonian system associated to the Hamiltonian (2)
with Pθ = 0. (See the Appendix for more details on the
averaging theory; see also some recent applications of this
method to other Hamiltonian systems like the ones studied in
Refs. [9,10].) One of the main difficulties in practice for
applying the averaging method is to express the differential
system in the normal form for applying the averaging theory
(see the Appendix). The use of adequate variables in each
situation can allow the application of the averaging theory for
finding periodic orbits.

For the Hamiltonian system associated to the Hamilto-
nian (2) with Pθ = 0 we have the following results.

Theorem 1. For every h < 0 the Hamiltonian sys-
tem associated to the generalized van der Waals Hamil-
tonian H with Pθ = 0 given by Eq. (3) has a peri-
odic solution in the energy level H = h + √−2/h if β /∈
{±2,±1/2}. Moreover, this periodic solution is linear stable
if β ∈ (−∞,−2) ∪ (−1/2,1/2) ∪ (2,∞) and unstable if β ∈
(−2,−1/2) ∪ (2,1/2).

Using the periodic orbits found in Theorem 1 we study the
C1 nonintegrability in the Liouville-Arnold sense of the polar
generalized van der Waals Hamiltonians.

Theorem 2. For the generalized van der Waals Hamiltonian
H with Pθ = 0 given by Eq. (3) and β /∈ {±2,±1/2} its
associated Hamiltonian system cannot have a C1 second first
integral G such that the gradients of H and G are linearly
independent at each point of the periodic orbits found in
Theorem 1.

Many times the study of the periodic orbits of a Hamiltonian
system is made numerically. In general to prove analytically
the existence of periodic solutions of a Hamiltonian system is a
very difficult task, often impossible. Here, with the averaging
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theory we reduce this difficult problem for the Hamiltonian
system associated to the Hamiltonian (3) to find the zeros of
a nonlinear system of two equations and two unknowns. We
must mention that the averaging theory for finding periodic
solutions in general does not provide all the periodic solutions
of the system. For more information about the averaging theory
see the Appendix and the references therein.

The way that we study the periodic orbits of a Hamiltonian
system in this paper is very general and can be applied to ar-
bitrary Hamiltonian systems. Theorem 5 of the Appendix,due
to Poincaré, gives information about the existence of a C1

second first integral obtained once we know some periodic
orbits of a Hamiltonian system. This tool works for an arbitrary
Hamiltonian system.

We remark that there are very good theories for studying
the existence of a second meromorphic first integral in a
Hamiltonian system, such as Ziglin’s theory [11] and the
Morales-Ramis theory [12], but as far as we know the unique
result about the existence of a second C1 first integral is the
one due to Poincaré used in this paper. The rest of the paper is
dedicated to prove the previous two theorems.

II. PROOF OF THE RESULTS

Proof of Theorem 1. The Hamiltonian (3) can be written
as

H = 1

2

(
P 2

1 + P 2
2

) − 1√
Q2

1 + Q2
2

+ (
Q2

1 + β2Q2
2

)
. (4)

To avoid the difficulties due to the collision (i.e., Q1 =
Q2 = 0), we perform the Levi-Civita regularization, doing the
change of variables in the positions given by(

Q1

Q2

)
=

(
q1 −q2

q2 q1

) (
q1

q2

)
;

then the induced change in the conjugate momenta is(
P1

P2

)
= 2

q2
1 + q2

2

(
q1 −q2

q2 q1

) (
p1

p2

)
.

To complete the regularization it is necessary to rescale the
time t , taking τ as the new time through dτ = 4dt/(q2

1 + q2
2 ).

We apply these changes of variables to the energy level of
the Hamiltonian H = h with h < 0, and we introduce the new
Hamiltonian

H∗ = 1
4

(
q2

1 + q2
2

)
(H−h), (5)

that is,

H∗ = 1

2

(
p2

1 + p2
2

) − h

2

q2
1 + q2

2

2

+ 1

4

(
q2

1 + q2
2

) [ (
q2

1 − q2
2

)2 + 4β2q2
1q2

2

]
.

