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Propagation limits and velocity of reaction-diffusion fronts in a system of discrete random sources

Francois-David Tang, Andrew J. Higgins,* and Samuel Goroshin
McGill University, Department of Mechanical Engineering, Montreal, Quebec, Canada

(Received 12 October 2011; published 22 March 2012)

The effect of spatially randomizing a system of pointlike sources on the propagation of reaction-diffusion fronts
is investigated in multidimensions. The dynamics of the reactive front are modeled by superimposing the solutions
for diffusion from a single point source. A nondimensional parameter is introduced to quantify the discreteness of
the system, based on the characteristic reaction time of sources compared to the diffusion time between sources.
The limits to propagation and the average velocity of propagation are expressed as probabilistic quantities to
account for the influence of the randomly distributed sources. In random systems, two- and three-dimensional
fronts are able to propagate beyond a limit previously found for systems with regularly distributed sources, while
a propagation limit in one dimension that is independent of domain size cannot be defined. The dimensionality
of the system is seen to have a strong influence on the front propagation velocity, with higher dimensional
systems propagating faster than lower dimensional systems. In a three-dimensional system, both the limit to
propagation and average front velocity revert to a solution that assumes a spatially continuous source function
as the discreteness parameter is increased to the continuum limit. The results indicate that reactive systems are
able to exploit local fluctuations in source concentration to extend propagation limits and increase the velocity in
comparison to regularly spaced systems.
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I. INTRODUCTION

Diffusion of heat or a chemical species can propagate as
a self-sustained front in a medium where the reaction rate
is strongly dependent on the concentration of the diffusion
component. In many cases, the reactive medium is heteroge-
neous and the sources generating the diffusive component are
localized in space [1]. Condensed-phase systems capable of
supporting self-propagating high-temperature synthesis (SHS)
[2], forest fires in which combustion must propagate from tree
to tree [3], and flames propagating in dust suspended in an
oxidizing atmosphere [4] are all examples of reactive waves
in systems with heterogeneous energy sources. In biological
cells, the propagation of calcium waves via the self-induced
release of calcium ions from localized receptors has been
modeled as heterogeneous reaction-diffusion fronts [5–7].
In spite of the spatially discrete nature of the sources, the
common approach in describing reactive-diffusion fronts in
heterogeneous media is to introduce the source function in
the governing diffusion equation as a continuous function of
spatial coordinates [8,9].

As has been shown in recent work [4,7,10–12], ho-
mogenization of the source function is invalid when the
characteristic length scales of the reaction-diffusion front are
comparable with the scale of the heterogeneity through which
it propagates. In this case, the position of the sources in the
diffusion equation has to be described explicitly, and spatial
homogenization of the source function cannot be justified.
In the asymptotic case of pointlike sources and a stepwise
reaction rate, a parameter τc defining the front propagation
regime (continuum versus discrete) is given by the ratio of
the characteristic reaction time tr (duration of activity of the
source) to the characteristic time required for the diffusion
front to propagate through a distance l between the sources,
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td = l2/α (where α is the diffusion coefficient and l is the
average spacing between sources):

τc = tr

td
= trα

l2
. (1)

When τc � 1, the classical continuum approach is valid.
In the other extreme (i.e., τc → 0), the front propagates in
the discrete regime that has a number of unusual features in
comparison to the properties of the classical continuum theory
[4,7]. The front speed in the discrete regime is a weak function
of the reaction time but is an explicit function of the distance
between sources and their position (spatial distribution).
Furthermore, a regular distribution of the sources as the nodes
of a regular lattice leads to the appearance of a new propagation
limit that cannot be predicted a priori from the system
thermodynamics nor from the classical continuous reaction-
diffusion theory [11,13]. Propagation beyond this limit is
only possible in a system containing randomly distributed
sources through local concentration fluctuations. The behavior
of diffusion fronts in such systems is unavoidably statistical
and requires a probabilistic approach for the description of
both the front speed and the propagation limit.

II. OBJECTIVE AND APPROACH

The objective of the present paper is to investigate the
statistical nature of reaction-diffusion fronts propagating in
systems of spatially random sources as a function of the system
dimensionality and the degree of discreteness. A methodology
is developed to identify the fundamental propagation limit
in systems with spatially random sources that is independent
of the size of the domain and the conditions used to initiate
the front. Specifically, numerical simulations in finite-sized
domains are used in order to identify a limit that is expected
to apply as the domain size tends to infinity and careful
attention is paid to isolating the influence of the technique
used to initiate the front in the simulations. The average front
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propagation velocity is also measured from these simulations
and the results are compared to the predictions of the classical
continuum solution and the solution for a system of regularly
spaced sources.

III. REVIEW OF MODELS WITH CONTINUOUS OR
REGULARLY SPACED DISCRETE SOURCES

Propagating fronts are described using models based on
a continuum or a discrete representation of the reactive
medium. The continuum model can be applied when spa-
tial averaging of the heterogeneous medium is justified,
whereas the discrete model does not impose any requirement
on the characteristic length of heterogeneity compared to the
scale of the front. Using terminology applicable to combustion,
the two physical parameters characterizing the reactive system
are the ignition temperature Tig and the reaction time tr , which
can be nondimensionlized as θig = Tig/Tad and τc = tr/td ,
which was previously introduced to define the degree of
discreteness. Here, Tad is the adiabatic flame temperature of
the medium [Tad = QB/(ρcp), where Q is the heat release
per unit mass of fuel, B is the fuel mass concentration, ρ is
the density of the medium, and cp is the specific heat of the
medium]. The thermal diffusivity α, the specific heat cp, and
the density ρ are assumed to be constant.

