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Highly nonlinear solitary wave propagation in Y-shaped granular crystals with variable
branch angles
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We study the propagation of highly nonlinear waves in a branched (Y-shaped) granular crystal composed of
chains of spherical particles of different materials, arranged at variable branch angles. We experimentally test
the dynamic behavior of a solitary pulse, or of a train of solitary waves, crossing the Y-junction interface, and
splitting between the two branches. We describe the dependence of the split pulses’ speed and amplitude on
the branch angles. Analytic predictions based on the quasiparticle model and numerical simulations based on
Hertzian interactions between the particles are found to be in excellent agreement with the experimental data.
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I. INTRODUCTION

Granular crystals are systems composed of particles in
contact with each other, arranged in specific geometrical
configurations. These systems are characterized by a highly
nonlinear dynamic response derived from the Hertzian con-
tact interaction between particles and from the zero tensile
resistance between grains. One-dimensional (1D) granular
crystals have been studied extensively [1–20]. When composed
of uniform particles, they have been shown to support the
propagation of highly nonlinear solitary waves characterized
by a compact shape and a traveling speed dependent on
the wave amplitude [1,2]. The dynamic response of granular
crystals can be controlled by varying the particle’s material
properties [3,12,13] or by introducing defects or interfaces
[4,10,15,16]. In addition, the presence of static precompression
can tune the systems in the linear, weakly nonlinear or
highly nonlinear dynamic regime [1,3,13]. Understanding the
dynamic response of uniform and heterogeneous granular
crystals provides fundamental insight on the propagation
of acoustic signals in highly packed granular media (e.g.,
soil, sand, etc.) [1,18,19]. Granular crystals also have been
proposed for a variety of engineering applications, including
energy trapping and impulse disintegration [8,10,15,16,20],
nondestructive evaluation [6,21], and sound focusing devices
[22]. Few attempts have been made to study the propagation
of highly solitary waves in two-dimensional (2D) systems
[23–27]. In particular, systems composed of spherical particles
arranged in a symmetric Y-shaped configuration at fixed
branch angles also have been studied [24–26]. The study of the
dynamics of branched systems showed that highly nonlinear
solitary waves can follow a bent trajectory, and they can
split when crossing a Y junction. The propagation properties
of a single solitary wave in Y-shaped systems composed of
spherical particles of the same material also was found to
depend on the branch angles of the system [27]. Recently,
Y-shaped granular crystals have been proposed to realize
acoustic logic gates [28].
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In this paper, we extend the previous studies on Y-shaped
systems by performing analytic, numerical, and experimental
studies on the propagation of a single solitary wave or of a train
of solitary waves in both uniform and nonuniform systems
with variable angles between the two branches. We investigate
the effect of the system geometry (varying the branch angles)
on the tunability of solitary waves’ speed and amplitude. The
outcomes of the present paper are promising for the design
of composite materials capable of redirecting stresses and
impulses and for understanding the angular dependence of
dynamic load transfer in 2D granular material media [24].

The paper is organized as follows: In Sec. II, we describe
the experimental setup. In Sec. III, we present the quasiparticle
approach used to analyze the solitary wave propagation in
the system. In Sec. IV, we present the results and a detailed
discussion. We end the paper with conclusions, and we include
an Appendix describing the discrete element model used to
simulate the solitary wave propagation in the system.

II. EXPERIMENTAL SETUP

We designed a set of Y-shaped support guides with different
geometries, composed of one main stem and two branches as
shown in Fig. 1 [27] where α is the branch angle between
the first branch and the main stem and β is the branch
angle between the second branch and the main stem. The
set includes both symmetric guides (α = β) and asymmetric
guides (α �= β). All the guides were made from polycarbonate
and were filled with chains of stainless steel (type 440C)
or aluminum spherical particles of uniform diameter (equal
to 9.52 mm). Each one of the main stem and the two
branches contained 15 particles. At the interface, the three
chains (the main stem and the two branches) shared one
particle. The properties of the materials of the particles and
the guide used in this paper are summarized in Table I. In
order to monitor the wave propagation and to calculate the
wave speed before and after the Y-junction interface, we
placed six instrumented particles at selected positions in the
system (two sensors in main stem and two in each branch).
The instrumented particles were custom fabricated in our
laboratory by introducing a piezoelectric disk (provided by
Steiner & Martins, Inc.) with custom wiring between two