We note that we choose h < 0 because the Kepler problem
given by the Hamiltonian

H = 1

2

(
P 2

1 + P 2
2

) − 1√
Q2

1 + Q2
2

has its periodic orbits in the negative energy levels, and for
small values of Q1 and Q2 the Hamiltonian (3) is close to the
Kepler one.

If we do the canonical change of variables (q1,q2,p1,p2) →
(x,y,X,Y ) given by

q1 = 2c1/4x, q2 = 2c1/4y, p1 = 2 c3/4X, p2 = 2c3/4Y,

with c = −h/2 > 0 we obtain the regularized Hamiltonian

H∗
1 = 1

2 (X2 + Y 2 + x2 + y2)

+ 4(x2 + y2)[(x2 − y2)2 + 4β2x2y2]. (6)

After rescaling (x,y,X,Y ) → (μx,μy,μX,μY ) and then
denoting ε = μ4, the Hamiltonian (6) becomes

H∗
2 = 1

2 (X2 + Y 2 + x2 + y2)

+ ε4(x2 + y2)[(x2 − y2)2 + 4β2x2y2]. (7)

Finally performing the noncanonical change of variables

x = R1 cos θ1, X = R1 sin θ1,

y = R2 cos(θ1 + θ2), Y = R2 sin(θ1 + θ2),

the Hamiltonian (7) becomes the first integral

H∗
3 = 1

2

(
R2

1 + R2
2

) + ε
[
R2

1 cos2 θ1 + R2
2 cos2(θ1 + θ2)

]
× (

R4
1 cos4 θ1 + 2R2

1R
2
2(2β2 − 1) cos2(θ1 + θ2)

× cos2 θ1 + R4
2 cos4(θ1 + θ2)

)
(8)

of the following equations of motion:

Ṙ1 = −ε8R1
(
3R4

1 cos4 θ1 + 2R2
1R

2
2(4β2 − 1)

× cos2(θ1 + θ2) cos2 θ1

+R4
2(4β2 − 1) cos4(θ1 + θ2)

)
sin θ1 cos θ1,

θ̇1 = −1 − ε8
(
3R4

1 cos4 θ1 + 2R2
1R

2
2(4β2 − 1) cos2(θ1 + θ2)

× cos2 θ1 + R4
2(4β2 − 1) cos4(θ1 + θ2)

)
cos2 θ1,

Ṙ2 = −ε8R2
(
R4

1(4β2 − 1) cos4 θ1

+ 2R2
1R

2
2(4β2 − 1) cos2(θ1 + θ2) cos2 θ1

+ 3R4
2 cos4(θ1 + θ2)

)
sin(θ1 + θ2) cos(θ1 + θ2),

θ̇2 = ε8
(
3R4

1 cos6 θ1 − R2
1

(
R2

1 − 2R2
2

)
(4β2 − 1)

× cos2(θ1 + θ2) cos4 θ1 + R2
2

(
R2

2 − 2R2
1

)
(4β2 − 1)

× cos4(θ1 + θ2) cos2 θ1 − 3R4
2 cos6(θ1 + θ2)

)
.

Taking the variable θ1 as the new time, these four differential
equations reduce to the three equations

R′
1 = ε8R1

(
3R4

1 cos4 θ1 + 2R2
1R

2
2(4β2 − 1) cos2(θ1 + θ2)

× cos2 θ1 + R4
2(4β2 − 1) cos4(θ1 + θ2)

)
× sin θ1 cos θ1 + O(ε2),

R′
2 = ε8R2

(
R4

1(4β2 − 1) cos4 θ1 + 2R2
1R

2
2(4β2 − 1)

× cos2(θ1 + θ2) cos2 θ1 + 3R4
2 cos4(θ1 + θ2)

)
× sin(θ1 + θ2) cos(θ1 + θ2) + O(ε2),
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θ ′
2 = −ε8

