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Calculating the frequency-dependent dielectric function for strongly coupled plasmas, the relations within
kinetic theory and linear response theory are derived and discussed in comparison. In this context, we give a
proof that the Kohler variational principle can be extended to arbitrary frequencies. It is shown to be a special
case of the Zubarev method for the construction of a nonequilibrium statistical operator from the principle of
the extremum of entropy production. Within kinetic theory, the commonly used energy-dependent relaxation
time approach is strictly valid only for the Lorentz plasma in the static case. It is compared with the result
from linear response theory that includes electron-electron interactions and applies for arbitrary frequencies,
including bremsstrahlung emission. It is shown how a general approach to linear response encompasses the
different approximations and opens options for systematic improvements.
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I. INTRODUCTION

Different approaches have been elaborated to evaluate the
response of a plasma to external time- and space-dependent
electric fields. This applies, e.g., to absorption and emission
of radiation (in particular, bremsstrahlung), Thomson scat-
tering, and stopping power. The dielectric function ε(�k,ω),
depending on the wave number �k and frequency ω as
the central quantity, is related to the polarization function,
the dynamical conductivity, or the dynamical structure
factor. The random-phase approximation (RPA) is improved
if collisions are taken into account. In this context, a nonlocal
dynamical collision frequency is introduced [1–4]. Alterna-
tively, the concept of a local-field factor [5] can be extended to
dynamical local-field corrections [2,6–8]. In the present work,
we focus on the dynamical conductivity and restrict ourselves
to the long-wavelength limit k → 0, i.e., the response of a
charged particle system to a homogeneous, time-dependent
electrical field.

A well-known expression for the dc conductivity of a
fully ionized plasma in the classical, low-density limit has
been given by Spitzer and Härm [9] within kinetic theory
(KT). Further approaches by Lee and More [10], Stygar [11],
and others improved the electron-ion interaction using the
relaxation time approach. However, to recover the Spitzer
result for the conductivity, electron-electron collisions have
to be taken into account. This is not consistently possible
within the relaxation time approach [12]. We discuss a general
approach that allows also for a systematic treatment of
electron-electron collisions.

The investigation of time-dependent fields is somehow
difficult in KT, too. Often, a combination of the collisionless
kinetic equation with the relaxation time ansatz is used;
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see Landau and Lifshits [13], Dharma-wardana [14], or
Kurilenko et al. [1,15]. It has been emphasized by Landau
and Lifshits [13] that such an approach is only applicable in
the low-frequency limit. The high-frequency region, where
bremsstrahlung is relevant, has to be treated in another way.
In this work, we present general expressions applicable to
arbitrary frequencies of the external field.

In linear response theory (LRT), the Kubo formula [16]
was considered as a promising approach to the dynamical
conductivity in dense, strongly interacting systems at arbi-
trary degeneracy. A generalized approach to nonequilibrium
processes was then given by Zubarev et al. [17], which will
be applied here. It relates transport properties to equilibrium
correlation functions, such as current-current or force-force
correlation functions. Different methods can be applied to
evaluate these correlation functions, such as numerical sim-
ulations, density functional approaches [14,18], or analytical
expressions derived from perturbation theory [19–21]. Note
that also strict results such as sum rules can be employed
to construct the dynamical structure factor; see [22–24]. We
will show how consistent approximations are obtained from
a general scheme of nonequilibrium statistical physics and
systematic improvements can be given.

In the present work, we will restrict ourselves to homoge-
neous systems and therefore do not consider any dependence
on the position �r in space, e.g., due to external potentials,
in addition to the homogeneous, time-dependent electrical
field that is treated as a perturbation. The focus is on the
generalization of relations which were originally derived in
KT; see Sec. II. Starting from LRT (see Sec. III), a generalized
Boltzmann equation with a frequency-dependent collision
term is derived. In Sec. IV, a variational approach is applied
for the solution of the generalized linear Boltzmann equation.
Similar to the use of polynomials [12,25,26] to solve the static
Boltzmann equation, we consider moments of the single-
particle distribution function to find approximate solutions.
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Furthermore, in Sec. II, different limiting cases, such as the
dc conductivity and the high-frequency limit of the absorption
coefficient, are considered. The dynamical conductivity from
KT using an energy-dependent relaxation time, which has
often been used in the literature, is compared with the rigorous
treatment within LRT. Conclusions are drawn in Sec. V.

II. KINETIC EQUATIONS

A. Single-particle distribution function

We consider neutral Coulomb systems that consist of
charged particles such as electrons and ions. The response to
an electromagnetic field is described by the dielectric function,
taken in the long-wavelength limit here,

lim
k→∞

ε(�k,ω) = 1 + i

ε0ω
σ (ω) , (1)

or the dynamical conductivity σ (ω). Treating the Coulomb
interaction in the mean-field approximation, the random-phase
approximation (RPA) is obtained. To improve RPA, one has
to include collisions. A standard way to treat collisions is
the Boltzmann equation where the interaction between the
constituents leads to the collision term. As a consequence,
a dynamical collision frequency ν(ω) can be introduced
according to a generalized Drude formula,

σ (ω) = ε0ω
2
pl

−iω + ν(ω)
, (2)

with the plasmon frequency ωpl =
√
e2n/(ε0m), where n is the

electron density and m is the (reduced) mass. The collision
frequency ν(ω) should be a complex, frequency-dependent
quantity in order to satisfy sum rules of the dielectric function.
This is in contrast to a static relaxation time τ = 1/ν, as used
in the kinetic approach, and will be explained in more detail
below.

Taking the adiabatic approximation, N electrons interact
with singly charged heavy ions that are considered as external
potential. The Hamiltonian with the electronic degrees of
freedom only is

Ĥ =
∑

p

Epâ†
pâp +

∑
pq

Vei(q)â†
p+q âp

+ 1

2

∑
p1p2q

Vee(q)â†
p1+q â

†
p2−q âp2 âp1 , (3)

with Ep = h̄2p2/(2m). The interaction with the ions,
Vei(�q) = −V (q)

∑N
j exp[i �q · �Rj ], describes Coulomb poten-

tials V (q) = e2/(ε0�0q
2) due to various ion sites �Rj , which

leads to the structure factor S(�q) = (1/N )〈∑i,j exp[i �q · ( �Ri −
�Rj )]〉. �0 is the normalization volume. The electron-electron

interaction is given by the Coulomb interaction Vee(q) = V (q).
The account of the ion dynamics is straightforwardly taken into
account within a two-component plasma [3], but the notations
become more complex and will not be given here.

For the derivation of kinetic equations, in particular the
Boltzmann equation, we consider the electron single-particle
distribution function f ( �p,t) = Tr{n̂p ρ̂(t)} = 〈n̂p〉t that is the
quantum statistical average, taken with the nonequilibrium

statistical operator ρ̂(t), of the single-particle occupation
number operator n̂p = â

†
pâp of momentum h̄ �p. Considering

homogeneous systems, the density matrix is diagonal with
respect to the wave vector �p. Spin variables are not explicitly
given unless it is pointed out. Subsequently, the single-particle
distribution function does not depend on the position �r either.

In thermal equilibrium, the single-particle distribu-
tion function f0( �p) = Tr{n̂p ρ̂0} is calculated with the
grand canonical statistical operator ρ̂0 = exp[−β(Ĥ − μN̂ )]/
Tr{exp[−β(Ĥ − μN̂ )]}. Neglecting the interaction term, we
find the ideal Fermi gas with distribution fp = {exp[β(Ep −
μ)] + 1}−1. Under the influence of an external perturbation
Ĥ t

ext, the single-particle distribution function f ( �p,t) is modi-
fied. Its deviation

δf ( �p,t) = f ( �p,t) − f0( �p) = Tr{δn̂p ρ̂(t)} (4)

from the equilibrium distribution f0( �p) is the average of the
fluctuations of the single-particle occupation number δn̂p =
n̂p − f0( �p). The time dependence of the single-particle distri-
bution function f ( �p,t) is determined by the nonequilibrium
statistical operator ρ̂(t), as shown in the following section.

Alternatively, the dynamics of the single-particle distribu-
tion function can be determined from a hierarchy of equations
of motion for the many-particle distribution functions. By
truncating the hierarchy, a kinetic equation [13] is obtained
with the structure

∂

∂t
f ( �p,t) = D[f ( �p,t)] + C[f ( �p,t)] (5)

describing drift in the single-particle phase space via the
drift term D[f ( �p,t)], and collisions that are caused by the
interaction between the particles. The collision term C[f ( �p,t)]
is related to the higher-order distribution functions due to
the interaction mechanisms within the system. To obtain
closed kinetic equations, the higher distribution functions are
expressed in terms of f ( �p,t).

In the following, we consider a homogeneous system under
the influence of an external time-dependent electric field
�E(t). The total Hamiltonian Ĥ t

tot = Ĥ + Ĥ t
ext contains the

interaction with the external field, Ĥ t
ext = −e �E(t) · ∑

i �̂ri , for
the electron position operators �̂ri . From the respective external
force e �E(t), the drift term follows as

D[f ( �p,t)] = − e

h̄
�E(t) · ∂

∂ �p f ( �p,t)

≈ eh̄

m
β fp(1 − fp) �E(t) · �p (6)

in the first order with respect to the external field �E(t), with
β = 1/(kBT ). Expressions for the collision term C[f ( �p,t)]
will be given below.

With the distribution function f ( �p,t), the current density is
given by

�j (t) = e

m�0

∑
p

h̄ �pf ( �p,t) = e

m�0

�P1(t). (7)
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The total momentum �P1(t) is the first moment of the distribu-
tion function. In the following, we also consider the operators
of arbitrary moments,

P̂ν =
∑

p

h̄pE(βEp)(ν−1)/2n̂p, (8)

where pE = �p · �E/| �E| denotes the component of �p in the
direction of �E.