036602-11539-3755/2012/85(3)/036602(10) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.85.036602


D. NGO, F. FRATERNALI, AND C. DARAIO PHYSICAL REVIEW E 85, 036602 (2012)

15 beads in 
each branch 

15 beads in 
main stem 

Striker 

oscilloscope 
Wires to  

Epoxy layer 

Stainless steel caps 

Piezosensor 

 )b( )a(

FIG. 1. (Color online) (a) Ex-
perimental setup showing the
Y-shaped guide and indicating
the number of beads composing
each portion of the system. (b)
Schematic of the composition of a
particle with an embedded piezo-
gauge [12–14].

halves of a spherical particle. The final assembly of the sensor
particles was achieved following a procedure similar to the one
described in Refs. [12–14] [see Fig. 1(b)]. All the sensors were
precalibrated by assuming conservation of linear momentum
to obtain the relation between voltage output obtained from
the oscilloscope and the corresponding force experienced by
the particle. These instrumented particles were connected to
Tektronix oscilloscopes for data acquisition. The whole setup
was tilted at a small angle (∼4◦) to ensure contact among all
particles. Single solitary waves propagating in the system were
generated by impacting a striker particle, identical to the other
particles in the chain, on the first particle of the main stem.
Trains of solitary waves were created by using a striker with
larger mass. The striker’s impact velocity was measured using
an optical velocimeter connected to a digital oscilloscope.

III. QUASIPARTICLE MODEL

We employed a simple quasiparticle model to explain the
dependence of the single solitary waves’ speed and amplitude
on the branch angles in uniform Y-shaped systems.

A. Quasiparticle model

The quasiparticle analogy to analyze the propagation of
highly nonlinear solitary waves in an uncompressed 1D uni-
form chain of spherical particles was suggested by Nesterenko
[1]. Following this approach, the energy and momentum
carried by a single solitary wave can be considered equivalently
to the energy and momentum carried by a particle having an
effective mass meff and moving with an effective speed Veff .
Job et al. [16] used this quasiparticle approach to obtain a

TABLE I. Properties of the materials composing the highly
nonlinear systems tested experimentally [29].

Elastic modulus Poisson Density Bead mass
[GPa] ratio [kg/m3] [g]

Stainless steel beads 200 0.28 7800 3.5
Aluminum beads 69 0.3 2740 1.2
Polycarbonate (wall) 2.4 0.37 1220

quantitative analysis of the formation of solitary wave trains
in a horizontal stepped chain when a single solitary wave
propagated from a chain composed of large spherical particles
to a chain composed of small spherical particles. The relations
of the effective mass and speed of the quasiparticle to the
dynamic properties of a traveling single solitary wave and to
the material properties of the particles in the chain can be
obtained as [16]

meff = 1.345m, (1)

Veff = 1.385Vm, (2)

where m is the mass of a particle in the chain and Vm is the
maximum particle velocity. Vm is related to the solitary wave
speed Vsw and the maximum strain ξm in the chain by [1]

Vm = Vswξm. (3)

The maximum strain in the chain can be expressed as a
function of the solitary wave speed and material properties of
the particles as [1]

ξm =
(√

5

2

)4 1

c4
V 4

sw, (4)

where c =√
2E

πρ0(1−ν2)
, with E being the elastic modulus of the

particles, ρ0 being the particle’s density, and υ being the
Poisson ratio. By substituting Eqs. (3) and (4) into Eq. (2), one
finds the relation between the quasiparticle’s effective speed
and solitary wave speed as

Veff = 1.385

(√
5

2

)4 1

c4
V 5

sw. (5)

B. Uniform Y-shaped system

Using the quasiparticle approach, we analyze the transmis-
sions of energy and momentum carried by the single solitary
wave in the main stem to the two branches in a Y-shaped
system by considering the equivalent collision problem of
three quasiparticles (Fig. 2). We label V (tα)

sw and V
(tβ)
sw as

the solitary wave speeds in the branches, referring to the
branch with angles α and β, respectively. The speed of the
reflected wave traveling back in the stem is indicated as V (r)

sw ,
whereas, the incident wave speed is referred to as V (i)

sw . The
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FIG. 2. (a) Schematic of the Y-
shaped system with the notation and
direction of the solitary wave speeds
in the system. (b) Schematic of the
quasiparticles representation of the Y-
shaped system and its corresponding
effective speeds.