(
3R4

1 cos6 θ1 − R2
1

(
R2

1 − 2R2
2

)
(4β2 − 1)

× cos2(θ1 + θ2) cos4 θ1 + R2
2

(
R2

2 − 2R2
1

)
(4β2 − 1)

× cos4(θ1 + θ2) cos2 θ1 − 3R4
2 cos6(θ1 + θ2)

) + O(ε2),

where the prime denotes derivative with respect to θ1.
Substituting the variable R2 =

√
2h∗ − R2

1 + O(ε) isolated
from the first integral level H∗

3 = h∗ > 0 into the previous
three differential equations, we obtain a new reduction to the
following two differential equations:

R′
1 = ε8

√
2h∗ − R2

1 cos(θ1 + θ2)
(
R4

1(4β2 − 1) cos4 θ1

− 2R2
1

(
R2

1 − 2h∗) (4β2 − 1) cos2(θ1 + θ2) cos2 θ1

+ 3
(
R2

1 − 2h∗)2
cos4(θ1 + θ2)

)
sin(θ1 + θ2) + O(ε2)

= εF11(R1,θ2,θ1) + O(ε2),

θ ′
2 = −ε8

(
3R4

1 cos6 θ1 + R2
1

(
4h∗ − 3R2

1

)
(4β2 − 1)

× cos2(θ1 + θ2) cos4 θ1 + (
3R4

1 − 8h∗R2
1 + 4h∗2

)

× (4β2 − 1) cos4(θ1 + θ2) cos2 θ1

− 3
(
R2

1 − 2h∗)2
cos6 (θ1 + θ2)

) + O(ε2)

= εF12(R1,θ2,θ1) + O(ε2). (9)

For ε 	= 0 sufficiently small this differential system is in the
normal form (A1) for applying to it the averaging theory
described in Theorem 3. So using the notation of Theorem
3 we have

f11 = 1

2π

∫ 2π

0
F11(R1,θ2,θ1)dθ1

= 2h∗R2
1

√
2h∗ − R2

1(4β2 − 1) sin 2θ2,

f12 = 1

2π

∫ 2π

0
F12(R1,θ2,θ1)dθ1

= −4h∗(h∗ − R2
1

)
[6β2 − 9 + (4β2 − 1) cos 2θ2].

Solving the system f11(R1,θ2) = f12(R1,θ2) = 0 we get the
solutions (R∗

1 ,θ
∗
2 ) given by

(
0,±1

2
arccos

3(2β2 − 3)

1 − 4β2

)
if and only if β ∈ [−2,−1] ∪ [1,2], (10)

(
√

h∗,0), (
√

h∗,π ), (11)(√
h∗,

π

2

)
,

(√
h∗,

3π

2

)
, (12)

(√
2h∗,±1

2
arccos

3(2β2 − 3)

1 − 4β2

)
if and only if β ∈ [−2,−1] ∪ [1,2]. (13)

If we compute the determinant

det

⎛
⎝ ∂

(
f 1

1 ,f 2
1

)
∂(R1,θ2)

∣∣∣∣∣
(R1,θ2)=(R∗

1 ,θ∗
2 )

⎞
⎠ 	= 0 (14)

on the solutions (10), (11), (12), and (13), we obtain,
respectively,

0,

−320h∗4(β2 − 1)(4β2 − 1),

64h∗4(β2 − 4)(4β2 − 1),

∞ if (β2 − 1)(β2 − 4) 	= 0.

By Theorem 3 only the solutions (11), (12), and (13)
provide periodic solutions of the differential system (9) when
the corresponding determinant is nonzero. We note that the
solutions (11) [respectively (12)] define a unique periodic
orbit, and both orbits are different but their projection into
the plane (x,X) is a circle of radius

√
h∗ and into the plane

(y,Y ) also is a circle of radius
√

h∗. The solutions (13) define
the same periodic orbit, which projected into the plane (x,X)
is a circle of radius

√
2h∗ and into the plane (y,Y ) is projected

into the origin.
Now we study which of these three periodic solutions of

the differential system (9) provide periodic solutions for the
van der Waals Hamiltonian system with Hamiltonian (3).