The arbitrary time dependence of an electric field can
be expressed by the superposition of harmonic time depen-
dences. Within the linear response, each component �E(t) =
1
2

�̃E(ω) exp(−iωt) + c.c. causes an induced single-particle
distribution function,

δf ( �p,t) = 1
2δf̃ ( �p,ω) exp(−iωt) + c.c. (9)

with the same time dependence. The dynamical conductivity
follows from j̃ (ω) = σ (ω)Ẽ as

σ (ω) = e

mẼ

1

�0

∑
p

h̄pE δf̃ ( �p,ω). (10)

Note that all Fourier components marked with a tilde, e.g., F̃p,
are frequency dependent in general. The dependence on ω will
be omitted in some of the following expressions for them to
be more compact.

B. Relaxation time approximation and dynamical conductivity

To start with an analytically solvable example, we first
discuss the solution of the kinetic equation (5) for the
Lorentz model where the electron-electron interaction in the
Hamiltonian (3) is neglected. Considering a constant electric
field, the distribution function f ( �p,t) = f ( �p) is static. In the
standard treatment (see [27]), the collision term reads

CLorentz[f ( �p)] =
∑
p′

{f ( �p ′)wei( �p, �p ′)[1 − f ( �p)]

− f ( �p)wei( �p ′, �p)[1 − f ( �p ′)]}. (11)

The transition rates can be determined in the Born approx-
imation from the golden rule, wei( �p, �p ′) = (2π/h̄)|Vei(| �p −
�p ′|)|2δ(Ep − Ep′). Since the energy of electrons is conserved
in adiabatic approximation, a relaxation time τp is introduced
via an ansatz for the linear term of the expansion of the
distribution function, f ( �p) = fp − Fp

1
β

∂
∂Ep

fp. In analogy to
the drift term (6), we assume

δf ( �p) = eh̄

m
β τp

�E · �p , (12)

which realizes the linearity with respect to the external field
�E. For isotropic systems, τp is a scalar depending only on
the modulus of �p. By inserting Eq. (12) into the collision term
(11) and taking into account the detailed balance in equilibrium
wei( �p, �p ′)fp′(1 − fp) = wei( �p ′, �p)fp(1 − fp′ ), as well as the
energy balance of the transition rates, the collision term (11)
is

CLorentz[f ( �p)] = −
∑
p′

wei( �p, �p ′)fp(1 − fp)(Fp − Fp′ )

= −δf ( �p)/τp. (13)

For the kinetic equation (5) with the drift term (6), we then
find

�E · �p = −
∑
p′

wei( �p, �p ′)
fp′

fp

�E · (τp′ �p ′ − τp �p)

= −τp

∑
q

wei( �p, �p + �q) �E · �q, (14)

with �q = �p ′ − �p. With the golden rule for the transition rates
given above and S(q) ≈ 1, |Vei(q)|2 ≈ NV 2(q), the energy-
dependent relaxation time can be calculated as

1

τp

= −2π

h̄

∑
q

NV 2(q)δ(Ep − Ep+q)
�E · �q
�E · �p . (15)

The �q integral in Eq. (15) can be performed using spherical
coordinates where �p is in the z direction, and �E is in the x-z
plane. It is convergent only in the case of a screened Coulomb
potential. Using the statically screened Debye potential

VD(q) = e2

ε0�0
(
q2 + κ2

D

) , κ2
D = βne2/ε0, (16)

we find the energy-dependent collision frequency

νp = τ−1
p = n

e4

4πε2
0

m

h̄3p3

(
ln

√
1 + b − 1

2

b

1 + b

)
, (17)

with b = 4p2/κ2
D in the Coulomb logarithm. The static

conductivity is determined from Eq. (10), ω = 0, as

σdc,Lorentz = e2h̄2

m2
β

1

�0

∑
p

p2
E τp fp(1 − fp)

= ε0ω
2
plτLorentz = e2n

mνLorentz
. (18)

We introduce the average relaxation time τLorentz and the static
collision frequency νLorentz = 1/τLorentz.

We are now interested in extending the static case (18)
by evaluating the permittivity ε(ω), given by Eq. (1), or the
dynamical conductivity, given by Eq. (10). From the kinetic
equation (5) with the drift term (6), we derive the frequency-
dependent Boltzmann equation

−iωδf̃ ( �p,ω) = eh̄

m
β �̃E(ω) · �p fp(1 − fp)

+CLorentz[δf̃ ( �p,ω)]. (19)

In a standard approach (see, e.g., Landau and Lifshits [27]),
it is proposed to extend the static case to the dynamic case
assuming that the relaxation time is the same as in the static
case; see Eq. (13). Subsequently, the following relation is
derived:

−
(

iω − 1

τp

)
δf̃ ( �p,ω) = eh̄

m
β �̃E(ω) · �pfp(1 − fp), (20)

so that for the dynamical conductivity (10), we get (spin factor
2, p2

E → p2/3 for isotropic systems)

σKT(ω) = 2

3

e2h̄2β

m2

∫
d3 �p

(2π )3

p2fp(1 − fp)

−iω + 1/τp

. (21)

This result can be interpreted as a Vlassov approach where the
frequency ω is replaced by a complex frequency ω + i/τp.
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However, the introduction of an energy-dependent, static
relaxation time is an approximation that cannot be applied, in
particular, at high frequencies, where bremsstrahlung emission
is expected. Note that it is not possible to give an explicit
expression for a frequency-dependent collision frequency as
desired for a generalized Drude formula according to Eq. (2).
Furthermore, inelastic collisions such as electron-electron
interactions are not taken into account by a collision time
ansatz. Further evaluation of Eq. (21) is given in Appendix E;
results are shown in Fig. 2 and discussed below.

III. LINEAR RESPONSE EQUATIONS

A. Linear response theory

To evaluate the response (4) to an external perturbation
Ĥ t

ext, we determine the nonequilibrium statistical operator ρ(t)
within a generalized linear response theory. The conceptual
ideas and main expressions relevant for the further analysis
of the single-particle distribution function will be given here
according to [4,28–30].

We introduce the relevant statistical operator

ρ̂rel(t) = 1

Zrel(t)
e−β(Ĥ−μN̂ )+∑

n Fn(t)B̂n ,

(22)
Zrel(t) = Tr{e−β(Ĥ−μN̂)+∑

n Fn(t)B̂n}
as a generalized Gibbs ensemble, which is derived from the
principle of maximum of the entropy,

S(t) = −kBTr{ρ̂rel(t) ln[ρ̂rel(t)]}, (23)

where the Lagrange parameters β, μ, and Fn(t), which are real
valued numbers, are introduced to fix the given averages

Tr{B̂n ρ̂(t)} = 〈B̂n〉t = Tr{B̂n ρ̂rel(t)}. (24)

These self-consistency conditions mean that the observed
averages 〈B̂n〉t are correctly reproduced by the Hermitian
ρ̂rel(t). Similar relations are used in equilibrium to eliminate
the Lagrange parameters β and μ. In the linear response, the
response parameters Fn(t) are considered to be small so that
we can solve the implicit relation (24) expanding up to the first
order,

ρ̂rel(t)=
[

1+
∑

n

Fn(t)
∫ 1

0
dλe−βλ(Ĥ−μN̂ )δB̂ne

βλ(Ĥ−μN̂ )

]
ρ̂0.

(25)

Note that the expansion of Zrel(t) in Eq. (22) leads to the
subtraction of the equilibrium average in δB̂n = B̂n − 〈B̂n〉0.
The average fluctuations can now be explicitly calculated by
inserting Eq. (25) in Eq. (24),

〈δB̂n〉t =
∑
m

(δB̂n,δB̂m)Fm(t), (26)

where we introduced the Kubo scalar product

(Â,B̂) =
∫ 1

0
dλTr{ÂB̂†(ih̄βλ)ρ̂0}. (27)

The time dependence Â(t) = eiĤ t/h̄Âe−iĤ t/h̄ is given by the
Heisenberg picture with respect to the system Hamiltonian Ĥ ,
and ˆ̇A = i[Ĥ ,Â]/h̄.

A statistical operator for the nonequilibrium is constructed
with the help of the relevant statistical operator (22); see
Appendix A. Expanding up to the first order with respect to
the external field Ẽ and the response parameters F̃n, where
Fn(t) = Re{F̃n(ω)e−iωt }, we arrive at the response equations,∑

m

w[(B̂n; ˆ̇Bm) +〈 ˆ̇Bn; ˆ̇Bm〉z−iω{(B̂n; B̂m)+〈 ˆ̇Bn; δB̂m〉z}]F̃m

= β
e

m
{(B̂n; �̂P ) + 〈 ˆ̇Bn; �̂P 〉z} · �̃E, (28)

where z = ω + iε is the total momentum of electrons �̂P =∑
p h̄ �̂p n̂p, and the Laplace transform of the correlation

functions is

〈Â; B̂〉z =
∫ ∞

0
dteizt (Â(t),B̂)

=
∫ ∞

0
dteizt

∫ 1

0
dλTr{Â(t − ih̄βλ)B̂†ρ̂0}. (29)

Considering NB relevant observables B̂n, Eq. (28) is a
system of NB linear equations to determine the response
parameters F̃n for a given external field Ẽ. It is the most general
form of LRT, allowing for the arbitrary choice of relevant
observables B̂n and corresponding response parameters Fn.
We show below that with respect to kinetic theory, the first
two terms on the left-hand side of Eq. (28) can be identified as
a collision term, while the right-hand side represents the drift
term due to the external perturbing field.

