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Bilateral shear layer between two parallel Couette flows
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We consider an unusual shear layer occuring between two parallel Couette flows. Contrary to the
classical free shear layer, the width of the shear zone does not vary in the streamwise direction but
rather exhibits a lateral variation. Based on some simplifying assumptions, an analytic solution is derived
for this shear layer. These assumptions are justified by a comparison with numerical solutions of the
full Navier-Stokes equations, which accord with the analytical solution to better than 1% in the entire
domain. An explicit formula is found for the width of the shear zone as a function of the wall-normal
coordinate. This width is independent of the wall velocities in the laminar regime. Preliminary results for
a cocurrent laminar-turbulent shear layer in the same geometry are also presented. Shear-layer instabilities
are then developed and result in an unsteady mixing zone at the interface between the two cocurrent

streams.
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I. INTRODUCTION

The laminar boundary layer that forms in the shear region
between two semi-infinite uniform parallel streams admits
a Blasius type of similarity solution. Lock [1] considered
streams of two different fluids and with different velocities,
say, U, and Uy, as depicted in Fig. 1(a). His numerical solutions
are reproduced in textbooks on viscous flows, e.g., Refs. [2,3].
In the special case where the two fluids are the same Lock [1]
found that the solution depended only on the ratio U,/ U, of the
velocities of the two streams. A particular feature of the plane
shear layer (also referred to as the classical mixing layer) is that
the width of the shear zone thickens as (xv/U D2, where v
is the kinematic viscosity and x is the streamwise distance from
the trailing end of the plate where the two semi-infinite streams
merge. Klemp and Acrivos [4] considered the nonuniqueness
of this boundary-layer problem due to an indeterminacy of
the streamline separating the two streams. Even by including
all higher-order effects in their analysis, the position of the
dividing streamline remained indeterminate.

A special feature of the plane shear layer is that stability
analyses, for instance, that by Betchov and Szewczyk [5],
show that the flow is unstable at all Reynolds numbers.
Bhattacharya et al. [6] ascribed this peculiarity to the parallel-
flow assumption on which the Orr-Sommerfeld equation
is based. They therefore formulated a nonparallel stability
problem and found a critical Reynolds number close to 30,
below which the flow is convectively stable.

The stability of the flow in a circular shear zone was
investigated by Rabaud and Couder [7]. They developed an
experimental apparatus in which the fluid was enclosed in
a very short and broad cylinder, the top and bottom of which
were both formed of disks rotating at a certain angular velocity
surrounded by an annulus rotating at a different rate of rotation.
In Sec. 4.3 of Ref. [7] they considered a linear model problem
in which a planar shear zone was formed in the center region of
a rectangular duct of which the two halves moved in opposite
directions.

In this paper another type of laminar shear layer will be
considered, namely, the plane shear layer that forms in the
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interaction zone between two cocurrent and fully developed
plane Couette flows.! Contrary to the classical free shear layer
[1-3], the width of the present shear layer is independent of the
streamwise position. As we shall see, however, the extent of
the shear zone varies in the direction normal to the streams and
thus shares some features with the linear model problem solved
earlier by Rabaud and Couder [7]. In the present study we
furthermore aim to compare the analytically derived solution
with a numerical solution of the full three-dimensional Navier-
Stokes equations in order to justify the inherent assumption of
unidirectional flow.

II. MATHEMATICAL FORMULATION

Let us consider the shear layer that develops between two
streams with velocities U, and U; in the (x,y) plane. While
U, and U, are taken as constants in the classical shear-layer
theory, let us now assume that both U, and U, vary linearly
with the lateral position.

