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Solutions for characterizing both electromagnetic wave propagation in, and scattering by, a gyrotropic sphere
are obtained based on some recently published literature. Both gyrotropic permittivity and permeability tensors
are considered herein, and both transmitted internal fields and scattered external fields are derived theoretically.
Compared with problems of a uniaxial sphere, a gyroelectric sphere, and a gyromagnetic sphere, the scattering
problem considered here is found to be astonishingly complicated but more generalized in formulation and
solution procedure. Numerical validations are made by reducing our results to a gyromagnetic sphere and
comparing them with the results obtained using the Fourier transform method, where excellent agreements are
observed. Then, radar cross sections (RCSs) versus electric and magnetic gyrotropy ratios are computed, while
hybrid effects due to both electric and magnetic gyrotropies are studied extensively, where some special cases
of uniaxial spheres are demonstrated. It is shown that characteristics of gyrotropy parameters in Cartesian
coordinates may lead to considerably large variations in RCS values, elucidating physical significance of
gyrotropy and anisotropy ratios in scattering control. The generalized formulation of the problem is expected
to have wide practical applications, while some features of this gyrotropic sphere may help other researchers
or engineers to understand more physical insight. In addition, some critical mistakes made in literature were
corrected.

DOI: 10.1103/PhysRevE.85.036601 PACS number(s): 03.50.De, 81.05.Xj, 41.20.−q, 42.25.Fx

I. INTRODUCTION

Scattering by anisotropic spheres or spheres of anisotropic
media has attracted continued interests of both physics and
engineering communities over the last several decades [1–13],
and research interests were extended from geophysics, nuclear
physics, quantum effects, nanoparticles, photonic crystals,
and dielectric materials associated with gravitational, elastic,
acoustic, electromagnetic, and/or light waves. Electromagnetic
characterization of anisotropic media has been a focused
research topic [4,6,8,11,14–17] due to easy realizations of
artificial composites such as magnetically biased ferrite or
plasma, for instance, gyrotropic materials, which are also
known as nonreciprocal anisotropic media. By nonreciprocity,
it means that the gyrotropic materials are sensitive to the
direction of waves propagating inside the materials [2,18].
This nonreciprocal behavior is due to a reorientation of the
eigenaxes between forward and backward transit [19]. Under
time reversal, gyrotropic processes are fully reciprocal. It flips
both the propagation direction and electron spin, which is the
source of magnetization.

Over the past many years, various numerical and analytical
methods have been reported and utilized to characterize
interactions between electromagnetic waves and anisotropic
media in general, for instance, the method of moments (MoM)
[20], the transmission line modeling [18], the coupled dipole
approximation method [21], the integral equation method [22],
the spectral domain Fourier transformation approach [23,24],
and the mode expansion method [25,26].

The magnetic and electric uniaxial spheres as well as
the gyroelectric spheres (the permittivity and permeability

tensors of which are often expressed in Cartesian coordi-
nates system) have been studied extensively by Geng et al.
[27–30]. Geng et al. have employed the spherical vector
wave function expansion method together with the Fourier
transform technique to derive the analytical solutions for
the plane wave scattering by a plasma anisotropic sphere
[27], a uniaxial anisotropic sphere [28], a multilayer plasma
anisotropic sphere [29], and an impedance sphere coated with
a uniaxial anisotropic layer [30]. In addition, Lin et al. [31]
have obtained a solution for a gyromagnetic sphere using the
multiple scattering method along with the T-matrix method.
Subsequently, this method was adopted by a few researchers to
investigate the scattering problem by a single electric uniaxial
sphere [32–35]. In addition to the above anisotropy form of
the materials described in the Cartesian coordinates system,
Liu et al. [36] and Qiu et al. have investigated characteristics
of electromagnetic waves for radial uniaxial and gyrotropic
spheres, the permittivity and permeability tensors of which
are expressed in the spherical coordinates system [37–41] for
realizing the classical spherical cloaking. According to Gao
et al. [26], the radius ratios of radial anisotropy coated spheres
can be adjusted so as to make objects nearly “transparent” or
“invisible.”

Both gyrotropic permittivity ε and permeability μ tensors
were considered for the cylindrical case [42] and the radial
anisotropic sphere [37,43] to have a better physical insight
into the problem. There are, however, no general solutions
for electromagnetic or light scattering by a sphere, the
gyrotropic tensors of which are expressed in the Cartesian
coordinates system. Herein, we thus consider the multiple
scattering method together with the T-matrix method to obtain
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a generalized solution of electromagnetic scattering by a
sphere which has a hybrid gyrotropic property. As both gy-
rotropic permittivity and permeability tensors are considered,
the formulations carried out herewith based on the vector
eigenfunction expansions are physically more generalized
and mathematically astonishingly complicated; meanwhile,
the theoretical derivations and numerical calculations are also
very tedious and much involved, making the problem far more
difficult than those previous works in literature. In addition,
the procedure can be applied to arbitrary polarizations of
the incident waves, which makes the detailed formulations
necessarily general enough for many different kinds of
practical applications. After the analytical solution to the
problem defined is obtained, we also present some numerical
results for the physical insights into the scattering problem.
We validate our derived formulation and developed codes by
reducing our results to simpler cases of a gyromagnetic sphere
and then by comparing the results obtained using our approach
and the Fourier transform method. As shown later, a very good
agreement is observed for both trials. In addition, we have
considered a number of examples and obtained many different
sets of the results. Associated with these results, various
physical insights resulted in by the nature of the problem are
discussed, and different kinds of hybrid effects of scattering
geometry and electrical parameters are summarized. The re-
sults inside the paper provide some mathematical formulations
and also some important physical insights, both with good
potential physical and engineering applications in the near
future.

II. BASIC FORMULAS

A. Expansion of electromagnetic field inside the sphere

In the subsequent analysis, a time dependence of the
form e−iωt is assumed and will be suppressed throughout the
treatment. Consider an anisotropic sphere in free space with
a radius of a and its center located at spherical coordinates
origin, as shown in Fig. 1.

FIG. 1. Geometry for electromagnetic scattering of plane wave
by an anisotropic sphere in free space.