B. Generalized linear Boltzmann equations

In kinetic theory, the nonequilibrium state is characterized
by the single-particle distribution function f ( �p,t). In order to
derive expressions in parallel to the kinetic theory, we choose
the fluctuations δn̂p of the single-particle occupation number
[see Eq. (4)] as relevant observables Bn. The modification of
the single-particle distribution function can then be calculated
straightforwardly according to Eq. (26),

Tr{ρ̂rel(t) δn̂p} =
∑
p′

(δn̂p,δn̂p′ )Fp′(t) = δf ( �p,t). (30)

The Lagrange multipliers Fp(t) = F̃p(ω) exp(−iωt)/2 + c.c.
are determined from the response equations (28). We arrive at
the generalized linear Boltzmann equations (δ ˆ̇np = ˆ̇np),∑

p′
[(δn̂p, ˆ̇np′)+〈 ˆ̇np; ˆ̇np′ 〉z − iω{(δn̂p,δn̂p′ )+〈 ˆ̇np; δn̂p′ 〉z}]F̃p′

= eh̄

m
β

∑
p′′

[(δn̂p,n̂p′′ ) + 〈 ˆ̇np; n̂p′′ 〉z] �p′′ · �̃E. (31)

The time derivative of the position operator in Ĥ t
ext leads to

the total momentum
∑

i h̄ �pi = m
∑

i �̇ri , and subsequently to
the right-hand side of Eq. (31). We analyze the different terms
of Eq. (31) below and compare with the kinetic equation (5),
considering the Born approximation. Notice that this result
can be extended by introducing stochastic forces [29] if we go
beyond the Born approximation. Further relevant observables
beyond the single-particle occupation numbers can be included
in order to characterize the nonequilibrium state, such as
long-living correlations and the formation of bound states.
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It is possible to go beyond the Boltzmann equation if higher
correlations such as bound-state formation are included in the
set of relevant observables.

We give the entropy as obtained from Eq. (23),

S(t) = −kBTr

{
ρ̂rel(t)

[
− ln[Zrel(t)] − β(Ĥ − μN̂ )

+
∑

p

Fp(t)n̂p

]}
= S0(β,μ) − kB

∑
p

Fp(t),δf ( �p,t)

(32)

in the first order of Fp(t). The entropy in the thermodynamic
equilibrium is denoted by S0(β,μ). With Eq. (30), we find
that the entropy decreases in nonequilibrium because δS(t) =
−∑

pp′ Fp′ (t)(δn̂p′,δn̂p)Fp(t) � 0. The proof is given us-

ing the spectral density for F̂ (t) = ∑
p Fp(t)δn̂p; see [17].

With the eigenstates (Ĥ − μN̂ )|n〉 = En|n〉 of the system
Hamiltonian, we have

δS(t) = −(F̂ (t),F̂ (t))

= 1

Z0β

∑
nm

e−βEn − e−βEm

En − Em

|〈n|F̂ (t)|m〉|2 � 0. (33)

This result corresponds to the second law of thermodynamics
in which the entropy of the many-particle system exhibits its
maximum in the equilibrium state.

C. Evaluation of equilibrium correlation functions
and Born approximation

Quantum statistics provides us with different methods to
calculate correlation functions in thermal equilibrium, such
as perturbation theory and diagram techniques. By applying
perturbation theory with respect to the interaction, Wick’s
theorem can be used. We find in the lowest order for the Kubo
scalar product (27),

(n̂p,n̂p′ ) = Tr{ρ0â
†
p′ âp′ â†

pâp} = fp′fp + fp(1 − fp)δpp′ ,

(34)

so that (δn̂p,δn̂p′ = (δn̂p,n̂p′ ) = fp(1 − fp)δpp′ . The remain-
ing Kubo scalar product vanishes, (δn̂p, ˆ̇np′ ) = 0, as shown

from the Kubo identity (A3), with Ĉ = δn̂p, and 〈[np′ ,np]〉0 =
0 after cyclic invariance of the trace.

For the deviation of the single-particle occupation numbers
from equilibrium, we find from Eq. (30) that δf ( �p,t) =
Fp(t)fp(1 − fp), which is equivalent to the expansion (12) in
kinetic theory. Thus, we solved the self-consistency condition
(24) to eliminate the Lagrange parameters Fp(t). According to
(9), the Fourier components

δf̃ ( �p,ω) = fp(1 − fp)F̃p(ω) (35)

are complex amplitudes, containing in general a phase factor.
The equation of motion that leads to the generalized linear

Boltzmann equation (31) allows one to relate the response to
the external field. The right-hand side is the drift term that
contains the external field. In the Born approximation, we can
neglect the correlation function 〈 ˆ̇np; n̂p′′ 〉z because it is of a
higher order of interaction compared with (δn̂p,n̂p′′ ). Then,
the right-hand side of Eq. (31) reads

Dp = eh̄

m
βfp(1 − fp) �p · �̃E, (36)

in agreement with Eq. (6). By the same argument, we have the
term due to the explicit time dependence,

−
∑
p′

iω[(δn̂p,δn̂p′ ) + 〈 ˆ̇np; δn̂p′ 〉z]F̃p′

= −iωδf̃ ( �p,ω) = −i�pF̃p, (37)

with �p = ωfp(1 − fp). Note that the correlation function
〈 ˆ̇np; n̂p′′ 〉z is eliminated, introducing stochastic forces [17,29],
so that the result −iωδf̃ ( �p,ω) holds also beyond the Born
approximation.

The remaining term in Eq. (31) describes the collision
integral,

Cp = −
∑
p′

〈 ˆ̇np; ˆ̇np′ 〉ω+iε F̃p′ = −
∑
p′

Lpp′ (ω)F̃p′ . (38)

It is evaluated in the Born approximation (see Appendix B),
with the generalized Onsager coefficients Lpp′ (ω) =
Lei

pp′ (ω) + Lee
pp′ (ω), leading to

Lei
pp′ (ω) = − 1

h̄2

∑
q

|Vei(q)|2 fp − fp+q

β(Ep+q − Ep)

{
πδ

[
ω + 1

h̄
(Ep − Ep+q)

]
+ πδ

[
ω − 1

h̄
(Ep − Ep+q)

]

+iP
1

ω + (Ep − Ep+q)/h̄
+ iP

1

ω − (Ep − Ep+q)/h̄

}
[δp′,p+q − δp′,p], (39)

Lee
pp′ (ω) = − 1

h̄2

∑
p1,q

|Vee(q)|2 fpfp1 (1 − fp1−q − fp+q) − fp+qfp1−q(1 − fp1 − fp)

β(Ep+q + Ep1−q − Ep1 − Ep)[
i

ω + iε + �p,p1,q

+ i

ω + iε − �p,p1,q

]
[δp′,p+q + δp′,p1−q − δp′,p1 − δp′,p], (40)

where �p,p1,q = (Ep+q + Ep1−q − Ep1 − Ep)/h̄ and P denotes the principal value. Exchange contributions have been discarded;
see Appendix B. The decomposition of Lee

pp′ (ω) into the real and imaginary parts is analogous to Lei
pp′ (ω).
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In conclusion, the generalized linearized Boltzmann
equation (31) can be given in the same way as assumed in
the relaxation time approach [see Eq. (19)],

−iωδf̃ ( �p,ω) = eh̄

m
βfp(1 − fp) �p · �̃E −

∑
p′

Lpp′ (ω)F̃p′

= Dp + Cp[δf̃ ( �p,ω)], (41)

with Eq. (37) and the drift term (36), after replacing the
response parameters F̃p in the collision term (38) by the
single-particle distribution according to Eq. (35). This holds
for arbitrary frequencies ω and degeneracy; see Appendix A.
At zero frequency, the collision integral (11) of the Lorentz
plasma is recovered if calculations are taken in the Born
approximation and restricted to the electron-ion interaction
only. At arbitrary frequencies, the collision integral becomes a
complex quantity in contrast to the scalar relaxation time. The
real and imaginary parts are connected via Kramers-Kronig
relations. The Born approximation can be improved in a
systematic way if the correlation functions are evaluated
in higher orders with respect to the interaction. A Kubo-

Greenwood formula can be derived that expresses the collision
term by T matrices [29,30].

IV. SOLUTION OF THE GENERALIZED LINEAR
BOLTZMANN EQUATION

A. Variational principle

Having derived an explicit expression for the Onsager
coefficientsLpp′ in the Born approximation, given by Eqs. (39)
and (40), we can now determine the response parameters by
solving the generalized linear Boltzmann equation (41) given
as

−i�pF̃p(ω) = Dp −
∑
p′

Lpp′ (ω)F̃p′(ω). (42)

As a further constraint on the response parameters F̃p, we
consider the entropy leading to a variational problem as
follows.

We determine the time derivative of the entropy (32). The
time-dependent term reads

d

dt
S(t) = −2

∑
p

1

fp(1 − fp)
δf ( �p,t)δḟ ( �p,t) = −1

2

∑
p

1

fp(1 − fp)
[δf̃ ( �p)e−iωt + c.c.][−iωδf̃ ( �p)e−iωt + c.c.]