The position of the front is derived from the temperature
field θ (x,τ ) as the contour of the ignition temperature θig and
the temperature field is described by the reaction-diffusion
equation with a source term F :

dθ

dτ
= ∇2θ + F. (2)

Two closed form, analytic solutions to Eq. (2) are now
constructed, one assuming a spatially continuous source term
and the other assuming regularly spaced discrete sources.

A. Continuum solution

When the continuum approximation is invoked, the source
term F is expressed as a step function in the reaction zone
with height 1

τc
and zero elsewhere. In the steady front-fixed

frame, where the ignition front is located at the origin x = 0,
the reaction zone can be defined as 0 < x < ητc, where the
front speed η is given as η = vl

α
. The source term F can be

expressed as

F =
{

0 if x < 0 or x > ητc,
1
τc

if 0 � x � ητc.
(3)

The front speed η is found by matching the temperature
[θ (0±) = θig] and the heat flux (dθ/dx|x=0− = dθ/dx|x=0+)
between the diffusion and reaction zones at x = 0,

θig = 1 − exp(−η2τc)

η2τc

. (4)

The front speed η calculated from Eq. (4) will be referred
to as the continuum solution and is plotted as a function of the
ignition temperature θig in Fig. 1 (solid curves).

FIG. 1. (Color online) Front speed η as a function of the ignition
temperature θig for different reaction times (a) τc = 0, (b) τc = 0.5,
(c) τc = 5, and (d) τc = 10. The solid line represents the continuum
solution; the thick and thin dashed lines are the physical and
nonphysical solutions, respectively, calculated using the discrete
regular model. The symbols represent the average front speed
measured in simulations performed in systems containing randomly
distributed sources. The different symbols correspond to a different
dimensionality of the system.

B. Discrete regular solution

The discrete solution is obtained for a system of heat sources
embedded in an inert, heat conducting medium. The source
term F becomes a function of all the individual sources that
are reacting. Upon ignition of the ith source at time τi , where
i ⊆ N and N is the number of reacting sources at time τi , the
rate of heat release of each source is a temporal δ function when
τc = 0 and a step function with height 1/τc when τc > 0. The
ignition time τi corresponds to the time when the ith source
reaches the ignition temperature [i.e., θ (xi ,τi) = θig]. For a
system of N reacting sources at time τ , F is given in the
laboratory-fixed frame as

F =
{∑N

i=1 gi(x)δ(τ − τi) if τc = 0,∑N
i=1

1
τc

gi(x)H (τ − τi)H (τc − (τ − τi)) if τc > 0,

(5)

where H is the Heaviside function. The function gi(x) reflects
the fact that the heat is released from localized sources and
is defined by gi(x) = 1 if x = xi and 0 otherwise, where xi is
the coordinate vector of the ith reacting source. The position
vector xi is expressed as a nondimensional length after being
normalized with the characteristic intersource spacing l.

This system has the advantage that θ (x,τ ) can be found
by the linear superposition of the solution for each individual
reacting source (Green’s function), permitting the entire tem-
perature field θ (x,τ ) to be solved analytically [4,6]. Previous
investigations have considered flames in randomized media
that are described by Arrhenius kinetics that necessitated
simulating the problem via a finite-difference approach, which
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limited the simulation to a two-dimensional domain with
current computational tools [14]. Using the superposition of
Green’s functions, the solution to Eqs. (2) and (5) is given as

θ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑N
i=1

1
[4π(	τi )]p

exp
(−|x−xi |2

4	τi

)
if τc = 0,∑N
i=1

1
τc

∫ 	τi

(	τi−τc)H (	τi−τc)
1

(4πζ )p exp
(−|x−xi |2

4ζ

)
dζ

if τc > 0,

(6)

where the exponent p = 0.5,1, and 1.5 is used in one, two, and
three dimensions, respectively, and 	τi = τ − τi is the time
elapsed since the ignition of the ith source. The location of the
front is derived from the field temperature of the system as the
contours corresponding to the ignition temperature θig.

Propagating fronts using the discrete model have previously
been investigated in systems containing sources distributed
in a regular lattice [4,6,11,15]. The methodology and the
results are briefly summarized here as a means for comparison
with the front properties in systems containing randomly
distributed sources. For a one-dimensional system consisting
of planar sheets of heat release, the front speed η can be
expressed analytically if the sources are placed in a regular
array with constant spacing between consecutive sources.
In the limit of N → ∞, an implicit solution for the front
speed η was obtained for τc = 0 by equating Eq. (6) to
θig and rearranging the terms as 	τi = i/η and |x − xi | = i

[6,15]. These manipulations are equivalent to assuming that
the ignition front propagates from source to source with a
constant delay time 	τ = 1/η between consecutive ignition
events. This approach was also used to find η in a regular,
three-dimensional array of pointlike sources, and the solution
was also extended to τc > 0 [4,11]. In fact, a one-dimensional
system consisting of evenly spaced planar sheets of heat release
is equivalent to a two-dimensional system consisting of a
regular array of line sources and a three-dimensional cubic
lattice of point sources as η → 0 [13]. The front speed is given
by the same analytical solution in all three dimensions. The
equations used to solve for η as a function of θig and τc in a
regular one-dimensional domain are given in Eq. (7):

θig =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑∞
i=1

(
η

4πi

)0.5
exp

(− i
4η

)
if τc = 0,∑∞
i=1

1
τc

∫ i/η

(i/η−τc)H (i/η−τc)

(
1

4πζ

)0.5
exp

(− i2

4ζ

)
dζ

if τc > 0.