The sphere is characterized by a permeability tensor and a
permittivity tensor of the forms

μ = μs

⎡⎣ μt −iμg 0
iμg μt 0
0 0 1

⎤⎦, (1a)

ε = εs

⎡⎣ εt −iεg 0
iεg εt 0
0 0 1

⎤⎦. (1b)

So, the following constitutive relations inside the sphere are
thus considered:

Dint = ε · Eint, (2a)

Bint = μ · H int. (2b)

From the source-free Maxwell’s equations, we obtain

∇ × [
εsε

−1 · (∇ × μsμ
−1 · Bint)

] − k2
s Bint = 0, (3)

where k2
s = ω2εsμs . The two inverse matrices are explicitly

expressed as

μsμ
−1 =

⎡⎣ μ′
t −iμ′

g 0
iμ′

g μ′
t 0

0 0 1

⎤⎦, (4a)

εsε
−1 =

⎡⎣ ε′
t −iε′

g 0
iε′

g ε′
t 0

0 0 1

⎤⎦, (4b)

where

μ′
t = μt

μ2
t − μ2

g

, (5a)

μ′
g = − μg

μ2
t − μ2

g

, (5b)

ε′
t = εt

ε2
t − ε2

g

, (5c)

ε′
g = − εg

ε2
t − ε2

g

. (5d)

Since ∇ · Bint = 0, we can express the magnetic flux density
inside the sphere as

Bint =
∑
n,m

Emn

[
dmn M (1)

mn(k,r) + cmn N (1)
mn(k,r)

]
, (6)

where k denotes the wave number yet to be determined,
while the M (1)

mn(k,r) and N (1)
mn(k,r) stand for the first kind of

spherical vector wave functions of transverse electric (TE) and
transverse magnetic (TM) modes. The summation coefficient
is defined as Emn = inE0Cmn where Cmn is given by [44,45]

Cmn =
[

2n + 1

n(n + 1)

(n − m)!

(n + m)!

] 1
2

, (7)

while E0 represents the amplitude of the incident electric field.
Unless explicitly specified, hereinafter the summation

∑
m,n

implies the n runs from 1 to +∞, and m from −n to n for each
n. In practical calculations, the expansion is supposed to be
uniformly convergent and can be truncated approximately at
n = nc = x + 4x1/3 + 2 [46,47], where x = k0a with k0 and a

being the free space wave number and the radius of the sphere,
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FIG. 2. (Color online) Qsca versus incident angle θk for (a) μg = 0 and μsμt = μ0 at various values of μs . The polarizations are assumed to
be (pθ ,pφ) = (0,1) and x = 4.25. (b) x = 4.0, μs = μ0, and μt = 1 at various values of μg . LCP and RCP represent the left- and right-handed
circularly polarized incident waves with (pθ ,pφ) = 1/

√
2(1,i) and 1/

√
2(1, − i), respectively.

respectively.1 Although this function was developed for the
isotropic case where the relative permittivity and permeability
of the sphere are not related, it was found that this function is
still valid for the anisotropic media in a relaxed way [35].

With the use of the properties of spherical vector wave
functions, it can be worked out that

μsμ
−1 · Muv =

+∞∑
q=0

+q∑
p=−q

[
g̃uv

pq Mpq + ẽuv
pq Npq + f̃ uv

pq Lpq

]
,

(8a)

μsμ
−1 · Nuv =

+∞∑
q=0

+q∑
p=−q

[
guv

pq Mpq + euv
pq Npq + f

uv

pq Lpq

]
,

(8b)

1There is a typo in Ref. [46], where the value of nst should be
nst = max(|z|,nc) + 15.

εsε
−1 · Mmn =

+∞∑
q=0

+q∑
p=−q

[
õmn

pq Mpq + p̃mn
pq Npq + q̃mn

pq Lpq

]
,

(8c)

εsε
−1 · Nmn =

+∞∑
q=0

+q∑
p=−q

[
omn

pq Mpq + pmn
pq Npq + qmn

pq Lpq

]
,

(8d)

where the coefficients g̃uv
pq , ẽuv

pq , f̃ uv
pq , õmn

pq , p̃mn
pq ,q̃mn

pq , guv
pq , euv

pq ,

f
uv

pq , omn
pq , pmn

pq , and qmn
pq are given in the Appendix. Therefore,

we have

μsμ
−1 · Bint

= w00 L00 +
∑
q,p

Epq(dpq Mpq + cpq Npq + wpq Lpq),

(9)
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FIG. 3. (Color online) Qsca versus θk at various values of x for (a) μg = 0, μsμt = μ0, and μs = 1.4μ0 with a polarization of (pθ ,pφ) =
(0,1). (b) μg = 0.4, μs = μ0, and μt = 1 with the same LCP and RCP polarizations as defined before.
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FIG. 4. (Color online) RCS versus scattering angle θs in the E

and H planes with (a) μt = 1, μg = 0, μs = μ0, εs = (1 + 0.5i)ε0,
εsεt = (4 + 0.5i)ε0, and εsεg = 2ε0 of x = 3π . (b) μt = 1, μg = 0,
μs = −μ0, εs = (−4 + 0.02i)ε0, εsεt = (−2 + 0.01i)ε0, and εg = 0
of electrical size parameter x = 0.75π .

where the expansion coefficients are expressed as follows:

dpq =
∑
v,u

Euv

Epq

(
g̃uv

pqduv + guv
pqcuv

)
, (10a)

cpq =
∑
v,u

Euv

Epq

(
ẽuv
pqduv + euv

pqcuv

)
, (10b)

wpq =
∑
v,u

Euv

Epq

(
f̃ uv

pq duv + f
uv

pqcuv

)
, (10c)

w00 =
∑
v,u

[
Euvf̃

uv
00 duv + Euvf

uv

00cuv

]
= −

[(
2

3

) 1
2

μ′
gd01 +

(
2

15

) 1
2

μ′
t c02

]
E0. (10d)
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(a) A lossless uniaxial sphere
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FIG. 5. (Color online) RCS versus scattering angle θs in the E and
H planes with μs = μ0, μt = 1, μg = 0 and (a) the permittivity and
permeability tensor elements are taken to be εs = 4.9284ε0, εsεt =
5.3495ε0 and εg = 0 and (pθ ,pφ) = (1,0). (b) x = 4π , εs = (4 +
0.2i)ε0, εsεt = (2 + 0.1i)ε0 and εg = 0 and (pθ ,pφ) = (1,0).