The equality (5) is written as

1 =
√

−h

2
cos2 θ1(H − h),

1 =
√

−h

2
(H − h),

1 = √−2h cos2 θ1(H − h),

evaluated on the periodic solutions of the differential sys-
tem (9) provided by Eqs. (11), (12), and (13), respectively.
Therefore, only the periodic solution of the differential
system (9) given by (12) becomes a solution for the van der
Waals Hamiltonian system associated to the Hamiltonian H
given by Eq. (3), because it is unique such that the Hamiltonian
H is constant on it taking the value h + √−2/h (recall that
h < 0).

Since the eigenvalues of the Jacobian matrix which appears
in Eq. (14) are

±8(h∗)2
√

(β2 − 4)(1 − 4β2), (15)

by Theorem 3(c) it follows that the periodic solution given
by Eq. (12) is linear stable if β ∈ (−∞,−2) ∪ (−1/2,1/2) ∪
(2,∞) and unstable if β ∈ (−2,−1/2) ∪ (2,1/2). This com-
pletes the proof of the theorem.

Proof of Theorem 2. By Theorem 1 we know that the
generalized van der Waals Hamiltonian system (3) at the
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energy levels h + √−2/h for all h < 0 has a periodic solution
if β /∈ {±2,±1/2} whose eigenvalues (15) or multipliers are
different from 1 almost for all h. For more details, see the
text between the two theorems of the Appendix. Hence, by
Theorem 5 the proof of the theorem follows.
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APPENDIX

Now we present the basic results from averaging theory that
we need for proving the results of this paper. The next theorem
provides a first order approximation for the periodic solutions
of a periodic differential system; for the proof see Theorems
11.5 and 11.6 of Verhulst [13].

Consider the differential equation

ẋ = εF1(t,x) + ε2R(t,x,ε), x(0) = x0, (A1)

with x ∈ D where D is an open subset of Rn, and t � 0.
Moreover we assume that F1(t,x) is T -periodic in t . Separately
we consider in D the averaged differential equation

ẏ = εf1(y), y(0) = x0, (A2)

where

f1(y) = 1

T

∫ T

0
F1(t,y)dt.

Under certain conditions (see Theorem 3), equilibrium solu-
tions of the averaged equation turn out to correspond with
T -periodic solutions of Eq. (A2).

Theorem 3. Consider the two initial value problems (A1)
and (A2). Suppose

(i) F1, its Jacobian ∂F1/∂x, and its Hessian ∂2F1/∂x2 are
defined, continuous, and bounded by an independent constant
ε in [0, ∞) × D and ε ∈ (0, ε0].

(ii) F1 is T -periodic in t (T independent of ε).
(iii) y(t) belongs to D on the interval of time [0,1/ε].

Then the following statements hold:
(a) For t ∈ [0,1/ε] we have that x(t) − y(t) = O(ε),

as ε → 0.
(b) If p is a singular point of the averaged Eq. (A2) and

det

(
∂f1

∂y

)∣∣∣∣
y=p

	= 0,

then there exists a T -periodic solution ϕ(t,ε) of Eq. (A1) such
that ϕ(0,ε) → p as ε → 0.

(c) The stability or instability of the periodic solution ϕ(t,ε)
is given by the stability or instability of the singular point p

of the averaged system (A2). In fact, the singular point p has
the stability behavior of the Poincaré map associated to the
periodic solution ϕ(t,ε).

We point out the main facts in order to prove Theorem 3(c);
for more details see Secs. 6.3 and 11.8 in Ref. [13]. Suppose
that ϕ(t,ε) is a periodic solution of Eq. (A1) corresponding
to y = p, an equilibrium point of the averaged system (A2).
Linearizing Eq. (A1) in a neighborhood of the periodic solution
ϕ(t,ε) we obtain a linear equation with T -periodic coefficients:

ẋ = εA(t,ε)x, A(t,ε) = ∂

∂x
[F (1(t,x) − F2(t,x,ε)]|x=ϕ(t,ε).