= −1

2

∑
p

[
F̃pe−iωt + F̃ ∗

peiωt
] [

Dp[ �̃E](e−iωt + eiωt ) −
∑
p′

Lpp′ (ω)F̃p′e−iωt −
∑
p′

L∗
pp′ (ω)F̃ ∗

p′e
iωt

]
(43)

if we insert the Boltzmann equation (41) for −iωδf̃ ( �p) for the
last line. Oscillating terms ∝ e2iωt ,e−2iωt arise that disappear
in the time average. The remaining terms cancel, which can be
directly seen, if replacing δf̃ ( �p) by the Lagrange multipliers
F̃p using Eq. (35). Thus the total entropy is constant in the
average over a period of time, dS̄(t)/dt = 0. However, even
in the time average, there is an entropy production which is
dissipated as entropy export due to the external field in the
drift term. We have

dS̄(t)

dt
= Ṡext + Ṡint

= − eh̄

2m
β

∑
p

F̃ ∗
pfp(1 − fp) �p · �̃E

+ 1

2

∑
pp′

F̃ ∗
pLpp′ (ω)F̃p′ + c.c. = 0. (44)

Therefore, let us consider the functional

Ṡint[G̃p] =
∑
pp′

G̃∗
pLpp′ (ω)G̃p′ + c.c. (45)

for any function G̃p that obeys the constraint

∑
p

G̃∗
p

[
− Dp − i�pG̃p +

∑
p′

Lpp′ (ω)G̃p′

]
= 0 (46)

that can be considered as an integral over the Boltzmann
equation (42). It is easily shown that the time-averaged change

of entropy (43) vanishes for arbitrary functions G̃p that
obey the constraint (46). The maximum of the functional
Ṡint[G̃p] occurs at G̃p = F̃p, which is the solution of the linear
Boltzmann equation (42); see Appendix C for the proof.

This is a generalization of the Kohler variational principle
[31,32] for arbitrary frequencies ω. It can be related to
the principle of extremum of entropy production given by
Prigogine and Glansdorff [33]. The static case ω = 0 has been
considered in Refs. [12,31,32,34]. Some attempts to extent
this to arbitrary frequencies can be found in [35], but, to our
knowledge, a consistent approach has not been given until now.

In order to apply the variational principle given here,
one can consider a class of trial functions G̃(Nν )(�ν ; �p) =∑Nν

ν=1 �νgν( �p) with respect to an arbitrary but finite (Nν)
set of linear independent functions gν( �p). Determining the
extremum of Ṡint[�ν] leads to an optimal set of parameters,
�

opt
ν = F (Nν )

ν . The extension of the class of trial functions to
an infinite number of functions then gives the exact result,
F̃p = limNν→∞

∑Nν

ν=1 F (Nν )
ν gν( �p).

Alternatively, the relevant observables n̂p are replaced by
a reduced set of Nν relevant observables, B̂ν = ∑

p gν( �p)n̂p.
The solution of the finite system of linear equations (A4) then
gives the Lagrange multipliers Fν , which can be expressed in
terms of determinants. This leads to identical results as for
the variational principle. In previous papers, we used a finite
number of moments, gν( �p) = h̄pE(βEp)(ν−1)/2, according to
the general moments (8). An alternative basis set would be
the Sonine polynomials [25] that are appropriate in the static,
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nondegenerate limit. It has been shown that within perturbation
expansion [36,37], results are converging with an increasing
number of moments used.

B. One-moment Born approximation

In the lowest approximation, we choose, with G̃p =
F1g1(p) = F1h̄pE , the first moment of the distribution func-
tion (8) as the trial function. The variational parameter F1 is
fixed by the auxiliary condition (46) where we insert Eq. (36)
and �p from Eq. (37), and we find∑

p

F1h̄pE

eh̄

m
βfp(1 − fp)pEẼ

=−iω
∑

p

(F1h̄pE)2fp(1−fp)−
∑
p,p′

F1h̄pELei
pp′ (ω)F1h̄p′

E.

(47)

The electron-electron collisions do not contribute in the one-
moment approach because of conservation of total momentum.
We assume the general structure of the variational parameter,

F1 = eβ

m

1

[−iω + νD(ω)]
Ẽ . (48)

After some calculations, given in Appendix D, we find the
collision frequency for the case of the statically screened
Coulomb potential (16), and S(q) ≈ 1,

νD(ω) = igdegen

∫ ∞

0
dy

y3

(y2 + n̄)2

∫ ∞

−∞

dx

x

1

w + iε − x

× ln

[
1 + e−(x/y−y)2+βμ

1 + e−(x/y+y)2+βμ

]
, (49)

with

gdegen = 1

48π4

e4m

ε2
0h̄

3 , w = βh̄ω

4
, n̄ = βh̄2κ2

D

8m
, (50)

which is valid for any degeneracy. In the nondegenerate
limit βμ � 1, we can expand the logarithm. With eβμ =
n(2πβh̄2/m)3/2/2 = n�3/2 and spin factor 2, we find

νD(ω) = ign

∫ ∞

0
dy

y4

(y2 + n̄)2

×
∫ ∞

−∞
dx

1 − e−4xy

xy(w − xy + iε)
e−(x−y)2

, (51)

with g = �3 gdegen/2.
The dynamical conductivity (10) can now be calculated

with Eq. (35) and the optimized Lagrange parameter (48) so
that F̃p = F1h̄pE . We find

σD(ω) = e

mẼ
F1

1

�0

∑
p

(h̄pE)2 fp(1 − fp). (52)

For isotropic systems, the sum is evaluated as
∑

p (h̄pE)2

fp(1 − fp) = Nm/β; see Appendix D. By inserting the
derived expression (48), we obtain a generalized Drude-type
expression (2),

σD(ω) = ε0ω
2
pl

−iω + νD(ω)
(53)

for the dynamical conductivity. The comparison with σKT (21)
will be performed in the following section.

It is instructive to investigate the alternative approach where
only moments of the distribution function P̂ν (8) are taken as
relevant observables B̂n, instead of the fluctuations δn̂p of the
single-particle occupation operator as originally introduced
in Sec. III B. Taking the component of the total momentum
of the electrons, P̂1 = ∑

p h̄pEn̂p, in the direction of �E as a
one-moment approach, we have, with Eqs. (7) and (26),

j̃ = e

m�0
〈P̂1〉F1 = e

m�0
(P̂1,P̂1)F1. (54)

The generalized linear Boltzmann equation (31) is now
reduced to a single equation that reads, in the Born approxi-
mation (〈P̂1〉0 = 0 in thermal equilibrium),

[〈 ˆ̇P 1; ˆ̇P 1〉ω+iε − iω(P̂1,P̂1)]F1 = (P̂1,P̂1)
e

m
βẼ, (55)

containing force-force correlation functions as the collision
term. With (P̂1,P̂1) = Nm/β [see Appendix D and the
statically screened interaction (16)], the expressions for the
dynamical conductivity (53) and the corresponding dynamical
collision frequency

ν
(P1)
D (ω) = β

mn�0
〈 ˆ̇P 1; ˆ̇P 1〉ω+iε (56)

are obtained that coincide with the results (49) and (51)
above. This is a preliminary result of the LRT based on the
one-moment Born approximation. Going beyond the Born
approximation, we denote ν(P1)(ω) = β/(m N)〈 ˆ̇P 1; ˆ̇P 1〉ω+iε

as the collision frequency of the one-moment approach.
Systematic treatments of the perturbation expansions are
performed with the help of Green’s function techniques.
In particular, the Gould-DeWitt approximation for ν(P1)(ω)
has been performed that accounts for the correction of the
long-range interaction by dynamical screening and considers
strong collisions at short ranges [3,30].

C. Higher moment approaches

An improvement of the dynamical conductivity (53) can
be achieved by extending the set of trial functions or relevant
observables within the variational approach or the relevant
statistical operator, respectively. Using higher-order moments
P̂ν (8) of the distribution function, converging expressions are
obtained for the transport coefficients [37,38]. In particular,
higher moments are needed in order to take into account
electron-electron collisions. Taking higher-order moments
into account, the change of the dynamical conductivity can
be represented by a complex function r(ω) so that ν(ω) =
r(ω)ν(P1)(ω) [3,4,39],

σ (ω) = ε0ω
2
pl

−iω + r(ω)ν(P1)(ω)
. (57)

As a special case, we discuss the two-moment approach
with P̂1, P̂3 as relevant observables (i.e., particle current and
energy current). The account of these two functions in p space
allows for a better variational approach to the single-particle
distribution function. For the electrical current density, we
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have, with Eqs. (7) and (26),

j̃ = e

m�0
〈P̃1〉 = e

m�0
{(P̂1,P̂1)F1 + (P̂1,P̂3)F3} = σ (ω)Ẽ.

(58)

According to the response equations (28) [see also Eq. (55)],
the Lagrange parameters F1,F2 are determined via the
generalized linear Boltzmann equations, taken in the Born
approximation,

[〈 ˆ̇P 1; ˆ̇P 1〉ω+iε − iω(P̂1,P̂1)]F1 + [〈 ˆ̇P 3; ˆ̇P 3〉ω+iε − iω(P̂1,P̂3)]F3 = (P̂1,P̂1)
e

m
βẼ,

(59)
[〈 ˆ̇P 3; ˆ̇P 1〉ω+iε − iω(P̂3,P̂1)]F1 + [〈 ˆ̇P 3; ˆ̇P 3〉ω+iε − iω(P̂3,P̂3)]F3 = (P̂3,P̂1)

e

m
βẼ .