first quasiparticle, which represents the incident single solitary
wave propagating in the main stem, travels with speed V

(i)
eff

and impacts two stationary quasiparticles, which represent the
two branches without solitary wave propagation. After the
impact, the first quasiparticle could be reflected with the speed
V

(r)
eff representing the reflected solitary wave propagation in

the main stem, and the two branch quasiparticles move with
the speeds V

(tα)
eff and V

(tβ)
eff , corresponding to the transmitted

solitary waves traveling in the branches. All the quasiparticles
have the same mass meff because all the particles in the
main stem and the branches are identical [Eq. (1)]. From
the conservation of momentum and energy before and after
the impact, we obtain

meffV
(i)

eff = −meffV
(r)

eff +meffV
(tα)

eff cos α + meffV
(tβ)

eff cos β,

(6)

0 = meffV
(tα)

eff sin α − meffV
(tβ)

eff sin β, (7)
1
2meff

(
V

(i)
eff

)2 = 1
2meff

(
V

(r)
eff

)2+ 1
2meff

(
V

(tα)
eff

)2+ 1
2meff

(
V

(tβ)
eff

)2
,

(8)

where V
(tα)

eff and V
(tβ)

eff are the speeds after impact of the
quasiparticles of branch α and branch β, respectively. By
solving Eqs. (12)–(14), we can obtain the ratios of solitary
wave speeds as

V (r)
sw

V
(i)
sw

=
(

V
(r)

eff

V
(i)

eff

)1/5

=
[

sin2(α + β) − sin2 α − sin2 β

sin2(α + β) + sin2 α + sin2 β

]1/5

,

V (tα)
sw

V
(i)
sw

=
(

V
(tα)

eff

V
(i)

eff

)1/5

=
[

2 sin β sin(α + β)

sin2(α + β) + sin2 α + sin2 β

]1/5

,

V
(tβ)
sw

V
(i)
sw

=
(

V
(tβ)

eff

V
(i)

eff

)1/5

=
[

2 sin α sin(α + β)

sin2(α + β) + sin2 α + sin2 β

]1/5

,

V
(tβ)
sw

V
(tα)
sw

=
(

V
(tβ)

eff

V
(tα)

eff

)1/5

=
[

sin α

sin β

]1/5

. (9)

It should be noted that, when α + β > 90◦, the effec-
tive reflected wave speed becomes negative, implying that
the quasiparticle representing the main stem continues to
move forward after the collision, i.e., an incident solitary wave
traveling in the main stem does not reflect at the Y junction
and continues to travel forward, forcing the last particles
in the main stem to separate from the chain. We restricted
our experimental studies to the cases with α + β � 90◦ to

avoid complications caused by the chain’s fragmentation. The
amplitude of the solitary wave (maximum force) Fm is related
to the solitary wave speed as Fm ∼ V 6

sw [1]. Therefore, the ratio
of the amplitude of the reflected wave to the amplitude of the
incident wave and the ratio of the amplitude of the transmitted
wave to the amplitude of the incident wave can be obtained as

F (r)
m

F
(i)
m

=
[

sin2(α + β) − sin2 α − sin2 β

sin2(α + β) + sin2 α + sin2 β

]6/5

,

F (tα)
m

F
(i)
m

=
[

2 sin β sin(α + β)

sin2(α + β) + sin2 α + sin2 β

]6/5

, (10)

F
(tβ)
m

F
(i)
m

=
[

2 sin α sin(α + β)

sin2(α + β) + sin2 α + sin2 β

]6/5

,

F
(tβ)
m

F
(tα)
m

=
(

sin α

sin β

)6/5

.

For the symmetric Y-shaped systems, the wave speed and
amplitude ratios can be obtained from Eqs. (9) and (10) by
setting α = β.