(7)

This solution will be referred to as the discrete regular
solution. The relationship between η and θig in a regularly
spaced system is shown for different values of τc in Fig. 1.
The thick dashed lines in Fig. 1 correspond to a branch of the
solution for η when ignition occurs as dθ

dτ
> 0, while the branch

of the solution plotted by the thin dashed lines requires that the
temperature decreases upon ignition (i.e., dθ

dτ
< 0). This latter

case corresponds to a scenario wherein the temperature at the
source first passes through the ignition temperature without
igniting, then does ignite upon encountering the ignition
temperature for a second time as temperature decreases. The
unphysical ignition condition is indicative of an inherent
propagation limit in regular arrays [11,13], as described further
below.

The discrete and the continuum models are in agreement
when τc � 1, as shown in Figs. 1(c) and 1(d). For τc < 1, the
continuum model significantly overpredicts η due to neglecting
the diffusion time required for the front to advance between
neighboring sources, as shown in Fig. 1(b). In fact, for τc = 0
[Fig. 1(a)], the continuum solution predicts an infinite front
speed while the discrete regular model yields a finite value. As
opposed to the continuum theory, the discrete model accounts
for the diffusion time between sources during which no new
ignition event occurs, which acts as a mechanism limiting the
front speed.

The difference between the discrete and continuous regimes
is also reflected in the propagation limit. The continuum model
implies that if the heat released by all of the sources can
elevate the average temperature of the system to Tig, then the
front can propagate. This condition defines a thermodynamic
limit to flame propagation, denoted by θig,th = 1, which is
independent of τc. However, in a system containing regularly
distributed sources, the effect of localizing the heat release
introduces an inherent limitation to propagation related to
the fact that physically, ignition must occur as temperature
increases. Failure to comply with this condition renders the
solution unphysical, as illustrated in Fig. 1 by the unphysical
branch of η represented by the thin dashed line. This condition
can be expressed as a critical ignition temperature θig,cr

associated with the condition dθ
dτ

= 0 at ignition. For τc = 0,
we find θig,cr ≈ 0.568 and this value is closely associated
with the propagation limit. As the ignition temperature of
the sources approaches the critical condition, the dynamics
of the wave propagation become increasingly complex, due to
the extreme sensitivity of the ignition time to the nearly flat
temperature profile prior to ignition. Indeed, if the transient
dynamics of the system are solved for τi [rather than assuming
a fixed time delay between ignitions as in Eqs. (6) and (7)],
the delay time between successive ignitions undergoes a series
of bifurcations beginning at θig,bif ≈ 0.512 and becomes fully
chaotic as θig is increased [6,11,15], leading to a propagation
limit at θig,lim ≈ 0.534. This result highlights one of the
unique aspects of discrete reactive fronts that differentiates
it from the conventional continuum theory: a propagation
limit in the absence of losses that is encountered far from
the thermodynamic limit.

This propagation limit is attributed to the fact that, in the
discrete regime, heat release remains spatially concentrated
around sources, giving rise to an internal loss mechanism,
permitting heat to diffuse backward rather than only forward
in the direction of the propagation of the front. As a result,
a limit to propagation is encountered in regularly spaced,
discrete systems at approximately half the ignition temperature
(or, alternatively, twice the heat release or twice the fuel
concentration) as predicted by the thermodynamic limit.

IV. DISCRETE RANDOM SOLUTION

The results discussed so far are limited to a regular distri-
bution of sources. We will now consider sources distributed
randomly in space in one-, two-, and three-dimensional
systems. A random number generator [16] was used to generate
clouds of up to 20 000 sources randomly positioned in space.
After a subset of the sources were prescribed to ignite in
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order to initiate a propagating front at time τ = 0, Eq. (6)
was used to calculate the temperature field and find the time
at which unreacted sources reached the ignition temperature
θig. The source with shortest ignition time τi was identified
as the next reacting source and was then added to the pool
of reacted sources used to compute the ignition time of the
next unreacted source. The solution was then advanced until
all the sources in the domain had been ignited or no additional
unreacted source reached the ignition temperature θig and the
front quenched. This solution will be referred to as the discrete
random solution.

In all simulations, the concentration of sources was set
to unity in the domain. In one, two, and three dimensions,
this corresponded to a single source per unit length, area, and
volume, respectively. The number density of sources was the
same for discrete regular solution presented in Sec. III B.
In one dimension, computations were performed in domains
up to a length lx = 2 × 104. Two-dimensional simulations
were limited to a square domain and the domain length lx
was varied from 50 to 90. In three dimensions, the geometry
was constrained to a cube with a side length lx that was
varied from 20 to 25. In the latter case, the domain size was
limited by computational capacity, which was rapidly reached
in view of the fact that the number of candidates that must
be considered as the next activated source increases rapidly
as we move from one- to two- to three-dimensional systems.
The next reacting source candidate in one-dimension is simply
the next unreacted source neighboring the last reacted source.
In multidimensional systems, the next reacting source is only
found after the ignition times of all unreacted sources in the
near vicinity of the front have been calculated.