Since the spherical vector wave functions satisfy

∇ × M (1)
mn = kN (1)

mn, (11a)

∇ × N (1)
mn = kM (1)

mn, (11b)

∇ × L(1)
mn = 0, (11c)

taking the curl of (9) and adopting the relations in (8a), we
thus obtain2

εsε
−1 · (∇ × μsμ

−1 · Bint)

= k
∑
n,m

Emn(cmn Mmn + dmn Nmn + wmnLmn) + w00 L00,

(12)

2Note that there are some typos in the paper by Lin et al. [31]. The
second column and row element of the inverse permeability tensor in
(5) of their paper should read μ′

g instead of μg and the value of w00

should be multiplied by a factor of E0.
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FIG. 6. (Color online) RCS versus scattering angle with Ae =
1.2 for (a) magnetic negative uniaxial Am = 1.2 (solid blue line),
Am = 1.6 (dashed red line), and nonmagnetic anisotropic case
Am = 1.0. (b) Magnetic positive uniaxial Am = 0.2 (solid blue line),
Am = 0.5 (dashed red line), Am = 0.8 (dashed-dotted green line) and
nonmagnetic anisotropic case Am = 1.

where

dmn =
∑
q,p

Epq

Emn

(
ppq

mndpq + p̃
pq
mncpq

)
, (13a)

cmn =
∑
q,p

Epq

Emn

(
opq

mndpq + õ
pq
mncpq

)
, (13b)

wmn =
∑
q,p

Epq

Emn

(
qpq

mndpq + q̃
pq
mncpq

)
, (13c)

w00 = −k

[√
2

15
(ε̄t

′ + ε̄t
′μ̄t

′ + εg
′μ′

g)d02

+
√

2

75

(
5εg

′ + εg
′μ̄t

′ + ε̄t
′μ′

g

)
c01

+
√

16

525
(εg

′μ̄t
′ + ε̄t

′μ′
g)c03

]
E0. (13d)
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FIG. 7. (Color online) The effect of (a) permeability multipli-
cation factor with εsεt = 2.4ε0 and εs = 2.0ε0 and (b) permittivity
multiplication factor with μsμt = 2.4μ0 and μs = 2.0μ0 on RCS.
The multiplication factors are 1 (solid circle, black line), 2 (solid red
line), 3 (dashed green line), and 5 (dashed-dotted blue line).

By substituting (12) and (6) into (3) and making some simple
manipulations, we obtain∑

n,m

Emn

[
˜̃dmn M (1)

mn(k,r) + ˜̃cmn N (1)
mn(k,r)

]
= 0, (14)

with

˜̃dmn = k2
∑
q,p

∑
v,u

Euv

Emn

[(
ppq

mng̃
uv
pq + p̃

pq
mnẽ

uv
pq

)
duv

+ (
ppq

mng
uv
pq + p̃

pq
mne

uv
pq

)
cuv

] − k2
s dmn, (15a)

˜̃cmn = k2
∑
q,p

∑
v,u

Euv

Emn

[(
opq

mng̃
uv
pq + õ

pq
mnẽ

uv
pq

)
duv

+ (
opq

mng
uv
pq + õ

pq
mne

uv
pq

)
cuv

] − k2
s cmn. (15b)

In the matrix form, we have the following characteristic
equation: (

P̃ P
Õ O

)(
d

c

)
= λ

(
d

c

)
, (16)
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FIG. 8. (Color online) Effects of including gyrotropy ratios to
a negative uniaxial sphere with Ae = Am = 2 > 1 on RCS for (a)
electric gyrotropy and (b) magnetic gyrotropy. The gyrotropy ratios
are assumed to be 20 (solid black line), 10 (dashed red line), 6.67
(dashed-dotted green line), and 5 (circle blue line), respectively.

where λ = k2
s /k2, and the matrices Õ,O, P̃ , andP are defined

by

P̃mn,uv =
∑
q,p

Euv

Emn

(
ppq

mng̃
uv
pq + p̃

pq
mnẽ

uv
pq

)
, (17a)

Pmn,uv =
∑
q,p

Euv

Emn

(
ppq

mng
uv
pq + p̃

pq
mne

uv
pq

)
, (17b)

Õmn,uv =
∑
q,p

Euv

Emn

(
opq

mng̃
uv
pq + õ

pq
mnẽ

uv
pq

)
, (17c)

Omn,uv =
∑
q,p

Euv

Emn

(
opq

mng
uv
pq + õ

pq
mne

uv
pq

)
, (17d)

with mn and uv denoting the row and column indices,
respectively. Equation (16) is an eigensystem, with eigenvalues
λl and eigenvectors (dmn,l , cmn,l)T , where l denotes the
index of eigenvalues and corresponding eigenvectors. We can
then construct below a new eigenfunction V l based on the

0 50 100 150
−30

−20

−10

0

10

20

θ
s
 (degree)

σ 
/λ

2  (
dB

)

ε
s
ε

g
=0.2ε

o
ε

s
ε

g
=0.4ε

o
ε

s
ε

g
=0.6ε

o
ε

s
ε

g
=0.8ε

o

μ
s

μ
t
 = 1μ

o
μ

s
     = 2μ

o
ε

s
ε

t
   = 1ε

o
ε

s
     = 2ε

o

μ
g
=0

(a) Electric gyrotropy ratios

0 50 100 150
−30

−20

−10

0

10

20

θ
s
 (degree)

σ 
/λ

2  (
dB

)
μ

s
μ

g
=0.2μ

o
μ

s
μ

g
=0.4μ

o
μ

s
μ

g
=0.6μ

o
μ

s
μ

g
=0.8μ

o

μ
s

μ
t
 = 1μ

o
μ

s
     = 2μ

o
ε

s
ε

t
   = 1ε

o
ε

s
     = 2ε

o

ε
g
=0

(b) Magnetic gyrotropy ratios

FIG. 9. (Color online) Effects of considering gyrotropy ratios to a
positive uniaxial sphere with Ae = Am = 0.5 on RCS for (a) electric
gyrotropy and (b) magnetic gyrotropy. The gyrotropy ratios are 5
(solid black line), 2.5 (dashed red line), 1.67 (dashed-dotted green
line), and 1.25 (circle blue line).