IV. RESULTS AND DISCUSSION

First, we investigated the propagation of single solitary
waves in uniform Y-shaped systems, i.e., in systems composed
of the same type of particles (stainless steel particles in this
paper), for both symmetric and asymmetric configurations.
For the symmetric uniform Y-shaped systems, we tested four
different values of branch angles (α = β = 30◦, 35◦, 40◦,
and 45◦). For the asymmetric uniform Y-shaped systems (α �=
β), we performed tests for cases of fixed α = 30◦ and β =
30◦, 40◦, 50◦, 60◦. The experimental results for the symmetric
systems of α = β = 30◦, 45◦ are shown in Figs. 3(a)–3(c)
presents the results for the asymmetric system of α = 30◦ and
β = 60◦. For these tests, the six instrumented particles were
inserted in the following positions: 9th and 12th particles in
the main stem (counting from the impact side), and 5th and
8th particles in the two branches (counting from the interface),
as pointed by the arrows in the corresponding curves in Fig. 3.
In all the tests, the striker’s impact velocity was 0.56 m/s.
From these results, it is evident that the incident solitary wave
traveling in the main stem crosses the Y-junction interface
and splits into two single solitary waves traveling in the
branches. For the symmetric systems, the transmitted solitary
waves in the two branches are identical. This observation also
was shown for the 30◦ case in Ref. [26]. Unlike symmetric
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FIG. 3. (Color online) Experimental results for single solitary waves propagating in uniform Y-shaped systems composed of stainless steel
beads. (a) α = β = 30◦. (b) α = β = 45◦. (c) α = 30◦ and β = 60◦. The y-axes’ scale for curves (a) and (b) is 10 N per division. The y-axes’
scale for curve (c) is 15 N per division. The striker was dropped from the same height in all cases, and the striker velocity was 0.56 m/s.

Y-shaped systems, asymmetric systems support waves with
different amplitudes and speeds in the two branches beyond the
Y-shaped interface. The transmitted wave in the branch with
the smaller branch angle (α in this case) has a larger amplitude
and a faster speed of propagation than the one in the other
branch. In addition, a reflected solitary wave could be observed
propagating backward from the Y junction in the main stem
as shown in Fig. 3 (refer to the small amplitude pulses evident
in the top two lines, reporting the signals detected in the main
stem). The experimental results show that the amplitude and
speed of the reflected waves decrease when the branch angles
increase. In the case of α = β = 45◦, α = 30◦, and β =
60◦, no reflected wave in the main stem was observed in the
experiments.

Next, we investigated the propagation of a train of solitary
waves in both symmetric and asymmetric uniform Y-shaped
systems composed of stainless steel beads. The train of solitary
waves was generated in the systems by using a stainless steel
particle of diameter 14.28 mm as the striker. The mass of the
stainless steel striker is approximately three times larger than
the mass of the particles in the systems. Experimental results
are presented in Fig. 4. Similar to the behavior observed for the
propagation of single solitary waves in the uniform symmetric
Y-shaped systems, the solitary wave train also travels in the
main stem and splits into two identical trains propagating in the
two branches. In the asymmetric systems, the incident solitary
wave train is transmitted unequally to the two branches. It
should be noticed that a train of solitary waves reflected from

the Y interface in the main stem formed when α + β < 90◦,
but a quantitative analysis of the reflected waves was difficult
because of their interaction with the incident train.

Experiments for symmetric nonuniform Y-shaped systems
composed of chains of different materials were conducted
next. We tested nonuniform systems composed of a chain
of aluminum particles as the main stem and two chains of
stainless steel particles as the two branches. An aluminum
particle identical to the one composing the stem was used
as the striker to create a single solitary wave in the main
stem. The experimental results for these systems are shown
in Fig. 5(a). In this case, the dynamic behavior of the system
is similar to the corresponding uniform Y-shaped assemblies,
except that, in the nonuniform system, the amplitude and speed
of the reflected waves are higher, whereas, the amplitude
and speed of the transmitted waves in the branches are
smaller. Tests also were performed for other configurations of
nonuniform systems in which the main stem and one branch
were composed of stainless steel beads and the remaining
branch was composed of aluminum beads. The experimental
data for these systems are presented in Fig. 5(b). After
the incident single solitary wave crosses the Y junction, it
splits into one single solitary wave in the steel branch and a
train of single solitary waves in the aluminum branch. It is
interesting to note that, although the geometry of the systems
is symmetric, due to the difference of materials in the two
branches, the response of the systems is not symmetric. The
amplitude of the transmitted wave in the branch of the heavier
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(a) (b) 