(A3)

We introduce the T -periodic matrices

B(t) = ∂F1

∂x
(t,p), B1 = 1

T

∫ T

0
B(t)dt,

C(t) =
∫ t

0
(B(s) − B1)ds.

From Theorem 3 we have

lim
ε→0

A(t,ε) = B(t),

and it is clear that B1 is the matrix of the linearized averaged
equation. The matrix C has average zero. The near-identity
transformation

x 
−→ y = [I − εC(t)]x, (A4)

permits us to write Eqs. (A3) as

ẏ = εB1y + ε[A(t,ε) − B(t)]y + O(ε2). (A5)

Notice that A(t,ε) − B(t) → 0 as ε → 0, and also the char-
acteristic exponents of Eq. (A5) depend continuously on the
small parameter ε. It follows that, for ε sufficiently small, if
the determinant of B1 is not zero, then 0 is not an eigenvalue
of the matrix B1 and then it is not a characteristic exponent of
Eq. (A5). By the near-identity transformation we obtain that
system (A3) does not have multipliers equal to 1.

We summarize some facts on the Liouville-Arnold inte-
grability theory for Hamiltonian systems and on the theory
of periodic orbits of differential equations; for more details
see Ref. [14] and Sec. 7.1.2 of Ref. [15], respectively. Here
we only present these results for Hamiltonian systems of two
degrees of freedom.

A Hamiltonian system with Hamiltonian H of two degrees
of freedom is called integrable in the sense of Liouville-Arnold
if it has a first integral G independent of H (i.e., the gradient
vectors of H and G are independent in all the points of the
phase space except perhaps in a set of zero Lebesgue measure)
and in involution with H (i.e., the value of the Poisson of H
and G is zero).

A flow defined on a subspace of the phase space is complete
if its solutions are defined for all time.

Now we are ready to state the Liouville-Arnold theorem
restricted to Hamiltonian systems of two degrees of freedom.

Theorem 4 (Liouville-Arnold).Suppose that a Hamiltonian
system with two degrees of freedom defined on the phase
space M has its Hamiltonian H and the function G as
two independent first integrals in involution. If Ihc = {p ∈
M : H (p) = h and C(p) = c} 	= ∅ and (h, c) is a regular
value of the map (H, G), then the following statements
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hold:
(a) Ihc is a two-dimensional submanifold of M invariant

under the flow of the Hamiltonian system.
(b) If the flow on a connected component I ∗

hc of Ihc is
complete, then I ∗

hc is diffeomorphic either to the torusS1 × S1,
or to the cylinder S1 × R, or to the plane R2. If I ∗

hc is compact,
then the flow on it is always complete and I ∗

hc ≈ S1 × S1.
(c) Under hypothesis (b) the flow on I ∗

hc is conjugated to a
linear flow either on S1 × S1, on S1 × R, or on R2.

For an autonomous differential system, one of the multipli-
ers is always 1, and its corresponding eigenvector is tangent
to the periodic orbit. A periodic orbit of an autonomous
Hamiltonian system always has two multipliers equal to 1. One
multiplier is 1 because the Hamiltonian system is autonomous,

and the other again has the value 1 due to the existence of the
first integral given by the Hamiltonian.

Theorem 5 (Poincaré). If a Hamiltonian system has two
degrees of freedom and Hamiltonian H is Liouville-Arnold
integrable, and G is a second first integral such that the
gradients of H and G are linearly independent at each point of
a periodic orbit of the system, then all the multipliers of this
periodic orbit are equal to 1.

Theorem 5 is due to Poincaré [16]; see also Ref. [17]. It
gives us a tool to study the non-Liouville-Arnold integrability,
independently of the class of differentiability of the second
first integral. The main problem for applying this result in
a negative way is to find periodic orbits having multipliers
different from 1.
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