eigenvectors:

V l = −kl

ω

∑
n,m

Emn

[
dmn,l M (1)

mn(kl,r) + cmn,l N (1)
mn(kl,r)

]
,

(18)
where kl = ks/

√
λl . It is easy to show that V l satisfies

∇ · V l = 0, (19a)
∇ × [εsε

−1 · (∇ × μsμ
−1 · V l)] − k2

s V l = 0. (19b)

Thus, we can express the magnetic flux density Bint inside
the sphere as

Bint =
2nd∑
l=1

αl V l , (20)

where nd = nc(nc + 2) [48,49] and the expansion coeffi-
cients αl are to be determined by matching the boundary
conditions at the surface of the sphere. With the magnetic
flux density Bint given by (20), we can further write the
magnetic field H int

3 and the electric field Eint both inside the

3In the Hl expression in [31], the last term should be subtracted
instead of added.
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sphere as

H int = μ−1 · Bint = −
∑
n,m

Emn

∑
l

αl

kl

μsω

[
dmn,l M (1)

mn(kl,r)

+ cmn,l N (1)
mn(kl,r) + wmn,l L(1)

mn(kl,r)
]

−
∑

l

αl

kl

μsω
w00,l L

(1)
00 (kl,r), (21a)

Eint = i

ω
ε−1 · (∇ × H int)

= −i
∑
n,m

Emn

∑
l

αl

kl
2

εsμsω2

[
cmn,l M

(1)
mn(kl,r)

+ dmn,l N
(1)
mn(kl,r) + wmn,l L

(1)
mn(kl,r)

]
− i

∑
l

αl

k2
l

μsεsω2
w00,l L

(1)
00 (kl,r). (21b)

In [31], the correct H l expression should be expressed as
follows:

H l = −
+∞∑
n=1

+n∑
m=−n

αlεsω

kl

∑
l

Emn

[
dmn,l Mmn + cmn,l Nmn

+wmn,l

λl

Lmn

]
−

∑
l

αl

ωεs

kl

w00

λl

L00.

Note that due to the property in (11a) of spherical vector wave
functions, we obtained another relation given by∑

n,m

Emn

[ ˜̃dmn N (1)
mn(kl,r) + ˜̃cmn M (1)

mn(kl,r)
] = 0. (22)

Therefore, (21b) can be further simplified to

Eint = −i
∑
n,m

Emn

∑
l

αl

[
cmn,l M (1)

mn(kl,r)

+ dmn,l N (1)
mn(kl,r) + wmn,l

λl

L(1)
mn(kl,r)

]
− i

∑
l

αl

[
w00,l

λl

L(1)
00 (kl,r)

]
. (23)

Since ∇ · H int �= 0 and ∇ · Eint �= 0, their expansions include
the term Lmn, which is absent in the isotropic case.

B. Expansion of the scattered and incident fields

The scattered fields Es and H s and the incident fields Ei

and H i in the isotropic medium have the same form as those of
the Mie theory [46,50]. The scattered fields are given explicitly
as

Es =
∑
n,m

iEmn

[
amn N (3)

mn(k0,r) + bmn M (3)
mn(k0,r)

]
, (24a)

H s = k0

ωμ0

∑
n,m

Emn

[
bmn N (3)

mn(k0,r) + amn M (3)
mn(k0,r)

]
,

(24b)

where k2
0 = ω2ε0μ0. The coefficients amn and bmn are to be

determined by matching boundary conditions.

The incident fields considered in the paper are given by

Ei = E0(pθ θ̂ k + pφφ̂k)eik0·r , (25a)

H i = k0

ωμ0
E0(pθ φ̂k − pφ θ̂ k)eik0·r , (25b)

where p̂ = (pθ θ̂ k + pφφ̂k) denotes the normalized complex
polarization vector with | p̂| = 1, and the unit vectors θ̂ k and φ̂k

are defined in the direction of increasing θk and φk to constitute
a right-hand-based system together with k̂0 = k0/k0, as shown
in Fig. 1. In terms of spherical vector wave functions, incident
fields are expressed as

Ei = −
∑
n,m

iEmn

[
pmn N (1)

mn(k0,r) + qmn M (1)
mn(k0,r)

]
,

(26a)

H i = − k0

ωμ0

∑
n,m

Emn

[
qmn N (1)

mn(k0,r) + pmn M (1)
mn(k0,r)

]
,

(26b)

where the coefficients pmn and qmn of incident wave and the
details on their deduction can be found in [31], so they are
omitted herewith.

C. Matching boundary conditions

The continuity of the tangential electric and magnetic field
components at r = a yields

pmn =
[

ξn
′(x)

ψn
′(x)

]
amn +

∑
l

[
1

mskl

ψn
′(klmsx)

ψn
′(x)

dmn,l

]
αl

+
∑

l

[
1

msklλl

jn(klmsx)

ψn
′(x)

wmn,l

]
αl, (27a)

qmn =
[

ξn(x)

ψn(x)

]
bmn +

∑
l

[
1

mskl

ψn(klmsx)

ψn(x)
cmn,l

]
αl, (27b)

pmn =
[

ξn(x)

ψn(x)

]
amn +

∑
l

[
μ0

μs

ψn(klmsx)

ψn(x)
dmn,l

]
αl, (27c)

qmn =
[

ξn
′(x)

ψn
′(x)

]
bmn +

∑
l

[
μ0

μs

ψn
′(klmsx)

ψn
′(x)

cmn,l

]
αl

+
∑

l

[
μ0

μs

jn(klmsx)

ψn
′(x)

wmn,l

]
αl, (27d)

where the electrical size parameter is defined as x = k0a and
we also define

ms = ks

k0
, kl = kl

ks

, mskl = kl

k0
, klmsx = kla. (28)

The Riccati-Bessel functions ψn(z) and ξn(z) were given
by [46]

ψn(z) = zjn(z) and ξn(z) = zh(1)
n (z), (29)

where jn(kr) and h(1)
n (kr) denote the spherical Bessel

functions of the first and third kinds, respectively. Details on
the numerical solutions of (27) can be found in [31].
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FIG. 10. (Color online) Effects of adding gyrotropy ratios to a hybrid negative magnetic and positive electric uniaxial sphere of Ae = 0.5 < 1
and Am = 2.0 > 1 on RCS. (a) Electric gyrotropy: Ge = 5 (solid black line), Ge = 2.5 (dashed red line), Ge = 1.25 (dashed-dotted blue line).
(b) Magnetic gyrotropy: Gm = 20 (solid black line), Gm = 10 (dashed red line), and Gm = 5 (dashed-dotted blue line).