As shown in Appendix D, we have (P̂1,P̂1) = Nm/β, (P̂1,P̂3) = (P̂3,P̂1) = 5
2Nm/β, (P̂3,P̂3) = 5

2
7
2Nm/β . Using Cramer’s

rule, the response parameters F1,F2 are expressed in terms of the electrical field Ẽ and correlation functions. For the dynamical
conductivity (58), we find, after algebraic manipulations, the expression (57) with

r(ω) =
5
2 iωN m

β
− 〈 ˆ̇P 3; ˆ̇P 3〉ω+iε + 〈 ˆ̇P 1; ˆ̇P 3〉ω+iε 〈 ˆ̇P 3; ˆ̇P 1〉ω+iε

〈 ˆ̇P 1; ˆ̇P 1〉ω+iε

5
2 iωN m

β
− 25

4 〈 ˆ̇P 1; ˆ̇P 1〉ω+iε + 5
2 〈 ˆ̇P 1; ˆ̇P 3〉ω+iε + 5

2 〈 ˆ̇P 3; ˆ̇P 1〉ω+iε − 〈 ˆ̇P 3; ˆ̇P 3〉ω+iε

. (60)

An evaluation of the correlation functions occurring in the
renormalization factor r(ω) in the Born approximation is given
in Appendix E.

Results for the renormalization factor at solar core con-
ditions and lower densities are shown in Fig. 1. At solar core
conditions (T = 573 eV = 42.13 Ry, n = 1.51 × 1025 cm−3 =
2.22a−3

B ), we have a weakly interacting [plasma parameter
� = e2/(4πε0kBT ) (4πn/3)1/3 = 0.1] and nearly degenerate
[degeneration parameter � = 2mkBT/h̄2(3π2n)−2/3 = 1.3]
plasma. At the lower densities, the plasma becomes more
classical. At high frequencies (i.e., large compared with
the inverse relaxation time), r(ω) approaches 1, and higher
moments of the momentum distribution that describe the
deformation from a shifted Fermi distribution are not relevant.
In the static case, the real part Re r(0) shows the effect of
e-e collisions according to the Spitzer result [4,36]. Since the
Coulomb logarithm (17) depends on the density, in addition to
the correct prefactor, the density dependence of the Coulomb

logarithm occurring in the different moments is also seen. Only
in the very low-density limit, the different Coulomb logarithms
cancel.

So far we have evaluated the equilibrium correlation
functions occurring in the generalized linear Boltzmann
equation (31) with the help of perturbation theory. Thus
we solved a kinetic equation using a variational approach
or a reduced set of relevant observables. Note that one
can go beyond the kinetic equation that treats the single-
particle distribution function by considering fluctuations in
the two-particle states as additional relevant observables in the
generalized LRT [19,40].

D. Limiting cases

1. Zero-frequency limit: Static conductivity

We rewrite the dynamical collision frequency (49) in a
symmetric form by transforming x → −x in half of the
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FIG. 1. (Color online) Frequency dependence of (a) the real part and (b) the imaginary part of the renormalization factor (60). Hydrogen
plasmas at temperature T = 42.13 Ry = 573 eV (solar core) and three different electron densities n are considered.
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expression and using the Dirac identity,

νD(ω) = gdegen

2

∫ ∞

0
dy

y3

(y2 + n̄)2

∫ ∞

−∞

dx

x

{
πδ(x − w)

+πδ(x + w) − iP
1

x − w
+ iP

1

x + w

}

× ln

[
1 + e−(x/y−y)2+βμ

1 + e−(x/y+y)2+βμ

]
. (61)

The principal values compensate in the static case w = 0. After
expanding for small x, e−(x/y−y)2+βμ ≈ e−y2+βμ[1 + 2x], the
integral over x can be performed with the result

lim
ω→0

νD(ω) = 2πgdegen

∫ ∞

0
dy

y3

(y2 + n̄)2

1

ey2−βμ + 1
. (62)

Note that only e-i collisions contribute to the one-moment
Born approximation.

First we discuss the Lorentz model. It is solved for the static
case in KT using an energy-dependent relaxation time. The dc
conductivity in the Born approximation for the one-moment
approach (53), σD(0) = ε0ω

2
pl/νD(0), is not identical with σdc

obtained from Eq. (18) with the Coulomb logarithm (17)
because 1/νD(0) 
= τLorentz. This difference stems from the
fact that in the one-moment approach with the variational
parameter F1, the p dependence is specified as g1(p) =
h̄pE . The p dependence necessary for the Lorentz model to
reproduce the result for the relaxation time approach is given
by g4(p) [see Eq. (8)], and is only roughly approximated by
g1(p) within the interval of relevance. However, if we add
further moments gν(p), not necessarily including g4(p), the
approximation of the exact p dependence is improving. This
has already been extensively investigated; see Refs. [37,41].
The dc conductivity within LRT follows from Eq. (57) as
σ (0) = ε0ω

2
pl/[r(0)ν(P1)(0)], with the static renormalization

factor r(0). The collision frequency ν(P1)(0) improves the Born
approximation νD(0) if further effects like dynamical screening
and strong collisions are included.

The equivalence of the KT and LRT for the Lorentz plasma
in the static case ω = 0 can be shown rigorously by inspection
of the kinetic equation. Taking the linearized Boltzmann
equation (41) with the collision term (38) and (39) in the
static limit,

−eh̄

m
βfp(1 − fp) �p · �̃E = −

∑
p′

Lei
pp′ (ω)Fp′ , (63)

= 2π

h̄

∑
q

|Vei(q)|2δ(Ep+q−Ep)
fp−fp+q

β(Ep+q−Ep)
[Fp+q−Fp]

= 2π

h̄

∑
q

|Vei(q)|2δ(Ep+q − Ep)[δf̃ ( �p + �q) − δf̃ ( �p)],

(64)

where the expression (35) is used to insert the change
of the single-particle distribution function δf̃ ( �p) af-
ter expanding fp+q − fp ≈ (∂/∂βEp)fp = −β(Ep+q − Ep)
fp(1 − fp). This equation coincides with the equation of
motion for the single-particle distribution function (11), which
is obtained in the static case from KT and is solved using the
relaxation time ansatz.

Considering the electron-ion plasma, it should be pointed
out that the relaxation time approximation is not applicable
if electron-electron collisions are relevant. In contrast, σ (0)
obtained from LRT contains also the contribution of electron-
electron collisions as given by (40) in the static limit. For this,
the static renormalization factor r(0) can be evaluated from
Eq. (60). In particular, it gives the correct Spitzer result if
strong collisions are included [19,37,41]; see also Sec. IV C.

2. High-frequency limit: inverse bremsstrahlung absorption

The dielectric function ε(ω) = [nr (ω) + ic/(2ω)α(ω)]1/2

determines the refraction index nr (ω) as well as the absorption
coefficient α(ω). We consider the long-wavelength limit where
the transversal and longitudinal dielectric function coincide.
The dielectric function or the optical conductivity σ (ω) can be
used to calculate the inverse bremsstrahlung absorption. In the
high-frequency limit, where nr (ω) ≈ 1 and ω � ν, we have

α(ω) = ω

c nr (ω)
Im ε(ω) ≈ ω2

pl

ω2c
Re ν(ω), (65)

so that the inverse bremsstrahlung absorption coefficient is
directly related to the dynamical collision frequency obtained
above from the solution of the Boltzmann equation.

Bremsstrahlung radiation is described by the Bethe-Heitler
expression resulting from QED in the second order of the
interaction [42,43]. In the nonrelativistic limit and for soft
photons, the absorption coefficient for a hydrogen plasma
(Zi = 1) is given by [44,45]

αBorn(ω) = 64π3/2n2√β

3
√

2m3/2h̄c ω3

(
e2

4πε0

)3

× sinh

(
1

2
βh̄ω

)
K0

(
1

2
βh̄ω

)
, (66)

where K0(x) = ∫ ∞
0 dt exp[−x cosh(t)] = ∫ ∞

0 dy exp[−y2 −
x2/(4y2)]/y is the modified Bessel function of the zeroth
order.

Generalized LRT gives the same result. We use the collision
frequency (51) in the nondegenerate case. At finite frequencies
ω, the integral with n̄ = 0 is no longer divergent at y = 0.
Therefore, the screening of the Coulomb potential can be
neglected (n̄ = 0). We find [4,44]

αBorn(ω) = 16
√

2 π7/2n2√β

(3m)3/2h̄c ω3

(
e2

4πε0

)3

(1 − e−βh̄ω)gBorn
ff (ω),

(67)

with the free-free Gaunt factor in the Born approximation,

gBorn
ff (ω) =

√
3

π2
eβh̄ω/2K0

(
1

2
βh̄ω

)
. (68)

The well-known Kramers formula for the inverse
bremsstrahlung absorption [46] results with the Gaunt factor,
gKramers

ff (ω) = 1.
The one-moment Born approximation can be improved

taking into account dynamical screening, strong collisions,
and higher moments of the distribution function, as discussed
earlier. However, in the high-frequency limit, the dynamical
screening is not of relevance. The frequency dependence of
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the renormalization factor has been discussed in [4] (see
also Fig. 1), and converges to 1 in the high-frequency limit.
Strong collisions have been considered and lead to the famous
Sommerfeld result for the Gaunt factor [47,48]. For dense
plasmas, the account of ion correlation S(�q) [see Eq. (3)]
has a major effect and can directly be included in the Born
approximation [49].

The standard treatment of the kinetic equation using a re-
laxation time ansatz (see Sec. II B) fails to describe the inverse
bremsstrahlung absorption. The frequently used expression
(21) for the dynamical conductivity, or the corresponding
expression for the dielectric function, are restricted to the
low-frequency region since a static but energy-dependent
relaxation time cannot be applied to the high-frequency region.
Different approaches using Fermi’s golden rule have been
used [13] to derive expressions for the emission of radiation.
A common treatment unifying both limiting cases, ω → 0
and ω → ∞, is missing in KT within the relaxation time
approximation.

In contrast, our approach within LRT covers the entire
frequency regime consistently. Note that it can also be
applied to the degenerate case and to the relativistic regime;
see [50]. An important feature of LRT is the possibility
to include medium effects in dense plasmas, such as the
Landau-Pomeranchuk-Migdal effect [51].