FIG. 4. (Color online) Experimental results for trains of solitary waves propagating in uniform Y-shaped systems composed of stainless
steel beads. (a) α = β = 30◦. (b) α = 30◦ and β = 60◦. The y-axes’ scale for all the curves is 15 N per division. The striker was dropped from
the same height in all cases, and the striker velocity was 0.45 m/s.

mass (stainless steel) is much larger than the amplitude of the
wave in the branch of the lighter mass (aluminum). There was
no reflected solitary wave observed in the range of branch
angles we investigated.

Numerical simulations for wave propagation in the Y-
shaped system were performed using the 2D discrete element
model summarized in the Appendix of the present paper and
described in detail in Ref. [26].

We investigated the evolution of the solitary wave shape
during the wave propagation in the systems. In particular,
we chose the data from the single solitary wave propagation
in the symmetric uniform Y-shaped system with α = β =
30◦ to study. Figure 6 shows the solitary wave shape of the
incident, transmitted, and reflected waves, obtained from the
experiments, and their corresponding results obtained from
discrete element simulations and theory. The theoretical wave
shape is given by F (t) = Fm cos6( Vswt√

10R
), where R is particle’s

radius, as discussed in Ref. [3]. We note that the measured
wave shapes are very similar to the theoretical wave shapes also

finding good agreement with the numerical simulation results.
The spatial wavelength of the incident wave was calculated
from experimental data to be ∼5.4 particle size, compared
with 5 particle size from the theory [1] and ∼5.8 particle size
from the discrete simulation. The values of spatial wavelength
of the reflected wave in this case were ∼4.2, ∼4.3 particle sizes
from the experiment and discrete simulation, respectively.
For the transmitted wave in the branch, the experimental
spatial length of the wave was ∼5.4 particle size, and the
numerical wavelength was ∼5.8 particle size. We observed
similar behaviors for the asymmetric uniform systems and
nonuniform systems.

We studied the changes in wave speed and amplitude of
a single solitary wave crossing the Y-junction interface in a
uniform system as functions of the different branch angles.
We calculated the ratios of wave speed and amplitude of
the transmitted waves and reflected waves over the incident
waves and compared the results obtained from the quasiparticle
model, discrete element simulations, and experiments. The

(a) (b)

FIG. 5. (Color online) Experimental results for a single solitary wave propagating in nonuniform symmetric Y-shaped systems. (a) shows
results obtained in a Y-shaped system in which the main stem was composed of aluminum beads and the two branches were composed
of stainless steel beads for α = β = 30◦. The y-axes’ scale for all the curves is 5 N per division, and the striker velocity was 0.71 m/s.
(b) reports results obtained in a Y-shaped system in which the main stem and one branch are composed of stainless steel beads, whereas, the
other branch is composed of aluminum beads for α =β = 30◦. The y-axes’ scale for all the curves is 15 N per division, and the striker velocity was
0.67 m/s.
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Incident wave  
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FIG. 6. (Color online) Comparison of the solitary wave shapes in uniform symmetric Y-shaped systems composed of stainless steel beads
(α = β = 30◦) for (a) incident and reflected solitary waves in the main stem, (b) transmitted solitary wave in the branch. The solid (blue) lines
represent the experimental data. The dashed (red) lines are the discrete element simulation results. The dotted (black) lines are the theoretical
wave shapes. The striker was dropped from the same height in all cases, and the striker velocity was 0.56 m/s.

results for the symmetric uniform systems are shown in
Fig. 7, and the results for the asymmetric uniform systems are
shown in Fig. 8. The error bars in the experimental data were
calculated as the standard deviation of the data obtained from
five measurements repeated with the same striker velocity for
each set of branch angles. Results show good agreement among
the quasiparticle model, the numerical simulations, and the
experimental data. In the symmetric uniform Y-shaped systems
(Fig. 7), for the same incident wave speed V (i)

sw , the reflected
wave speed V (r)

sw decreases as the branch angles increase,
whereas, the transmitted wave speed V (t)

sw shows a reverse
dependence on the branch angles. It should be pointed out that,
in the case of α = β = 45◦, the quasiparticle model predicts
no reflected wave traveling in the main stem. Differently, the
numerical simulation predicts the presence of a reflected wave
with very small amplitude (∼0.5% of the incident solitary wave
amplitude), which was difficult to detect in the experiments.
It is worth noting that the quasiparticle approach is based
on a simplified modeling and, therefore, cannot capture all the

complex dynamic interactions between particles in the system,
especially at the Y junction.