D. Scattering properties

From the coefficients of scattered fields, the scattering
efficiency factor defined by

Qsca = 4

x2

∑
n,m

(|amn|2 + |bmn|2), (30)

and the radar cross sections (RCS’s) defined [49] by

σ = lim
r −→ ∞

4π
dσsca

d�
, (31a)

dσsca

d�
= | f (θ,φ)|2 , (31b)

Es = E0 f (θ,φ)
eik0r

r
, r → ∞ (31c)

can be computed, where (dσsca)/(d�) denotes the differential
scattering cross section [31,51] and f (θ,φ) stands for the

scattering amplitude. The asymptotic expressions of spherical
vector wave functions, when r → ∞, can be found from [52].

III. NUMERICAL RESULTS AND DISCUSSIONS

In the previous section, we have presented the necessary
theoretical formulations of electromagnetic fields in the
presence of a gyrotropic sphere. Validation is made and some
typical results are presented in the paper to characterize effects
of anisotropy ratios and gyrotropy ratios of lossless and lossy
spherical scatterers.

An incident plane wave (of electric field amplitude equal to
unity, polarized in parallel to the +x̂ direction, and propagating
in the +̂z direction) is assumed throughout the paper, and all
the results presented herewith are those in the E plane (yoz)
after verification section unless specified.
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FIG. 11. (Color online) Effects of taking into account gyrotropy ratios to a hybrid positive magnetic and negative electric uniaxial sphere
of Ae = 2.0 > 1 and Am = 0.5 < 1 on RCS for (a) electric gyrotropy: Ge = 20 (solid black line), Ge = 10 (dashed red line), Ge = 6.67
(dashed-dotted green line), Ge = 5 (solid circle blue line); and (b) magnetic gyrotropy: Gm = 2.5 (solid black line), Gm = 1.67 (dashed red
line), and Gm = 1.25 (dashed-dotted blue line).
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FIG. 12. (Color online) The dependency of RCS on gyrotropy ratios for (a) a hybrid negative sphere with Ae = 1.33 and Am = 2.0 in the
case of Gm = 10, Gm = 6.67, and Gm = 5, and (b) a hybrid positive sphere with Ae = 0.5 and Am = 0.67 in the case of Ge = 5, Ge = 3.33,
and Gm = 2.5.

A. Verifications

In order to validate our formulas and codes and also to check
the accuracy of the obtained numerical results, we performed
two trials. First, we reduce our solutions of gyrotropic sphere
to gyromagnetic sphere with εs = ε0, εt = 1, and εg = 0 as
depicted in Figs. 2 and 3. Our results depict an exact match
with the results obtained in Ref. [31].

Second, we compare our results with the published results
of Geng et al. [27,53] and [28] for further validation purpose.
They are depicted in Figs. 4 and 5, respectively. As can be
clearly seen, an excellent agreement of the RCS values in the
H plane (xoz) and the E plane (yoz) is achieved between our
proposed solutions and the results obtained using the Fourier
transform method adopted by Geng et al.

From these two trials, it partially verifies the correctness and
applicability of our theory developed as well as our program
codes written.

B. Lossless spherical scatterers

For a nonabsorbing or lossless spherical scatterer, all
elements of ε and μ are real values. First, we investigate effects

of joint anisotropy ratios (JARs) on radar cross section values,
that is, Ae = (εsεt )/εs and Am = (μsμt )/μs . With this joint
anisotropy ratio in place, we consider the single gyrotropy
ratios (SGRs) Ge = (εsεt )/(εsεg) or Gm = (μsμt )/(μsμg), as
well as joint gyrotropy ratios (JGRs), that is, Ge and Gm.
Additionally, in order to understand better the role of JGR,
we have considered a special case of JGR without anisotropy
characteristic.

1. Joint anisotropy effects

In this section, the uniaxial cases are considered with
size parameter x = 0.75π and μg = εg = 0, εsεt �= εs , and
μsμt �= μs . In Fig. 6, effects of joint anisotropy ratios are
examined so as to demonstrate how the radar cross section
is affected by the simultaneous presence of Ae and Am.
The radar cross section values due to a negative electric
uniaxial with a negative magnetic uniaxial (μsμt > μs) with a
positive magnetic uniaxial (μsμt < μs) are shown in Figs. 6(a)
and 6(b), respectively. The values of ε and μs are kept constant
and μsμr is changed so as to vary Am, while Ae is fixed at 1.2.
The single anisotropic case (Am = 1 and Ae = 1.2) is included
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FIG. 13. (Color online) RCS versus scattering angle θs for a hybrid negative uniaxial sphere Am = Ae = 2 for gyrotropic cross term greater
than 1. (a) Ge = 4.0, Ge = 2.67, Ge = 2.0, and Ge = 1.6; (b) Gm = 4.0, Gm = 2.67, Gm = 2.0, and Gm = 1.6.
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FIG. 14. (Color online) Effects of electric anisotropy ratios of a hybrid gyroelectric and uniaxial magnetic sphere on RCS for (a) Am = 2
and Ge = 10, (b) Am = 0.5 and Ge = 2.5, (c) Am = 2 and Ge = 2.5, (d) Am = 0.5 and Ge = 10. The electric anisotropy ratios for Figs. 14(a)
and 14(d) are Ae = 4, 2, 1, 0.67, and 0.5 whereas for Fig. 14(b) and 14(c) are Ae = 2, 1, 0.5, 0.33, and 0.25.

for comparison purposes. Observe that there is a great reso-
nance reduction (decreases of 80 dB compared to the single
electric uniaxial Am = 1 and Ae = 1.2) in the backscattering
for Am = 1.2 that will be useful in military applications. By
comparing positive (Am < 1) and negative (Am > 1) magnetic
uniaxials, sharper oscillations can be seen for Am > 1.