E. Dimensionless dynamical conductivity

In the following, we use Rydberg units where h̄ = 1, aB =
1, m = 1/2, e2/(4πε0) = 2, and kB = 1. The temperature T

is then given in Ry = 13.6 eV and the electron density n

in a−3
B . We introduce dimensionless quantities ω∗ = ω/ωpl ≡

w T/
√

πn and

σ ∗(ω) = e2β3/2m1/2

(4πε0)2
σ (ω). (69)

In Fig. 2(a), the ratio of the kinetic theory to the linear
response theory is shown for the real part of the dynamical
conductivity at various parameter values. The one-moment
approximation is used, corresponding to the force-force
correlation function. In Fig. 2(b), the renormalization factor
is included. In the low-frequency limit, deviations are shown

that are due to the inclusion of e-e contributions. We give the
limits of the expressions (E5) and (E4), given in Appendix E,
in the static case,

σ ∗
KT(ω = 0) = 25/2

π3/2

1

�KT
,

(70)

σ ∗
LRT,1(ω = 0) = 3

25/2π1/2

1

�LRT,1
.

In both approaches, the Coulomb logarithm behaves like
limn→0 � ∼ − 1

2 ln n in the low-density limit. At finite den-
sities, different expressions are observed. The prefactor of
the inverse Coulomb logarithm takes the value 1.015 for
the Lorentz model that corresponds to KT in the relaxation
time approximation. The Spitzer value 0.591 is approached
in LRT considering the Born approximation (0.2992 in the
one-moment case, 0.5781 in the two-moment case). This
quick convergence is known from the literature; see [37]. The
inclusion of the third moment of the momentum distribution
takes the electron-electron interaction as well as transport of
heat into account.

In the high-frequency limit, we find, from (E5) and (E4),
the asymptotic expansions

Re σ ∗
KT(ω → ∞) = 16

√
2n

3
√

πT 3
�KT

1

ω2
,

(71)

Re σ ∗
LRT,1(ω → ∞) =

√
2n1/4

3π5/4T 3/2

1

ω7/2
.

The ratio between KT and LRT behaves as ω3/2. Thus, in
the high-frequency limit, the ratio diverges; see Fig. 2. In
conclusion, above the plasma frequency, the kinetic approach
becomes essentially wrong.

V. CONCLUSION

Considering the interaction of radiation with matter, often
a dielectric function or dynamical conductivity is used that
is derived from kinetic theory using an energy-dependent
relaxation time; see (21) and (E5). However, this expression is
valid only for elastic collisions of electrons, so that electron-
electron collisions cannot be included. Furthermore, the
frequency dependence is not correctly described. In particular,
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FIG. 2. (Color online) Ratio of the real part of the dynamical conductivity, calculated within the relaxation time ansatz (E5), in comparison
to the generalized linear Boltzmann equation (LRT) in the (a) one-moment approximation (E4) and (b) two-moment approximation (E1).
Hydrogen plasmas at temperature T = 42.13 Ry = 573 eV (solar core) and three different electron densities n are considered.
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the high-frequency behavior has a wrong dependence on ω

and fails to describe inverse bremsstrahlung. We developed an
alternative approach that is free from these shortcomings.

We have derived a generalized linear Boltzmann
equation (31) that is valid for any frequencies and at arbitrary
degeneracy. Besides electron-ion interaction, also electron-
electron interaction is included. The drift term and the
collision term are expressed in terms of equilibrium correlation
functions that are, in general, complex quantities. In order to
apply this approach consistently, one has to deal with two
problems as follows.

First, the correlation functions can be evaluated numerically
or, using quantum statistical methods, in perturbation theory.
As the simplest approximation, we considered the Born
approximation; see Eq. (53) with Eqs. (49), (51), and (E1).
This leads to analytic expressions that are tractable to be used
for simple evaluations.

Second, solving the generalized linear Boltzmann equation,
a variational principle has been applied that optimizes the
single-particle distribution function within a subspace of trial
functions. In particular, we considered a finite number of
moments of the distribution function. The single-moment
treatment gives a result for the dynamical conductivity that
is improved if higher moments of the distribution functions
are taken into account. The contribution of higher moments
is represented by the renormalization factor r(ω) that is, in
general, a complex quantity. The high-frequency limit is not
modified by the inclusion of higher moments and reproduces
the well-known results for bremsstrahlung. The static limit
converges to the Spitzer result for the conductivity with the
inclusion of higher moments that describe also the contribution
of electron-electron interaction.

We compared both approaches for different plasma proper-
ties. In the case of the Lorentz plasma that takes into account
only elastic scattering of electrons by the ions, the correct static
conductivity is obtained in KT using an energy-dependent
relaxation time. To get this result in LRT, the variational
solution with only the lowest moment P1 is not sufficient,
and higher moments should be considered. In particular, the
inclusion of the fourth moment P4 alone gives the exact result
for the static conductivity. The solution of KT with an energy-
dependent relaxation time becomes increasingly inappropriate
with higher frequencies. In contrast, the expressions obtained
from LRT are applicable at any frequency.

Considering the more realistic case of the electron-ion
plasma, the relaxation time ansatz to solve the kinetic equation
breaks down. The inclusion of electron-electron collisions
where the single-particle energy is not conserved represents
no problem in LRT. The exact results for the transport
coefficients in the low-density limit given by the Spitzer
formula are reproduced by LRT, in contrast to KT. The correct
treatment of inverse bremsstrahlung shows that LRT is valid
in the entire frequency domain, in contrast to KT using the
energy-dependent relaxation time that cannot reproduce the
correct frequency dependence of the optical conductivity.

Starting from a general LRT, a linearized Boltzmann
kinetic equation has been obtained, and the relation to the
results of the relaxation time approach in the KT have
been discussed. We restricted ourselves to a two-moment
Born approximation. Possible improvements, as pointed out

throughout the paper, are summarized here again as an outlook
to further considerations and calculations.

(a) Taking the single-particle occupation number np as
relevant observables Bn, the deviations from equilibrium
〈n̂p〉t − f0( �p) describe the nonequilibrium state. The set of
relevant observables can be extended by including initial state
correlations, in particular the formation of bound states. This is
straightforward in a general version of LRT; see, e.g., [41,52].
Sophisticated approaches have been worked out to show
conservation of total energy and the systematic inclusion of
correlations and bound-state formation, using nonequilibrium
Green’s function theory [53,54] or within generalized linear
response theory [19,55]. This is of relevance to investigate
partially ionized plasmas, but also allows for the treatment
of quasiparticle formation and the Debye-Onsager relaxation
effect.

(b) In linear response theory, the drift term and the
collision term are expressed in terms of equilibrium cor-
relation functions. They can be evaluated numerically or
within perturbation theory if we expand with respect to the
interaction. The Born approximation is improved if higher
orders with respect to the interaction are taken into account.
The technique of thermodynamic Green’s functions has been
used for the evaluation of equilibrium correlation functions
[3,4]. The binary collision approximation is obtained if ladder
diagrams are summed up. Dynamical screening results from
the summation of ring diagrams. Perturbation expansions are
more efficient if correlations are already included in the set of
relevant observables so that they do not have to be generated
by a dynamical treatment, i.e., by considering higher-order
perturbation expansions. As an example, we refer to the
formation of bound states discussed above. Instead of finding
their influence using higher orders of perturbation theory,
we can treat them as new degrees of freedom introducing
the corresponding relevant observables, e.g., their distribution
function or a finite number of moments. Then, memory effects
become less important, and the Markov approximation can be
used, e.g., introducing stochastic forces [17].

Equilibrium correlation functions that determine the trans-
port coefficients can be calculated for arbitrary frequencies,
degeneracy, electron-electron collisions, and including col-
lective excitations. The frequency dependence and further
aspects are disregarded if a relaxation time is introduced.
The relaxation time approach is exact only in the case of
elastic scattering, for instance of electrons by ions in the
adiabatic limit. Electron-electron scattering as well as finite
frequencies of the electric field cannot be treated by the
relaxation time ansatz. Thus, the generalized linear Boltzmann
equation obtained from linear response theory reproduces
some well-known benchmarks such as the Spitzer result for the
static conductivity of the fully ionized plasma or the Kramers
formula for the bremsstrahlung.
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APPENDIX A: DERIVATION OF THE
RESPONSE EQUATIONS

The Hermitian observables B̂n are assumed to conserve the
total particle number so that the entropy operator Ĥ − μN̂ is
replaced by the system’s Hamiltonian Ĥ in the λ dependence
of the relevant statistical operator (25). Note that the averages
are calculated with the equilibrium statistical operator that is
known to us, and quantum statistical methods can be applied,
such as Green’s function techniques or numerical simulations,
to evaluate it. Thus, in linear response theory, the Lagrange
multipliers Fn(t) can be eliminated using equilibrium correla-
tion functions.