Results obtained for the asymmetric uniform Y-shaped
systems for the specific case when α is fixed at 30◦ and β

varies from 30◦ to 60◦ are reported in Fig. 8. Now, due to the
asymmetry of the two branches, the transmitted wave speeds
V (tα)

sw and V
(tβ)
sw in the branches do show different dependences

on the branch angles. Figure 8(a) shows that, for the same
incident wave speed V (i)

sw when angle β increases (β � α),
V (tα)

sw increases while V
(tβ)
sw decreases. This implies that the

ratio between transmitted wave speeds in the two branches
represented by V

(tβ)
sw /V (tα)

sw also depends on the difference
between two branch angles. The relation of reflected wave
speed V (r)

sw to the branch angles in the asymmetric systems
shown in Fig. 8(a) is similar to the corresponding one in the
symmetric systems [Fig. 7(a)]. In the case where α = 30◦
and β = 60◦, a reflected wave of very small amplitude was
observed in numerical simulations, which was undetectable

( ) ( )r i
sw swV V

( ) ( )t i
sw swV V

( ) ( )r i
m m

( ) ( )t i
m mF F

F F

(a) (b) 

FIG. 7. (Color online) (a) Dependence of ratios of solitary wave speeds on the branch angles in a symmetric uniform Y-shaped system
(α = β). (b) Dependence of ratios of solitary wave amplitudes on the branch angles in an asymmetric uniform Y-shaped system. The solid
lines represent the results obtained from the quasiparticle model; the dashed lines represent results from the discrete element simulations. The
ratios of the reflected wave to the incident wave are in red (bottom curves), the ratios of the transmitted wave to the incident wave are in black
(top curves). Error bars denote the standard deviations obtained from five experimental measurements repeated with the same striker velocity
for a fixed configuration of the system.
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FIG. 8. (Color online) (a) Dependence of ratios of solitary wave speeds on the branch angle β in a symmetric uniform Y-shaped system.
(b) Dependence of ratios of solitary wave amplitudes on branch angle β in an asymmetric uniform Y-shaped system. The solid lines represent
the results from the quasiparticle model; the dashed lines represent the results from the discrete element simulations. The ratios of the reflected
wave to the incident wave are in red (bottom curves), the ratios of the transmitted wave in branch α to the incident wave are in black (top
curves), and the ratios of the transmitted wave in branch α to the incident wave are in blue (middle curves). Angle α was fixed at 30◦. Error bars
denote the standard deviations obtained from five experimental measurements repeated with the same striker velocity for a fixed configuration
of the system.

in experiments. From Eqs. (11) and (16), the ratios of force
amplitudes are shown to be proportional to the ratios of wave
speeds, so we expect that the dependences of amplitude ratios

on branch angles are similar to the ones of wave speed ratios.
This is shown clearly in Figs. 7(b) and 8(b). The energy E

and the momentum I carried by the single solitary wave

(a) (b)

(c) (d)

Branch α

Branch α

Branch β

Branch β

FIG. 9. (a) and (b) Energy density plots for single solitary wave propagation in symmetric uniform Y-shaped system α = β = 45◦. (c) and
(d) Energy density plots for single solitary propagation in asymmetric uniform Y-shaped systems α = 30◦ and β = 60◦.
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(a) (b) 

( ) ( )1 1t i
sw swV V ( ) ( )2 2t i

sw swV V

FIG. 10. (Color online) Dependence of the wave speed ratios on the branch angle in a symmetric (α = β) uniform Y-shaped system
traversed by trains of solitary waves. (a) The wave speed ratios correspond to the speed of the first solitary wave in the transmitted train to
the corresponding one in the incident train. (b) The wave speed ratios correspond to the speed of the second solitary wave in the train to the
corresponding one in the incident train. The solid lines represent the results from the quasiparticle model; the dashed lines correspond to the
results obtained with the discrete element simulations. Error bars denote the standard deviations obtained from five experimental measurements
repeated with the same striker velocity for a fixed configuration of the system.