Figure 7 depicts effects of multiplication factors of μ

on radar cross section with εsεt = 2.4ε0 and εs = 2.0ε0 in
Fig. 7(a) and of ε with μsμt = 2.4μ0 and μs = 2.0μ0 in
Fig. 7(b). It is observed that the resonances shift to the right
when the multiplication factor for μ increases from 1 to 5.
However, these properties do not apply for ε in Fig. 7(b).

2. Single gyrotropy effects

In this section, the electrical size parameter of x = π is
assumed and gyrotropic cross-coupling terms are included to
either μ or ε. Figure 8 shows the dependence of the RCS on
gyrotropy ratios. It is found that the reduction in Ge or Gm

of the same joint negative anisotropy ratios Ae = Am = 2 >

1 leads to enhancement of the RCS level particularly at the
scattering angles of θs ≈ 110◦ and 180◦.

As compared to Fig. 8, there is less oscillation for a positive
uniaxial sphere as portrayed in Fig. 9. Also, opposite behavior
in Fig. 9 is shown in the forward scattering, as compared

with that in Fig. 8 (where RCS level increases as gyrotropy
ratios decrease at θs = 0◦); but the same characteristics in the
backward scattering in Figs. 8 and 9 are observed (where RCS
level increases as gyrotropy ratios decreases at θs = 180◦).

Interestingly, when we consider an opposite combination
type of anisotropy (that is, hybrid of positive electric uniaxial
and negative magnetic uniaxial sphere) as displayed in Fig. 10,
there is an increment in RCS level from θs ≈ 55◦ to 130◦ as
Gm decreases as described in Fig. 10(b). This may be due
to negative magnetic anisotropy ratios or higher magnetic
gyrotropy ratios in the gyromagnetic case as compared to the
gyroelectric case. Also, it is observed that the forward and
backward RCS are less sensitive to magnetic gyrotropy ratios
as there is little variation at scattering angles θs = 0◦ and 180◦.
However, such observations do not exist as we decrease Ge in
Fig. 10(a). On the contrary, Ge = 2.5 reduces the RCS level
of Ge = 5 in the vicinity of θs ≈ 90◦.

Figure 11 has almost similar trends as Fig. 10, in which the
increment of RCS level at resonances when gyrotropy ratios
decrease only happens for the case of positive anisotropy and
higher gyrotropy ratios in Fig. 11(a). On the other hand, the
RCS level at θs ≈ 100◦ is being suppressed as Gm decreases
from 2.5 to 1.25. In fact, an irregular variation of RCS
values can be seen for the case of varying gyrotropy ratios
as illustrated in Fig. 11(b).
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FIG. 15. (Color online) Effects of gyrotropy ratios on RCS values without anisotropy effect, Ae = Am = 1, of size parameter x = 4π : (a)
Ge = 5 > Gm = 0.83 (solid black line) and Ge = 0.83 < Gm = 5 (dashed red line). (b) Ge = Gm of the following values: 2.5 (solid black
line), 1.25 (dashed red line), 0.833 (dashed-dotted blue line), and 0.714 (solid circle green line).

In Fig. 12, we reveal effects of gyrotropy ratios in the
case that Ae �= Am, but both belong to a negative lossless
anisotropic sphere in Fig. 12(a) and a positive lossless
anisotropic sphere in Fig. 12(b). It is noted that effects
of magnetic gyrotropy ratios on RCS values are of an
irregular form and unpredictable for the negative anisotropic
sphere. For the positive anisotropic sphere, there is a slight
suppression of forward scattering, and effects of suppression
are getting larger for the backward scattering when Gm

decreases.
Figure 13 showcases the functions of the gyrotropic cross

term when their values are greater than 1. Generally, there is
no regular behavior being spotted. However, it can be seen that
the RCS values are quite sensitive to the changes in gyrotropy
ratios.

Different combinations of electric gyrotropy and magnetic
anisotropy ratios are considered and their effects are depicted
in Fig. 14. It appears that RCS values are quite sensitive

to the electric anisotropy Ae except when Am = 0.5 and
Ge = 2.5 in Fig. 14(b) and the scattering characteristics of
a lossless sphere are significantly affected by the presence of
anisotropy.

3. Hybrid gyrotropy effects

First, we consider RCS results solely due to gyrotropy
effects whereby the anisotropy ratios are set to be Ae = Am =
1 for a very large-sized sphere, where x = 4π . The results are
shown in Fig. 15. Figure 15(a) shows a drastic drop (by 25 dB)
in RCS level at the beginning, which almost flattens in the
middle at around RCS level of 5 dB and begins to increase only
slightly at the end. Notice that the case of Ge = 0.83 < Gm =
5 undergoes more damping as it becomes nearly flat much
faster than the case where Ge = 5 > Gm = 0.83. If the same
gyrotropy ratios are considered simultaneously, i.e., Ge = Gm,
the backscattering increases as the gyrotropy ratio decreases.
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FIG. 16. (Color online) Effects of different magnetic and electric gyrotropy and anisotropy ratios on RCS values: (a) Ae = Am = 0.714 < 1
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(a) Gm = Ge < 1
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FIG. 17. (Color online) Effects of the same magnetic and electric gyrotropy ratios (Am = Ae = 2.5) for a negative anisotropy sphere on
RCS values: (a) Gm = Ge < 1 for 0.83 (solid black line), 0.714 (dashed red line), and 0.50 (dashed-dotted blue line). (b) Gm = Ge > 1 for
2.4 (solid black line), 1.25 (dashed red line), and 1.11 (dashed-dotted blue line).

There is little variation for the first half of the scattering angles
from θs = 0◦ to 90◦.