The relevant statistical operator serves as the initial condi-
tion to determine the nonequilibrium statistical operator ρ(t).
Further correlations are built up by the dynamical evolution

[17] with the total Hamiltonian Ĥ t
tot = Ĥ + Ĥ t

ext,

ρ̂(t) = lim
ε→0

ε

∫ t

−∞
dt ′e−ε(t−t ′)Û (t,t ′)ρ̂rel(t

′)Û †(t,t ′), (A1)

with the time evolution operator Û (t,t ′) given by
ih̄(∂/∂t)Û (t,t ′) = Ĥ t

totÛ (t,t ′) and Û (t,t) = 1. The external
perturbation to the system’s Hamiltonian Ĥ shall have the
general form Ĥ t

ext = ∑
j hj (t)Âj . Decomposition of the time

dependence of the field into Fourier components hj (t) =
h̃j (ω)e−iωt /2 + c.c. = Re{h̃j (ω)e−iωt } is particularly conve-
nient in the linear response since the reaction of the system
is the superposition of the reaction to different spectral
components of the external perturbation. Subsequently, the
time dependence of the response to each component will
have the same frequency in the stationary case, i.e., Fn(t) =
Re{F̃n(ω)e−iωt }. In the following, we consider a fixed value ω

for the frequency of the external perturbation.
We now perform a partial integration of the statistical

operator (A1) and linearize with respect to the external fields
h̃j and the response parameters F̃n,

ρ̂irrel(t) = ρ̂(t) − ρ̂rel(t) = − lim
ε→0

∫ t

−∞
dt ′e−ε(t−t ′)e−iĤ (t−t ′)/h̄

{
i

h̄
[Ĥ t ′

ext,ρ̂0]

+
∑

n

∫ 1

0
dλe−βλ(Ĥ−μN̂)

(
i

h̄
[Ĥ ,δB̂n] Fn(t ′) + δB̂n

∂

∂t ′
Fn(t ′)

)
eβλ(Ĥ−μN̂)

}
eiĤ (t−t ′)/h̄ρ̂0. (A2)

According to Eq. (24), we have Tr{Bn ρ̂irrel(t)} = 0; for details, see [4,29]. Finally, applying the Kubo identity

β

∫ 1

0
dλe−λβĤ [Ĉ,Ĥ ]eλβĤ ρ̂0 =

∫ 1

0
dλ

d

dλ
Ĉ(−ih̄βλ)ρ̂0 = [Ĉ,ρ̂0], (A3)

with Ĉ = Ĥ t ′
ext, we find an expression that relates the response parameters F̃n to the external fields h̃j ,∑

m

[〈B̂n; ˆ̇Bm〉z − iω〈B̂n; δB̂m〉z]F̃m = −β
∑

j

〈B̂n; ˆ̇Aj 〉zh̃j , (A4)

where the Laplace transform of the correlation functions (29) has been introduced. After partial integration, −iz〈Â; B̂〉z =
(Â,B̂) − 〈Â; ˆ̇B〉z = (Â,B̂) + 〈 ˆ̇A; B̂〉z, we arrive at the response equations (28) with the external perturbation Ĥ t

ext = −e �̂R ·
�E(t), �̂R = ∑

i �̂ri, and
ˆ̇�R = �̂P/m.

APPENDIX B: EVALUATION OF THE COLLISION TERM

We evaluate the Onsager coefficient Lpp′ (ω) = 〈ṅp′ ; ṅp〉ω+iε , which occurs in the collision term (38) of the linearized equation
of motion for the single-particle distribution function (31). By inserting the time derivative of the occupation number [using
V ∗(−q) = V (q)],

ˆ̇np = i

h̄
[Ĥ ,n̂p] = i

h̄

∑
q

Vei(q)[â†
p+q âp − â†

pâp+q ] + i

h̄

∑
p′q

Vee(q)[â†
p+q â

†
p′−q âp′ âp − â†

pâ
†
p′ âp′−q âp+q], (B1)

into Eqs. (27) and (29), we evaluate the correlation functions for the electron-ion contribution in the Born approximation:

〈 ˆ̇np; ˆ̇np′ 〉eiω+iε = − 1

h̄2

∑
qq ′

Vei(q)Vei(q
′)
∫ ∞

0
dtei(ω+iε)t

∫ 1

0
dλ{[Tr{ρ0â

†
p+q âpâ

†
p′+q ′ âp′ }−Tr{ρ0â

†
p+q âpâ

†
p′ âp′+q ′ }]e i

h̄
(Ep+q−Ep)(t−ih̄βλ)

− [Tr{ρ0â
†
pâp+q â

†
p′+q ′ âp′ } − Tr{ρ0â

†
pâp+q â

†
p′ âp′+q ′ }]e i

h̄
(Ep−Ep+q )(t−ih̄βλ)}. (B2)
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The λ integral can be executed. The application of the Wick theorem to the quantum statistical averages Tr{ρ0. . .} leads to δ

functions, in particular, q = −q ′. Contributions with q = 0 cancel. We assume isotropic interaction V (�q) = V (−�q) and obtain

Lei
pp′ (ω) = − 1

h̄2

∑
q

|Vei(q)|2 eβ(Ep+q−Ep) − 1

β(Ep+q − Ep)
fp+q(1 − fp)

−1

i(ω + iε) + i(Ep+q − Ep)/h̄
[δp′,p+q − δp′,p]

+ 1

h̄2

∑
q

|Vei(q)|2 eβ(Ep−Ep+q ) − 1

β(Ep − Ep+q)
fp(1 − fp+q )

−1

i(ω + iε) + i(Ep − Ep+q)/h̄
[δp′,p − δp′,p+q]

= − 1

h̄2

∑
q

|Vei(q)|2 fp − fp+q

β(Ep+q − Ep)

{
i

ω + iε + (Ep+q − Ep)/h̄
+ i

ω + iε − (Ep+q − Ep)/h̄

}
[δp′,p+q − δp′,p], (B3)

using (eβ(Ep′−Ep) − 1)fp′ (1 − fp) = fp − fp′ . Subsequently, the Onsager coefficient can be given as Eq. (39).
With this result, the collision term (38) for the Lorentz plasma reads

Cei
p = 1

h̄2

∑
q

|Vei(q)|2 fp − fp+q

β(Ep+q − Ep)

{
i

ω + iε + (Ep − Ep−q)/h̄
+ i

ω + iε − (Ep − Ep−q)/h̄

}
(F̃p+q − F̃p), (B4)

which is now a frequency-dependent and complex quantity. We can eliminate the Lagrange multiplier F̃p according to Eq. (35)
in order to express the collision integral in terms of the single-particle distribution function.

A similar calculation gives the electron-electron contribution in the Born approximation:

Lee
pp′ (ω) = − 1

h̄2

∑
p1,q

Vee(q)Vee,ex(q; p,p1)

×
{

eβ(Ep+q+Ep1−q−Ep1 −Ep) − 1

β(Ep+q + Ep1−q − Ep1 − Ep)

i

ω + iε − (Ep+q + Ep1−q − Ep1 − Ep)/h̄
fp+qfp1−q(1 − fp1 )(1 − fp)

+ eβ(Ep+Ep1 −Ep1−q−Ep+q ) − 1

β(Ep + Ep1 − Ep1−q − Ep+q)

i

ω + iε − (Ep + Ep1 − Ep1−q − Ep+q)/h̄
fpfp1 (1 − fp1−q)(1 − fp+q)

}
× [δp′,p+q + δp′,p1−q − δp′,p1 − δp′,p], (B5)

where Vee,ex(q; p,p1) = Vee(q) − δσ1,σ2Vee(| �p1 − �p − �q|) is the exchange interaction with σi denoting the spin explicitly. The
respective Onsager coefficient can be given as Eq. (40). It is easily seen from the final expressions (39) and (40) that the real part
of the Onsager coefficient, Lpp′ (ω) = Lei

pp′ (ω) + Lee
pp′ (ω), is non-negative, ReLpp′ (ω) � 0.

APPENDIX C: PROOF OF THE VARIATIONAL SOLUTION

To begin with, we show that the entropy production (45),

Ṡint[G̃p] =
∑
pp′

G̃∗
p[Lpp′ (ω) + L∗

p′p(ω)]G̃p′ =
∑
pp′

G̃∗
p〈 ˆ̇np; ˆ̇np′ 〉ω+iεG̃p′ , (C1)

as a functional of an arbitrary G̃p, is positive definite. Using the spectral density of the operator Ĝ = ∑
p G̃p

ˆ̇np, we find

Ṡint[G̃p] = 〈Ĝ; Ĝ〉ω+iε = 1

Z0

∑
nm

e−βEm − e−βEn

β(En − Em)
πδ

[
ω + 1

h̄
(En − Em)

]
|〈n|Ĝ|m〉|2 � 0. (C2)

Now we consider the functional (C1) for the function (G̃p − F̃p) and decompose

Ṡint[(G̃p − F̃p)] = Ṡint[G̃p] −
∑
pp′

[G̃∗
pLpp′ (ω)F̃p′ + c.c.] −

∑
pp′

[F̃ ∗
pLpp′ (ω)G̃p′ + c.c.] + Ṡint[F̃p]. (C3)

Making use of the constraint (46), the first contribution is expressed as

Ṡint[G̃p] =
∑

p

[G̃∗
p + G̃p]Dp, (C4)

which is the terms with i�p compensate. Since F̃p solves the linear Boltzmann equation (42), the second contribution is
transformed into ∑

pp′
G̃∗

pLpp′ (ω)F̃p′ + c.c. =
∑

p

G̃∗
pDp +

∑
p

i�pG̃∗
pF̃p + c.c. (C5)
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For the transformation of the third term, we use the symmetry Lpp′ (ω) = Lp′p(ω) due to detailed balance, which can be seen
easily from the explicit expressions (B3) and (B5). Furthermore, the proof of the reciprocity condition Lpp′ (ω) = L∗

pp′ (−ω) can
be shown generally using the eigenstates |n〉 of the system Hamiltonian,

Lpp′ (ω) = 1

h̄2

1

Z0β

∑
nm

e−βEn − e−βEm

En − Em

(En − Em)2

iω − ε − (i/h̄)(En − Em)
〈n|n̂p|m〉〈m|n̂p′ |n〉, (C6)

interchanging n and m. Finally, we find∑
pp′

F̃ ∗
pLpp′ (ω)G̃p′ =

∑
pp′

[G̃∗
p′L∗

pp′ (ω)F̃p]∗ =
∑
pp′

[G̃∗
pLpp′ (−ω)F̃p′]∗ =

∑
p

[Dp + i�pF̃ ∗
p ]G̃p. (C7)

We sum up all contributions in Eq. (C3) using Eqs. (C4), (C5), and (C7),

Ṡint[(G̃p − F̃p)] = Ṡint[F̃p] − Ṡint[G̃p] � 0. (C8)

This is a positive definite expression due to Eq. (C2). Thus we find that the entropy production is maximal if the trial function
G̃p is the solution F̃p of the Boltzmann equation.