In two and three dimensions, periodic boundary conditions
were imposed to the sides of the domain to eliminate the
heat losses and to isolate effects arising from using a finite-
sized domain. The upstream and downstream boundaries
along the x axis (i.e., the axis of propagation) remained
free. Periodic boundary conditions were implemented by
introducing images of a reacting source upon its ignition
outside the boundaries of the domain. In two dimensions, if a
source reacted at coordinates (xi,yi), then multiple release sites
were simultaneously positioned outside the domain, at location
(xi,yi ± mlx). In three dimensions, images were placed in
the y and z directions, but also in quadrants located in the
diagonal directions of the domain. The coordinates of the
images are given by (xi,yi ± mlx,zi ± nlx) where the index
variables {m,n} ⊂ N and represent the image number, which
in principle should tend to infinity to simulate an infinitely large
domain. In practice, it was found that considering images with
{m,n} = {1,2} was sufficient; considering additional mirror
images did not influence the front.

A constant-volume explosion approach was used to initiate
the front. In other words, all the sources in a portion of the
domain were forced to ignite at time τ = 0. Figure 2 illustrates
the appearance of the system at initiation in one-, two-, and
three-dimensional systems. This initiating region contained a
variable number of sources determined by the random source
distribution and the initiation length li (the distance from x = 0
to the plane separating the initiating domain from the freely
propagating domain). The amount of heat released by the
initiating sources was also artificially increased to ensure the

(a)

(b)

(c)

FIG. 2. (Color online) Schematic diagrams of (a) one-, (b) two-,
and (c) three-dimensional systems with randomly distributed sources
upon ignition. The large dots represent overdriven sources force-
ignited and the sources inside the freely propagating domain are
shown as small dots.

formation of a propagating front. The heat released by the
initiating sources was quantified by the overdrive parameter
�, defined as the ratio between the heat released by the
initiating sources and the sources in the propagating domain.
The overdrive parameter is necessary for the constant-volume
explosion approach because a front can be initiated in the
freely propagating domain only if the overdrive is larger than
the ignition temperature [17]. Ensuing that the propagation
limits and front speeds measured in the simulations were a
fundamental property of the medium, and not the result of
a failure to initiate the front or influenced (i.e., overdriven)
by the parameters of initiation (� or li), comprised a major
portion of the effort in this study.

The appearance of a propagating front in one-, two-, and
three-dimensional systems with sources randomly distributed
for τc = 0 is shown in Fig. 3. In Fig. 3(a), the one-dimensional
temperature field is described by the solid line. In Fig. 3(b), the
two-dimensional ignition temperature contour is shown as the
solid line and the temperature field is represented by shading.
In Fig. 3(c), the temperature field in the three-dimensional
simulation is only visible on three sides of the domain and the
front marking the ignition temperature is represented by the
surface propagating upward.
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FIG. 3. (Color online) Simu-
lations of reaction fronts propa-
gating in (a) one-, (b) two-, and
(c) three-dimensional random sys-
tems in the discrete regime (τc =
0). The sources are shown in light
gray if reacted and dark gray if
unreacted. In (a) the front is prop-
agating from left to right and in
(b) and (c) the front is propagating
upward. In (a), the y coordinates
of the sources indicate the ignition
temperature θig = 0.3. In (b) and
(c), the contour line and the sur-
face represent the isotherm of the
ignition temperature θig = 0.5.

V. RESULTS

In this work, the influence of randomly distributed sources
on the propagation of the front is studied by determining two
quantities: the propagation limit and the front speed. These
quantities are expressed as probabilistic values and reflect
multiple simulations performed using different randomized
distributions with the same global parameters of source den-
sity, ignition temperature θig, and reaction time τc. The results
obtained in random distributions of sources are compared with
the continuum theory (Sec. III A) and the discrete regular
solution (Sec. III B).

A. Propagation limits in randomized systems

The propagation limit is defined by the ignition temperature
at quenching θig,qc marking a change in the outcome of a
simulation: whether the front successfully propagates from
the initiation end to the far end of the domain or whether
the front quenches before reaching the end of the domain.
In media characterized by θig 	 θig,qc, the front always
propagated from end-to-end. If θig � θig,qc, the front promptly
quenches in all simulations. Near the value of θig,qc, both
successful propagation and quenching were observed. This
feature emphasizes the necessity to consider the outcome of
any particular simulation with randomly spaced sources as
being probabilistic. To define a numerical value for θig,qc,
multiple simulations using different spatial distributions of
sources were performed for a range of ignition temperatures
θig, while keeping the reaction time τc fixed. For each value of
the ignition temperature θig, the propagation probability P (θig)
was calculated by normalizing the number of simulations
where the front propagated successfully end-to-end, Ns , with
the total number of simulations performed Nt . The ignition
temperature at quenching θig,qc was obtained by fitting the

propagation probability P to the ignition temperature θig using
the integral of the Gaussian [18]:

P (θig) = 1

2

[
1 − erf

(
θig − θig,qc

σqc

√
2

)]
, (8)

where σqc quantifies the steepness of the transition from a
propagating to a quenching outcome as the ignition temper-
ature θig increases. In other words, in randomized systems,
the ignition temperature at quenching θig,qc is defined by the
condition P (θig,qc) = 0.5.