Next, we include JAR effects into the JGR for some
special cases. The results for different gyrotropy ratios
and anisotropy ratios are illustrated in Fig. 16. As com-
pared to the previous nonanisotropy case in Fig. 15(a),
the drop is not so drastic at the beginning. This may be
due to a large difference between electric and magnetic
gyrotropy ratios or to nonexistence of anisotropy effect for
Fig. 15(a). Additionally, the case of Ge = 0.83 < Gm = 1.25
is much damper than the case of Ge = 1.25 > Gm = 0.83.
These properties are similar to those of the nonanisotropy
case.

Hybrid magnetic and electric gyrotropy ratios of the same
value are considered in Fig. 17. It is discovered that when
gyrotropy ratios decrease as displayed in Fig. 17(b), there is
an enhancement in RCS level. Nevertheless, at the beginning
of the Gm = Ge < 1 case depicted in Fig. 17(a), this does not
hold and it seems that there is a tendency to decrease the RCS
further if we further decrease the gyrotropy ratios.

C. Lossy spherical scatterers

For an absorbing or lossy spherical scatterer, the elements
in ε and μ are complex in value. The imaginary parts represent
absorptions. Subsequently, we will first study characteristics
of JAR followed by SGR and JGR, respectively. On top of
that, we also present the scattering efficiencies Qsca(θk) at an
incident angle of θk = 0◦ versus size parameter x for lossless
and lossy spheres.

1. Joint anisotropy effects

Figure 18 shows the effect of joint anisotropy effect on
RCS. In Fig. 18(a), the value of Ae is kept constant and Am

changed so as to see the effect of Am on RCS. It is shown that
when Am decreases, the backscattering increases. This is the
same for the effect of changing Ae and keeping Am constant.

2. Single gyrotropy effects

Herein, we consider only the gyrotropic cross term in either
μ or ε and the other parameters remain as those of uniaxial
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FIG. 18. (Color online) Effects of joint anisotropy ratios on RCS values for an absorbing uniaxial sphere. (a) Solid black line: Ae = 1.32 +
0.24i and Am = 1.52 + 0.24i; dashed red line: Ae = 1.32 + 0.24i and Am = 0.84 − 0.12i. (b) Dashed-dotted green line: Ae = 1.68 + 0.16i

and Am = 1.32 + 0.24i; solid circle blue line: Ae = 0.72 + 0.04i and Am = 1.32 + 0.24i.
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FIG. 19. (Color online) Effects of gyrotropy ratios for a hybrid anisotropic sphere (Ae = 1.32 + 0.24i and Am = 0.392 − 0.138i) on RCS
values. (a) Solid black line: Gm = 6.0 + 4.5i; dashed red line: Gm = 3.0 + 2.25i; dashed-dotted blue line: Gm = 2.0 + 1.5i. (b) Solid black
line: Ge = 6.0 + 4.5i; dashed red line: Ge = 3.0 + 2.25i; dashed-dotted blue line: Ge = 2.0 + 1.5i.

ones. In Fig. 19, it is observed that the RCS level approaches
a more or less stable value after θs ≈ 130◦. The higher the
gyrotropy ratios Gm in Fig. 19(a) or Ge in Fig. 19(b), the
lower the backscattering level.

3. Joint gyrotropy effects

Instead of a single gyrotropy, we add gyrotropic cross terms
to both μ and ε. Similar properties to Fig. 19 are obtained, as
shown in Fig. 20.

Figure 21 shows the results of RCS values for a negative
magnetic lossy sphere (μsμt > μs) and a positive magnetic
lossy sphere (μsμt < μs) with increasing imaginary part (or
loss tangent) of the complex permittivity μsμt . In Fig. 21(a),
the negative magnetic lossy sphere exhibits lower oscillations
as compared to the positive magnetic lossy sphere in Fig. 21(b).
Moreover, as the imaginary part of the complex permittivity
μsμt for the negative magnetic lossy sphere increases, the RCS
level gradually increases with scattering angle and eventually

approaches their own constant values of −10.40, −8.966, and
−7.791 dB, respectively. However, for the positive absorbing
sphere, this characteristic only occurs in the first half region of
the scattering angles and then gradually decreases during the
second half region and converges to a single RCS value, i.e.,
−7.49 dB.

Figure 22 presents the values of Qsca(0◦) for different size
parameters x of a gyrotropic lossless and lossy sphere. It is
observed that the lossless gyrotropic sphere shows an irregular
fluctuation and the oscillations do not end up with a stable
value. On the other hand, the lossy case reaches a stable value
approximately 1 when x increases.

D. Summary

From all these observations as above, it can be concluded
that scattering characteristics of lossless and lossy spheres are
certainly affected by the presence of anisotropy and gyrotropy
ratios of these spheres. By studying many different cases for a
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FIG. 20. (Color online) Effects of joint gyrotropy ratios for a hybrid anisotropic sphere (Ae = 1.32 + 0.24i and Am = 0.392 − 0.138i) on
RCS values. (a) Ge = 6.0 + 4.5i and Gm = 4.0 + 3.0i (solid black line); Gm = 3.0 + 2.25i (dashed red line); Gm = 2.4 + 1.8i (dashed-dotted
blue line). (b) Gm = 6.0 + 4.5i and Ge = 4.0 + 3.0i (solid black line); Ge = 3.0 + 2.25i (dashed red line); Ge = 2.4 + 1.8i (dashed-dotted
blue line).
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FIG. 21. (Color online) RCS values versus scattering angle θs for a hybrid gyrotropic and anisotropic absorbing sphere when the imaginary
part of μsμt is increased. (a) A negative magnetic lossy sphere. (b) A positive magnetic lossy sphere.

wide range of anisotropy and gyrotropy effects, it is apparent
that the dependence of radar cross sections on anisotropy
and gyrotropy is very complicated in form, and what we
observed is resulted in by hybrid parametric effects. For
practical scientific and engineering applications, scattering
characteristics are predictable and controllable by varying
physical and electric parameters of the scattering system and
sometimes optimizations are necessary to achieve maximum
or minimum RCS value(s).