APPENDIX D: EVALUATION OF EQUATION (47)

We execute the �p integration on the left-hand side of Eq. (47) with p2
E = p2/3,

1

3

∑
p

h̄2p2fp(1 − fp) = 8πm

3

�0

(2π )3

∫
Ep

(
− ∂fp

∂βEp

)
p2dp = −4πm

3β

(2m)3/2

h̄3

�0

(2π )3

∫
∂fp

∂Ep

E3/2
p dEp

= 2πm

β

(2m)3/2

h̄3

�0

(2π )3

∫
fpE1/2

p dEp = m

β

4π�0

(2π )3

∫
fpp2dp = m

β

∑
p

fp = Nm

β
, (D1)

after integration by parts. This is also identical to (P̂1,P̂1), which is the Kubo scalar product (27) of the first moment (8).
In the collision term, which is the second term on the right-hand side of Eq. (47), we insert the expression (39). The sum over

p′ is immediately executed and gives qE . The first contribution (from the δ function) as well as the third contribution (from the
first principal part) are considered together and can be transformed by �q → −�q, then �p → �p + �q, so that they coincide with the
second and fourth contributions, respectively. We find, after canceling some common factors,

eh̄2NẼ = −iω
m

β
h̄2NF1 −

∑
q

|Vei(q)|2q2
E

∑
p

fp − fp+q

β(Ep+q − Ep)

i

ω + iε + (Ep+q − Ep)/h̄
F1. (D2)

From Eq. (48), we find

νD(ω) = − β

mN

∑
p,q

q2
E |Vei(q)|2 fp − fp+q

β(Ep+q − Ep)

i

ω + iε + (Ep+q − Ep)/h̄
. (D3)

We shift �p → �p − �q/2 so that Ep+q/2 − Ep−q/2 = h̄2 �p · �q/m and with spin factor 2,

νD(ω) = β

mN

∑
q

q2
E |Vei(q)|2 m

βh̄2q

2�0

(2π )2

∫ ∞

−∞
ds

1

s

i

ω + iε + h̄qs/m

×
∫ ∞

0
rdr

eβ(h̄2/2m)(r2+s2+sq+q2/4)−βμ − eβ(h̄2/2m)(r2+s2−sq+q2/4)−βμ(
eβ(h̄2/2m)(r2+s2+sq+q2/4)−βμ + 1

)(
eβ(h̄2/2m)(r2+s2−sq+q2/4)−βμ + 1

) , (D4)

where cylindrical coordinates with respect to the �q direction have been introduced. s is the component of �p in the �q direction,
and r is the component orthogonal to this axis. The integral over r can be performed,

1

2

∫ ∞

0
dr2 1

eβ(h̄2/2m)(r2+s2+sq+q2/4)−βμ + 1

1

e−β(h̄2/2m)(r2+s2−sq+q2/4)+βμ + 1
= m

βh̄2

1

eβ(h̄2/m)sq − 1
ln

[
1 + e−β(h̄2/2m)(s−q/2)2+βμ

1 + e−β(h̄2/2m)(s+q/2)2+βμ

]
.

(D5)

Furthermore, we neglect the ion correlation so that S(�q) = 1 for the structure factor. Note that the Born approximation (D4) is
divergent at zero frequency. As is well known, this problem is solved if we go beyond the Born approximation and take into
account higher-order contributions due to dynamical screening and strong collisions. This was already discussed by Landau
and Lifshitz [56] and has been shown to be consistent using Green’s function techniques; see [3,4,29]. In this way, the correct
zero-frequency limit of the collision frequency is obtained. As shown in Ref. [57], alternatively, the Coulomb potential in
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Eq. (D4) can be replaced by a statically screened potential, namely, the Debye potential (16), so that |Vei(q)|2 ≈ NV 2
D . With

s =
√

2m

βh̄2
x
y
, q=

√
8m

βh̄2 y, expression (49) follows.

APPENDIX E: RENORMALIZATION FACTOR AND DYNAMICAL CONDUCTIVITY

We use Rydberg units, as introduced at the beginning of Sec. IV E and in Eq. (69). In LRT, the conductivity (57) within the
one-moment Born approximation in the nondegenerate limit (51) gives (w = ω∗√πn/T )

σ ∗
LRT = −

√
2n

πT 3

[
iω∗ − i

2

3π

√
n

T 3
r(w)

∫ ∞

0
dy

y4

(y2 + 2πn/T 2)2

∫ ∞

−∞
dx

1 − e−4xy

xy(w − xy + iε)
e−(x−y)2

]−1

. (E1)

The renormalization factor r(w) is taken with the first and third moment of the distribution function (i.e., particle current and
energy current). According to Eq. (60), generalized force-force correlation functions have to be calculated after decomposition:
〈Ṗl ; Ṗm〉ω+iε = 〈Ṗ ei

l ; Ṗ ei
m 〉ω+iε + 〈Ṗ ee

l ; Ṗ ee
m 〉ω+iε . Considering the nondegenerate limit of the Born approximation again, we have,

from the electron-ion interaction,

〈
Ṗ ei

l ; Ṗ ei
m

〉
ω+iε

= i
4

3
√

π

Nn√
T

∫ ∞

0
dy

y4

(y2 + 2πn/T 2)2

∫ ∞

−∞
dx

1 − e−4xy

xy(w − xy + iε)
e−(x−y)2 {x,y}eilm , (E2)

where {x,y}ei11 = 1, {x,y}ei31 = 1 + 3x2 + y2, and {x,y}ei33 = 2 + 10x2 + 9x4 + 2y2 + 6x2y2 + y4.
For the electron-electron interaction, we find

〈
Ṗ ee

l ; Ṗ ee
m

〉
ω+iε

= −i
4

3
√

2π

Nn√
T

∫ ∞

0
dy

y4

(y2 + 4πn/T 2)2

∫ ∞

−∞
dx

1 − e−4xy

xy(w − xy + iε)
e−(x−y)2 {x,y}eelm , (E3)

where due to momentum conservation (Ṗ ee
1 = 0) we have {x,y}ee11 = {x,y}ee31 = 0 and {x,y}ee33 = 1 + (19/4)x2.

For the evaluation, we use 1
xy−w−iε

= P 1
xy−w

+ iπδ(xy − w). The δ function allows one to perform the integral over x to

obtain the real part of the correlation functions, 〈Ṗl ; Ṗm〉ω+iε . For the imaginary part, we also can perform the x integral after

partial fraction decomposition and using P
∫ ∞
−∞ dx e−x2

x+a
= πe−a2

erfi(a).
In particular, we have, for the single moment approximation where r(w) = 1,

σ ∗
LRT,1 = −

√
2n

πT 3

(
iω∗ − 2

3w

√
n

T 3

∫ ∞

0
dy

y3

(y2 + 2πn
T 2 )2

{
e
−(y− w

y
)2−e

−(y+ w
y

)2 − 2i

[
e
−(y− w

y
)2

erfi

(
y − w

y

)
− e−y2

erfi(y)

]})−1

.

(E4)

For direct comparison, we give explicitly the dynamical conductivity from KT (21) with the energy-dependent relaxation time
for the Lorentz plasma (17),

σ ∗
KT = − 8

3
√

π

√
2n

πT 3

1

T

∫ ∞

0
dx

x4e−x2/T

iω∗ − √
πn[ln(1 + b) − b/(1 + b)]/x3

, (E5)

with b = x2T/(2πn).
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of Nonequilibrium Processes, Vol. 2 (Akademie-Verlag, Berlin,
1997).

036401-15

http://dx.doi.org/10.1063/1.860211
http://dx.doi.org/10.1063/1.860211
http://dx.doi.org/10.1103/PhysRevE.60.R2484
http://dx.doi.org/10.1103/PhysRevE.60.R2484
http://dx.doi.org/10.1103/PhysRevE.62.5648
http://dx.doi.org/10.1103/PhysRevE.62.5648
http://dx.doi.org/10.1051/anphys:2006004
http://dx.doi.org/10.1098/rspa.1958.0003
http://dx.doi.org/10.1103/RevModPhys.54.1017
http://dx.doi.org/10.1103/PhysRevA.32.1790
http://dx.doi.org/10.1103/PhysRevB.50.8170
http://dx.doi.org/10.1103/PhysRevB.50.8170
http://dx.doi.org/10.1103/PhysRev.89.977
http://dx.doi.org/10.1063/1.864744
http://dx.doi.org/10.1103/PhysRevE.66.046417
http://dx.doi.org/10.1103/PhysRevE.66.046417
http://dx.doi.org/10.1103/PhysRev.122.1760
http://dx.doi.org/10.1103/PhysRevE.73.036401
http://dx.doi.org/10.1103/PhysRevE.73.036401
http://dx.doi.org/10.1088/0953-4075/28/10/014
http://dx.doi.org/10.1143/JPSJ.12.570
http://dx.doi.org/10.1088/0034-4885/29/1/306
http://dx.doi.org/10.1088/0034-4885/29/1/306
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