Figure 4 shows the propagation probability P in random
one-dimensional systems in which the domain length lx is

FIG. 4. (Color online) Propagation probability P in a one-
dimensional random system as a function of the ignition temperature.
The different symbols represent different domain lengths lx . The
initiation length li = 5, the overdrive � = 10, and a reaction time
τc = 0 remained unchanged. For each domain length lx , the solid
lines represent curve fits using Eq. (8).
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increased from 100 to 10 000. The propagation probability P

was calculated from a set of 20 simulations for each value of
the ignition temperature θig and each simulation was computed
in a unique random spatial distribution of the sources. The
curves fitted to the propagation probability P for each domain
length lx were obtained from Eq. (8). The results in Fig. 4
are obtained for a one-dimensional system, but a qualitatively
similar behavior is observed in two- and three-dimensional
systems as well.

1. Propagation limit in one dimension

Simulations were performed with one-dimensional arrays
of randomly positioned sources of heat release. The ignition
temperature at which quenching occurred θig,qc was deter-
mined for a fixed reaction time τc and for different domain
lengths lx and initiation parameters. Figure 5(a) shows the
ignition temperature at quenching θig,qc for τc = 0 as a function
of the overdrive � and for varying domain lengths lx , while
keeping the initiation length constant li = 5. In Fig. 5(b),
θig,qc is plotted against the initiation length li for an overdrive
� = 10.

For lower values of the overdrive � or the initiation
length li , the initiating region was unable to reliably initiate a
propagating front, resulting in a value of θig,qc being artificially
low. For larger values of � or li , the front can become
overdriven in smaller-sized domains (e.g., lx = {100,200}) by
the large amount of heat diffusing forward from the initiating
region, resulting in an artificially increased value of θig,qc. For
example, as the initiating region occupies a larger portion of
the domain, the front is obviously more likely to successfully
propagate across the remainder of the domain. In between
these two cases, in most simulations a “plateau” value of
θig,qc could be identified that is independent of the overdrive
parameter or the length of the initiating region. Note that in the
smallest domain considered (lx = 100), no such plateau could
be identified, due to a continuous transition from an ineffective
initiation to an overdriven propagation.

In one-dimensional simulations, the region where θig,qc

displays a plateau (i.e., the value where θig,qc is independent of
the initiation parameters) was found to always be dependent
upon the domain length lx . As shown in Figs. 5(a) and 5(b),
as the domain size lx increases, the plateau value of θig,qc

continues to decrease. This result reflects the fact that, in one

FIG. 5. (Color online) Ignition temperature at quenching θig,qc as
a function of (a) the overdrive � and (b) the initiation length li in
a one-dimensional system. The different symbols represent different
domain lengths.

dimension, increasing the domain size increases the likelihood
that the random placement of sources will eventually result in
a gap of sufficient size that the front is not able to successfully
traverse. In this work, the propagation limit θig,lim is defined
as the plateau value of θig,qc with the condition that the
plateau is independent of the domain size and the initiating
conditions. Thus, for a one-dimensional randomized system,
a fundamental propagation limit cannot be defined. It is also
interesting to note that, compared to a one-dimensional system
with regularly spaced sources, randomness of the sources
appears to be detrimental to the propagation of the front. In all
simulations where a value of θig,qc could be found, the value
was less than 0.5, while in a one-dimensional system with
regularly spaced sources, the front can successfully propagate
up to a value of θig,qc = 0.534 [6,11,13,15].

2. Propagation limit in two and three dimensions

Our previous attempt [13] to determine the propagation
limit θig,lim in two dimensions considered domains of in-
creasing width, but in which the domain length and the
initiating conditions were kept constant. As the domain
widened, the front was able to propagate end-to-end at
increasingly larger values of the ignition temperature θig until
the width increased to approximately 80 units and the ignition
temperature at quenching began to plateau at θig,qc ≈ 0.64.
In the present work, the propagation of the front is studied in
two-dimensional geometries with varying size and fixed aspect
ratio equal to unity (i.e., square domains) and the initiation
conditions are varied to determine the propagation limit θig,lim.

Results of two-dimensional simulations with up to 8100
randomly distributed sources are shown in Fig. 6 for the
case τc = 0. Following the same analysis performed for one-
dimensional systems, the ignition temperature at quenching
θig,qc was determined for a given set of parameters (θig, lx ,
li , �). Smaller values of the overdrive and the initial length
resulted in a failure to initiate the front, as reflected in lower
values of θig,qc. Larger values of li and � overdrove the
front, resulting in greater values of θig,qc. Between these two
extremes, a plateau value of θig,qc was identified, although
this plateau is not as self-evident in two dimensions as in one

FIG. 6. (Color online) Ignition temperature at quenching θig,qc

as a function of (a) the overdrive � (with constant initiation length
li = 1) and (b) the initiation length li (with constant overdrive � =
1.5) in two-dimensional random systems. The reaction time is fixed
τc = 0 and each symbol represents a different domain length lx . The
horizontal line indicates the value of the propagation limit found,
θig,lim ≈ 0.65.
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FIG. 7. (Color online) Ignition temperature at quenching θig,qc as a
function of (a) the overdrive � (with constant initiation length li = 1)
and (b) the initiation length li (with constant overdrive � = 1.5) in
three-dimensional random systems. The reaction time is τc = 0 and
each symbol represents a different domain length. The horizontal line
indicates the value of the propagation limit found, θig,lim ≈ 0.85.

dimension. We attribute this result to smaller domain sizes
that were used for two-dimensional calculations. The plateau
appears more as an inflection point for the curves in Fig. 6.