From some of the special cases considered here, certain
physical characteristics of the gyrotropic sphere can be
summarized.

(i) First, oscillations are much sharper for JAR of the
negative magnetic uniaxial and negative electric uniaxial
spheres as shown in Fig. 6 for the uniaxial case and Figs. 8
and 9 for the single gyrotropy cases.
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FIG. 22. (Color online) Scattering efficiencies Qsca(0◦) versus the
size parameter x for lossless and lossy spheres. The permeability
and permittivity elements are assumed to be εsεt = 3ε0, εs = 5ε0,
μsμt = 3μ0, μs = 5μ0, εsεg = 0.8ε0, and μsμg = 0.8μ0 for a loss-
less sphere; and εsεt = (2.4 + 1.08i)ε0, εs = (4.0 + 1.8i)ε0, εsεg =
0.8ε0, μsμt = (2.4 + 1.08i)μ0, μs = (4.0 + 1.8i)μ0, and μsμg =
0.8μ0 for a lossy sphere.

(ii) Second, for SGR of a lossless sphere, RCS increases
in the vicinity of the resonance as gyrotropy ratios decrease
when (Ae = Am) > 1, which is shown in Fig. 8. Also, if
different types of JAR are considered, the magnetic or electric
positive anisotropy with higher gyrotropy ratios will cause this
behavior. For instance, RCS intensifies around the resonances
when Ge decreases for the hybrid anisotropic sphere of Ae > 1
and Am < 1, as shown in Fig. 11.

(iii) In addition, when the gyrotropy ratio for a lossy sphere
decreases, the RCS level gradually increases at and after
scattering angle of 90◦ and eventually approaches its own
constant values for (a) the single gyrotropy case, as depicted
in Fig. 19 and (b) the joint gyrotropy case, as illustrated in
Fig. 20.

(iv) Lastly, for JGR, Ge < Gm will undergo more damping
than Ge > Gm for the nonanisotropy case shown in Fig. 15
and with the incorporation of JAR displayed in Fig. 20.

IV. CONCLUSIONS

In conclusion, solutions for characterizing anisotropic
effects of Lorentz-Mie scattering of electromagnetic plane
waves by a gyrotropic sphere are derived theoretically by
employing the multiple scattering spheres method together
with the T-matrix method. It should be pointed out that with
both permittivity and permeability tensors considered, the
problem defined herewith is very generalized physically, quite
difficult mathematically, and much complicated and involved
numerically, as compared with those available in literature
[31–33,35]. Validations of the generalized solutions are con-
ducted, where numerical results are then yielded from the
formulas and found to agree very well with those of the Fourier
transform method during result validations. New examples
are also considered and their physical insights are obtained
and analyzed. The present numerical results have uncovered
various physical effects of joint anisotropy ratio (JAR), single
gyrotropy ratio (SGR), and joint gyrotropy ratio (JGR) and
provided deeper physical insights into utilizing these physical
and electrical parameters and controlling scattering properties
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so as to minimize or enhance radar cross sections in practical
applications. Of course, there are too many physical and
electric factors affecting hybrid RCS characteristics of the
sphere, therefore, different combinations of these factors will
lead to various different physical insights. This paper focuses
on the theoretical aspects of the problem solution, while the
numerical solutions provide validations of theoretical results
and also partial new physical insights. The present parametric
studies serve as an initial exploration of new physics, but
further understanding of comprehensive information about
scattering characterizations will be expected in the future.
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APPENDIX

With ε̄t
′ = ε′

t − 1, some intermediate coefficients are ob-
tained and expressed as follows:

õmn
pq = δnqδmp +

[
(n2 + n − m2)ε̄t

′ + mε′
g

n(n + 1)

]
δnqδmp, (A1a)

p̃mn
pq = i(n + m)[mε̄t

′ − (n + 1)ε′
g]δn−1,qδmp

n(2n + 1)

+ i(n − m + 1)[mε̄t
′ + nε′

g]δn+1,qδmp

(n + 1)(2n + 1)
, (A1b)

q̃mn
pq = −i(n + m)[mε̄t

′ − (n + 1)ε′
g]δn−1,qδmp

2n + 1

+ i(n − m + 1)[mε̄t
′ + nε′

g]δn+1,qδmp

2n + 1
, (A1c)

omn
pq = −i(n + m)(n + 1)[mε̄t

′ + (n − 1)εg
′]δn−1,qδmp

n(n − 1)(2n + 1)

− i(n − m + 1)n[mε̄t
′ − (n + 2)εg

′]δn+1,qδmp

(n + 1)(n + 2)(2n + 1)
,

(A1d)

pmn
pq =

{
[(2n2 + 2n + 3)m2 + (2n2 + 2n − 3)n(n + 1)]ε̄t

′

n(n + 1)(2n − 1)(2n + 3)

+ (4n2 + 4n − 3)mεg
′

n(n + 1)(2n − 1)(2n + 3)

}
δnqδmp + δnqδmp

− (n + 1)(n + m − 1)(n + m)ε̄t
′δn−2,qδmp

(n − 1)(2n − 1)(2n + 1)

− n(n − m + 1)(n − m + 2)ε̄t
′δn+2,qδmp

(n + 2)(2n + 1)(2n + 3)
, (A1e)

qmn
pq = + (n + 1)(n + m − 1)(n + m)ε̄t

′δn−2,qδmp

(2n − 1)(2n + 1)

− n(n − m + 1)(n − m + 2)ε̄t
′δn+2,qδmp

(2n + 1)(2n + 3)

− (n2 + n − 3m2)ε̄t
′ − m(2n − 1)(2n + 3)εg

′

(2n − 1)(2n + 3)
× δnqδmp. (A1f)

By changing o, p, q, ε̄t
′, ε′

t , εg
′, and mn to g, e, f , μ̄t

′, μ′
t , μg

′,
and uv, respectively, the coefficients of g̃uv

pq , ẽuv
pq , f̃ uv

pq , guv
pq ,

euv
pq , and f

uv

pq can be obtained. Detailed derivation of these
matrix elements can be found in [31]. For the definition and
the orthogonal relations of spherical vector wave functions,
readers can refer to [34,35].
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