are proportional to the wave speed as E ∼ (Vsw)10, I ∼
(Vsw)5 [1,16], hence, we also expect that the splitting of energy
and momentum carried by the incident wave to two branches
depends on the branch angles. Especially when utilizing the
asymmetric Y-shaped systems, we can control the distribution
of energy and the momentum carried by the incident wave
transferred to each branch. To demonstrate the capability of
distributing different amounts of energy to the branches of the
Y-shaped system, here, we present the energy density plots
obtained from the discrete element simulations (Fig. 9). The
energy density plots illustrate the total energy (the sum of
potential energy and kinetic energy) of each bead, at each time
step, as the solitary wave propagates in the system. In the
plots, the abscissa shows the bead number starting from the
striker as bead number 1, the last bead of the main stem is
bead number 16, and the last bead of each branch is labeled as

bead number 31. The color map represents the magnitude of
the energy. From Fig. 9, it clearly is observed that the energy
carried by the incident solitary wave in the symmetric uniform
Y-shaped system is split equally to the branches, whereas,
in the asymmetric system, more energy is transferred to the
branch with a smaller branch angle. The above results show
that, by changing the respective angles α and β, stress waves
can be redirected along different paths, and their amplitude,
speed, and energy can be determined fully based on the branch
angles. This interesting property of the asymmetric Y-shaped
system could be used for the design of acoustic delay line
systems or stress mitigation engineered materials.

Next, we study the propagation of a train of solitary waves
in symmetric and asymmetric uniform systems. Figures 10
and 11 show the dependence on the branch angles of the
wave speed ratios of the first and second solitary waves in

(b) (a) 

( ) ( )1 1t i
sw swV Vα

( ) ( )1 1t i
sw swV Vβ

( ) ( )
sw sw

α
( ) ( )2 2t i

i 22

sw swV V

tV V
β

FIG. 11. (Color online) Dependence of the wave speed ratios on the branch angle in an asymmetric uniform Y-shaped system traversed by
trains of solitary waves. (a) The wave speed ratios correspond to the speed of the first solitary wave in the transmitted train to the corresponding
one in the incident train. (b) The wave speed ratio corresponds to the speed of the second solitary wave in the transmitted train to the
corresponding one in the incident train. The solid lines represent the results from the quasiparticle model; the dashed lines are the discrete
element simulation results. Error bars denote the standard deviations obtained from five experimental measurements repeated with the same
striker velocity for a fixed configuration of the system.
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(a) (b) 

( ) ( )r i
sw swV V ( ) ( )t i

sw swV V
( ) ( )( )

stainless steel branch

t i
sw swV V

( ) ( )( )
aluminum branch

t i
sw swV V

FIG. 12. (Color online) Dependence of the wave speed ratios on the branch angle in a symmetric nonuniform Y-shaped system. (a) System
composed of a main stem filled with aluminum particles and branches filled with stainless steel particles. (b) System composed of a main stem
and a branch filled with stainless steel particles and the other branch filled with aluminum particles. The dashed lines report results obtained
with the discrete element simulations. Error bars denote the standard deviations obtained from five experimental measurements repeated with
the same striker velocity for a fixed configuration of the system.

the train, respectively, obtained from experiments, discrete
element simulations, and the quasiparticle model. The results
presented in the above figures highlight the fact that the
first solitary wave exhibits a correlation between wave speed
ratios and branch angle that is similar to that characterizing
a single solitary wave [Figs. 10(a) and 11(a)], whereas, the
second solitary wave shows smaller wave speed ratios. Such
a difference between the first and the second solitary wave
in the train is most likely due to the reduced number of
particles forming the current experimental setup, which does
not allow the (incident and transmitted) secondary solitary
waves to reach a steady state. In order to clarify the matter,
we performed discrete numerical simulations for systems
composed of a larger number of particles (50 particles in
each branch with sensors in two branches placed far from
the Y junction). Our investigations on dense particle systems
showed that the dependence of secondary wave speed ratios on
the branch angles closely follows the one observed for a single
solitary wave, which confirms that a train of single solitary
waves actually is composed of independent single solitary
waves [1,16].