Figures 6(a) and 6(b) show that the size of the domain
lx does not affect θig,qc in two-dimensions when the domain
length lx exceeds 50. The effect of lengthening the domain,
and thus increasing the quenching probability, appears to be
equally balanced by increasing the domain width, which ef-
fectively introduces additional propagation paths and increases
the probability of successful propagation. As opposed to one-
dimensional systems, a propagation limit in two dimensions
can be expressed independently of the domain size if the
domain is sufficiently large. This limit for the case of τc = 0 is
found to be θig,lim ≈ 0.650 ± 0.005, and this value is believed
to be the fundamental limit to propagation in two-dimensional
systems with random, discrete sources.

Similar simulations were performed in three dimensions
with up to 15 625 sources. In three dimensions, due to
computation limitations, the largest domain considered had
a size of lx = 25. As in two dimensions, we first considered
the effect of varying the overdrive �, while fixing the initiation
length li = 1 [Fig. 7(a)]. For smaller domains (lx = 20), the
front directly transitions from an underdriven to an overdriven
initiation and a plateau value of θig,lim ≈ 0.850 ± 0.003 only
becomes apparent for larger domains lx = {22,25} for 10 �
� � 13, as shown in Fig. 7(a). When � = 1.5 [Fig. 7(b)],
increasing the initiation length does permit a plateau to be
identified at approximately the same value (θig,lim ≈ 0.850),
giving confidence that this value is independent of the initiation
parameters. A summary of the values of the fundamental
propagation limit found in two- and three-dimensional systems
is given in Table I.

TABLE I. Summary of the propagation limits in one-, two-, and
three-dimensional systems according to the continuum solution, and
the discrete regular and random solutions for τc = 0.

Model 1D 2D 3D

Continuum θig,th 1.00 1.00 1.00
Discrete regular θig,lim 0.534 0.534 0.534
Discrete random θig,lim n/a 0.650 ± 0.005 0.853 ± 0.005

FIG. 8. (Color online) Propagation limit θig,lim as function of the
reaction time τc in two- and three-dimensional systems with randomly
positioned sources (symbols). The gray shading bands correspond
to propagation probability intervals. The solid line is the critical
ignition temperature θig,cr, the dashed line is the propagation limit
θig,lim for a regular array of sources, and the dash-dotted line is the
thermodynamic limit θig,th.

The effect of increasing the reaction time τc, which also
plays the role of the discreteness parameter, on the fundamental
propagation limit was studied to examine whether the behavior
would revert to continuum-like behavior for sufficiently large
τc. The domain size lx was fixed to 80 in two dimensions
and 22 in three dimensions, while the initiation conditions
were changed by varying the overdrive � and fixing the
initiation length li = 1 in order to determine the plateau
value of θig,qc. The propagation limits θig,lim found in two
and three dimensions are shown in Fig. 8 and compared to
the propagation limit obtained in a regular distribution θig,lim

[13]. The shaded bands quantifying propagation probability
intervals were obtained from the steepness parameter σqc,
which represents the one-standard-deviation interval for θig,qc

[i.e., P (θig,qc ± σqc) = 1
2 (1 ± erf 1√

2
)]. The critical ignition

temperature θig,cr, which quantifies the condition dθ/dτ = 0
at ignition and is solved for using Eq. (7), is also plotted as a
function of τc in Fig. 8. The relationship between the critical
ignition temperature θig,cr and τc illustrates the convergence of
the critical ignition temperature θig,cr associated with Eq. (7)
toward the thermodynamic limit θig,th as τc increases [13].

The results obtained in one-dimensional, random systems
are not shown because the propagation limit θig,lim could not
be defined. The propagation limit θig,lim in regular arrays (the
dashed curve in Fig. 8) is the same for all dimensions and
exhibits a sawtooth-shaped curve due to alternating changes
of the quenching mechanism between prompt quenching of
the front and the growth of oscillations of the front speed [13].

In three dimensions, randomizing the position of the
sources is beneficial to the propagation of the front.
The effect of randomizing the sources effectively eliminates
the dynamics associated with quenching in systems containing
sources regularly distributed for larger values of τc (i.e., the
sawtooth curve in Fig. 8). The propagation limit θig,lim in
three-dimensional random systems appears to converge rapidly
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toward the thermodynamic limit θig,th as the discreteness
parameter τc is increased. In two dimensions, the propagation
limit θig,lim increases with τc, but the propagation limit in a
system with regularly spaced sources then exceeds the value
found for two-dimensional random systems when τc > 2. The
propagation limit θig,lim in two dimensions asymptotes toward
a value approaching 0.80 as τc increases. The fact that the
front remains limited to propagate within a two-dimensional
domain prevents the propagation limit θig,lim from reaching the
thermodynamic limit θig,th = 1.

B. Front speed

In addition to the propagation limits, the average front
speed η can also be used to quantify the behavior of the front
under conditions far from quenching. In one dimension, the
location of the front xf along the direction of propagation can
be defined clearly, whereas two- and three-dimensional fronts
are represented by curvilinear lines and surfaces. The fact that
the position of the front is no longer described by a single
quantity requires a procedure to track the overall propagation.
Three different techniques have been considered to quantify
the average front speed in multidimensional systems. The
front speed was calculated by (1) fitting a line through the
xp(τ )-τ diagram, where xp is the x location of the source
ignited farthest away from the initiation end of the domain at
time τ , (2) fitting a line through the xi-τi diagram, where
xi represents the x location of the ith source ignited at
time τi , and (3) collapsing the temperature field in two and
three dimensions onto a one-dimensional system by averaging
the temperature at a given x location along a line in the
y direction or a y-z plane in two or three dimensions,
respectively; the position of the front is obtained by tracking
the location where the averaged temperature on the x axis
equals the ignition temperature. The three methods yielded
the same average front speed provided a sufficiently large
domain was used. The results discussed below have been
computed using the second method (using a line fit through
the xi-τi data sets), but are effectively independent of the
method used to calculate the front speed. Examples of the xi-τi

diagrams for one-, two-, and three-dimensional systems are
plotted in Fig. 9. The xi-τi data plotted in Fig. 9(b) for a two-
dimensional random simulation shows evidence of striated
bands that propagate much faster than the global average
front speed. Analysis of the simulations revealed that these
bands are caused by a rapid sequence of ignition sweeping
through clusters that naturally arise when sources are randomly
positioned. These striations also occur in three-dimensional
random systems, but these bands are more difficult to identify
in Fig. 9(c) due to their projection onto a one-dimensional
representation.

The front speed was measured using the average of ten
simulations using the same ignition temperature θig and the
reaction time τc, but different randomized distributions of
the sources. From the set of simulations performed, the front
speed is only reported on Fig. 1 if the propagation probability
P � 0.5. The average front speeds η for one-, two-, and
three- dimensional systems of randomly spaced sources are
compared to the front speed in a regular source distribution as
well as the continuum solution in Fig. 1. The corresponding

(a)

(b)

(c)

FIG. 9. (Color online) Typical space-time diagrams of ignition
events in (a) 1D (lx = 2 × 104), (b) 2D (lx = 90), and (c) 3D
(lx = 25). The reaction time is τc = 0 and the ignition temperature
is θig = 0.3.

standard deviations are negligible. In one dimension, the
front speed η is effectively independent of the initiation
conditions due to fact that the domain length considered (i.e.,
lx = 2 × 104) is sufficiently long to remove any influence on
the front speed due to initiation. In two and three dimensions,
the initiation conditions do not affect the average front speed η

provided that the line fit was performed after an initial transient
period in which the front first established itself.

Note that the solution plotted in Fig. 1 for regularly
distributed sources is calculated analytically from Eqs. (6) and
(7) that imposed a fixed periodicity to the sequence of initiation
of the sources, and is not obtained via simulations in which
the source is triggered as it reaches the ignition temperature
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as determined by the evolving solution. Thus, the discrete
regular solution does not exhibit the instabilities associated
with ignition and can be plotted up to the thermodynamic limit
θig,th = 1. As discussed in Sec. III B, this analytic solution
exhibits an unphysical property for values of θig > θig,cr

where ignition occurs upon a decreasing temperature, rather
than upon first encountering the ignition temperature; this
unphysical branch is plotted as a thin dashed line in Fig. 1.

The average front speed η significantly deviates from the
discrete regular model in one and three dimensions for τc < 1,
but approaches the solution given by Eq. (6) as τc increases.
However, the front speed η in three-dimensional, random
systems never reaches 0 as θig tends to 1, even for larger
values of τc. In two dimensions, the front speed measured
for random systems is approximately the same as the discrete
regular solution.

In random systems, the average front speeds are always
greater in three dimensions than in one and two dimensions,
and the two-dimensional fronts always propagate faster than
in one dimension. This feature is particularly evident for τc =
0, where the dimensionality of the system has the strongest
influence on the front speed. This result may indicate that the
front is dominated by local interactions within clusters that are
inherent in randomly positioned sources when τc 	 1. When
τc → ∞, the discreteness and dimensionality of the system do
not significantly affect the front speed.

VI. DISCUSSION AND CONCLUDING REMARKS

Reaction-diffusion fronts propagating in a system consist-
ing of pointlike sources embedded in an inert medium can be
profoundly influenced by the discrete nature of the sources. In
order to determine the significance of the effect of discreteness
or whether a space-averaging procedure is appropriate, the dis-
creteness parameter τc, which is the ratio of the reaction time tr
to the characteristic diffusion time between sources td , should
be examined. When τc � 1, the scale of the heterogeneity is
sufficiently small in comparison to the effective reaction zone
thickness that assuming the source term to be spatially uniform
in the reaction zone is an appropriate approximation. For
τc < 1, the propagation of the front is dominated by the effects
of discreteness. Two consequences of discreteness investigated
in this paper were (1) a propagation limit that occurs due to
the discrete nature of the front that cannot be predicted from
purely thermodynamic considerations and (2) a front speed that
is considerably different than that predicted by a continuum
model that neglects the diffusion time between consecutive
ignition events.