We study nonuniform symmetric systems and focus our
attention on the effects induced by variations in the branch
angles on the propagation of solitary waves. The first nonuni-
form system studied consists of a main stem composed of
aluminum particles and two branches composed of stainless
steel particles. The dependence of the solitary wave speed on
the branch angle for this system is shown in Fig. 12(a). For the
same incident wave speed V (i)

sw , the transmitted wave speed V (t)
sw

increases, and the reflected wave speed V (r)
sw decreases as the

branch angles increase. Comparing this nonuniform system
under examination with a uniform system of stainless steel
beads, we observe that the first one exhibits a smaller V (t)

sw/V (i)
sw

ratio and a considerably higher V (r)
sw /V (i)

sw ratio, respectively,
over the second one. This can be explained by the fact that the
mass of the stainless steel particles in the branches is larger
than the mass of the aluminum particles in the main stem.
The second nonuniform system we studied consists of the

main stem, one branch composed of stainless steel particles,
and the other branch composed of aluminum particles. The
dependence of the solitary wave speed on the branch angle for
this system is shown in Fig. 12(b) for each of the two branches.
In this case, we only study the properties of the first wave in
the train traversing the branch with aluminum beads. From
discrete element simulations, we observe that, in the stainless
steel branch, the wave speed decreases as the angles increase,
whereas, in the aluminum branch, the wave speed increases as
the angles increase.

V. CONCLUSIONS

We studied the dynamics of single solitary waves and trains
of solitary waves propagating in both uniform and nonuniform
Y-shaped systems with different branching geometries and
materials. We experimentally tested the response of systems
assembled in support guides with different geometries and
compared the results with numerical simulations obtained
through a discrete element model. We also employed a
quasiparticle model to obtain analytic solutions. We studied
the changes in wave speeds and amplitudes before and after the
waves cross the Y junction as a function of the branch angles.
We found excellent agreement among numerical, analytic, and
experimental data. Asymmetric Y-shaped systems showed a
special ability to redirect stress waves along different direc-
tions. The possibility to distribute different amounts of energy
in the two branches as a function of the branch angles could
be exploited in a variety of practical applications, including
impact protecting systems, energy harvesting systems, and
delay lines.
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APPENDIX: DISCRETE ELEMENT MODELING

We formulate a discrete element modeling of the Y-shaped
system by describing the particles as point masses connected
by nonlinear springs, which reproduce the normal Hertzian
contact law between spheres. Such a simplified nondissipative
modeling neglects irreversible phenomena, such as, e.g.,
friction and plasticity, and is aimed to capture the main
dynamical features of a 2D granular system composed of a
small number of grains. The trajectory of the generic particle
(say, the ith one) is determined through numerical integration
of the following equation of motion:

miV̇i = −
∑
j �=i

αij (δ+
ij )3/2nij , (A1)

where V̇i is the particle velocity vector, the dot denotes the
time derivative, mi is the particle mass, the summation on the
right hand side is extended to all the particles in the systems
different from the ith one, δ+

ij is the positive part of the normal

penetration displacement δij between particles i and j [26],
nij is the unit vector in the direction connecting the centers of
mass of particles i and j , outwardly oriented with respect to
particle i, and αij is the following scalar coefficient:

αij =
4EiEj

√
ri rj

ri+rj

3Ei

(
1 − v2

j

) + 3Ej

(
1 − v2

i

) , (A2)

withEi ,vi , and ridenoting the Young modulus, the Poisson
ratio, and the radius of the ith particle, respectively. The walls
of the Y-shaped guides are modeled as particles with infinite
radii, fixed coordinates, nij always coincident with the outward
normal to the guide (for any j ), and Ei and vi correspondent
to the elastic properties of the polycarbonate in Table I.

We integrate Eq. (A1) over time, for each particle in the
system, through a fourth-order Runge-Kutta method with
time step 
t = 10−8 s. Such a choice leads us to obtain
integration errors lower than 10−5% in terms of total energy
conservation.
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