A strong influence of dimensionality of the system is seen
on both the propagation limit and the propagation speed for
systems with randomly positioned sources. In one-dimensional
systems with randomly position sources, it is not possible
to define a fundamental propagation limit independent of
the domain size, since as the domain is made larger, the
likelihood of encountering a gap that will result in failure of
the front always increases. This condition may be associated
with the front being dimensionally constrained such that a
source can only sequentially influence its immediate neighbor.
In this sense, the one-dimensional system considered here is
pathological, similar to the well-known pathological behavior

(i.e., anomalous heat conduction and diffusion, a lack of
thermalization, etc.) in one-dimensional lattices and fluids.
In two- and three-dimensional systems, however, it is possible
to define a fundamental limit to propagation that appears to
be independent of the domain size. This limit is found to be
different than that predicted by the continuum solution for the
equivalent homogeneous system and also different than the
limit found in a system of regularly spaced discrete sources.
Due to the statistical nature of phenomena resulting from
systems with randomly positioned sources, the propagation
limit can only be defined probabilistically. In this work, the
propagation limit is defined as the nondimensional ignition
temperature θig for a given nondimensional reaction time τc

that results in a 50% probability that a front will propagate
across a domain. Demonstrating that this limit is independent
of domain size and the method used to initiate the reactive
front involved performing a very large number of simulations
in which these parameters were varied systematically.

In two-dimensional systems with randomly positioned
sources, the propagation limit is encountered at θig ≈ 0.65 (in
comparison to the dimension-independent value of θig = 0.534
for regularly spaced systems) in the limit of instantaneous
reaction time τc = 0. The ability of a front in systems with
randomized sources to propagate under conditions that would
otherwise demand unphysical ignitions in a regular system
has been observed in prior work [12]. As τc is increased,
the two-dimensional random system does not revert back to
the thermodynamic limit θig,th = 1, suggesting that the front
(similar to the discrete regular solution) is still influenced by
front dynamics that result in quenching. For three-dimensional
systems with randomly positioned sources, the propagation
limit at τc = 0 is encountered at θig ≈ 0.85, and quickly
increases to a value close to the thermodynamic limit θig,th = 1
as the value of τc is increased to the order of unity. The
fact that the statistically defined propagation limit has a value
of θig,lim ≈ 1 means that there is a finite probability that the
front may propagate in a system with θig > θig,th. This result
is visible in Fig. 8 by the shaded band exceeding a value
of θig = 1 for three-dimensional random systems. As τc is
increased further (i.e., τc � 1), the transition between regions
of quenching and successful propagation becomes sharper (as
indicated by a decreasing value of σqc), and the solution band
narrows to converge to the thermodynamic limit which, being
continuum based, does not exhibit a probabilistic nature.

A similar strong influence of system dimensionality is seen
when examining the front speed. A front in a three-dimensional
system of randomly positioned sources propagates faster than
the corresponding two-dimensional system, which in turn is al-
ways faster than a one-dimensional system when the propaga-
tion occurs in the discrete regime (τc < 1), while in a system of
regularly space sources, the propagation speed is independent
of the system dimension. As the value of the dimensionless
reaction time τc is increased, the solutions for front speed in
different dimensions collapse together with the discrete regular
and continuum-based solutions over most of the values of igni-
tion temperature, as seen in Fig. 1. However, for large values of
θig near the thermodynamic limit, the three-dimensional ran-
dom system can exhibit propagation speeds that exceed even
the continuum-based solution as seen in Figs. 1(c) and 1(d),
and this effect persists for large values of τc ≈ 10. The fact that
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a discrete system in which heat must diffuse from source to
source can exceed the propagation speed of an equivalent ho-
mogenized system is strong evidence that a three-dimensional
system is able to exploit local fluctuations in concentration
that are inherent to randomly generated arrays of sources.

The results obtained between different dimensions of dis-
crete random systems and those in comparison to the discrete
regular and the equivalent continuum systems share a number
of high-level features that had previously been observed
in fronts propagating through a Belousov-Zhabotinsky (BZ)
medium containing spatially excited random fluctuations [19].
Although the BZ reaction is expressed in a disordered contin-
uum, rather than an array of pointlike sources considered in the
present paper, the front speed was larger in a two-dimensional
compared to a one-dimensional spatially randomized system.
This feature, similar to the results obtained with the present
discrete random model, highlights an enhanced propagation
due to the roughening of the front resulting from the random-
ness of the medium. In addition, Sendiña-Nadal et al. observed
that in a two-dimensional system, the propagation velocity in
a disordered continuum exceeds the velocity in an equivalent
homogenized system, a result that was also obtained in the
present study in a three-dimensional system.

The phenomenon studied here has some characteristics
of directed percolation [20,21], which also exhibits a
strong dependence on the dimensionality of a randomized
medium and which also cannot typically be observed in
one-dimensional systems. Similar to percolation, critical
values of system parameters (e.g., source densities) can only
be found by computational simulations and cannot be derived
from a mean-field theory approach. We do not believe,

however, that the phenomenon described in this paper can be
treated using traditional percolation theory, since percolation
theory usually limits interactions over a finite range (typically,
with nearest neighbors only), while in reaction-diffusion
systems governed by the diffusion equation, the domain
of influence of a given source is, in principle, infinite and
influences all subsequent time.

Evidence of experimental realization of this discrete regime
of propagation has been recently reported in an experimental
system consisting of iron particles in suspension in a gaseous
oxidizer [12]. Substituting the nitrogen in air for xenon
permitted the thermal diffusivity of the gaseous medium to
be sufficiently lowered, resulting in the flame propagating
through the reactive mixture being in the discrete regime.
Substituting the nitrogen with helium (with high thermal
conductivity) enabled the continuum regime to be realized.
The experimental measurements of the flame speed in xenon-
balanced mixtures exhibited a weaker dependence of the flame
speed on the particle burning time, indicative of the discrete
regime, compared to results obtained with helium-balanced
mixtures, which were in better agreement with continuum
theory predictions. Further investigations of other reactive
systems that may exhibit discrete behavior are underway.
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