We will assume that the flow field is steady and fully
developed in the streamwise direction, i.e., the three velocity
components U, V, and W are functions only of the two
coordinates y and z. The Navier-Stokes equations therefore
simplify to

Vo,U + Wo.U = v(d2U + 02U), (1a)
VO,V + W,V =—p'o,P+v(0;V +02V), (Ib)

VO, W+ Wo.W = —p~'a.P +v(9;W + 02W), (lo)
9,V +0.W = 0. (1d)

I'The flow beneath a flat-bottomed ship, e.g., a tanker or bulk carrier,
which travels with a small underkeel clearance to a flat sea floor, can
be described as a turbulent Couette flow at full scale but may be
laminar at model scale in a towing tank [8]. Two cocurrent Couette
flows, as considered here, therefore mimic the interaction of the flows
beneath two adjacent ships in side-by-side operation.
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FIG. 1. (Color online) A shear layer between two parallel streams.
(a) Generic sketch of a planar shear layer between streams with
velocities U; and U, and (b) two cocurrent planar Couette flows with
wall speeds U_ and U,. The dimensions of the flow configuration
refer to those used in the numerical calculations.

From the above system of partial differential equations it is
observed that the secondary motion, i.e., the flow (V,W) in
the cross-sectional plane, is independent of the streamwise
velocity component U . This flow is governed by Egs. (1b)—(1d)
for which the zero solution V = W = P =0 is a valid and
consistent solution. If so, Eq. (1a) for the x component of the
velocity vector simplifies to the Laplace equation

U+ 02U =0. )

A flow like this can be realized in the interaction zone
between two cocurrent plane Couette flows, as shown in
Fig. 1(b). The lower wall at z = 0 is fixed whereas the upper
wall at z = 24 moves in the positive-x direction with a speed
that is discontinuous at y = 0 such that the wall velocity is
U_ and U; for y < 0 and y > 0, respectively. Explicitly, the
boundary conditions are

Ux,y,z=0) =0,
Ux,y>0,z=2h)=Uy,,
Ux,y<0,z=2h)=U_.

The velocities far away from the shear zone will therefore
tend to the linear Couette flow profiles U; = zU_/2h and
U, = zU, /2h when we assume the flow to be steady and fully
developed.

III. NUMERICAL SIMULATION

Let us first solve the full Navier-Stokes equations in three-
dimensional space and time for a flow configuration as shown
in Fig. 1(b). The Reynolds number Re_ = U_ h/2v based on
half of the speed U_ of the fastest moving wall and half of
the wall distance 2/ was taken as 260 and the wall-speed ratio
was U_ /U, = 2.0. This Reynolds number is well below the
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subcritical transition Reynolds number below which the plane
Couette flow is known to be stable.

The Navier-Stokes equations for an incompressible and
isothermal flow are solved using a parallel finite-volume code
called MGLET [9]. The code uses staggered Cartesian grid
arrangements. Spatial discretization of the convective and
diffusive fluxes is carried out using a second-order central-
differencing scheme. The momentum equations are advanced
in time by a fractional time stepping using a second-order
explicit Adams-Bashforth scheme. The Poisson equation for
the pressure is solved by a full multigrid method based on
pointwise velocity-pressure iterations. The computational grid
is divided into an arbitrary number of subgrids that are treated
as dependent grid blocks in parallel processing. In the present
study, the size of the computational domain L, x L, x L,
and the number of grid points in each coordinate direction are
50.24h x 16.8h x 2h and 256 x 256 x 64,1i.e., comparable to
the rurbulent plane Couette flow simulation of Bech et al. [10].
Uniform grid spacing is adopted in the streamwise and the
spanwise directions, while a nonuniform mesh is used in
the wall-normal direction. Periodic boundary conditions are
employed in the streamwise and spanwise directions. No-slip
and impermeability conditions are imposed on the walls.

The numerical solution of the unsteady Navier-Stokes equa-
tions converged to a steady state. The present computations
thus yielded a flow field that is steady and fully developed in
the streamwise direction. This steady flow field is illustrated
in Fig. 2, where the streamwise velocity profiles are plotted
along the span. It can be observed that in regions away from
the shear zone the streamwise velocity varies monotonically in
the wall-normal direction in a linear fashion similar to laminar
plane Couette flows. The shear-layer width is minimal just
below the moving plates where the velocity gradient U /0y
is high. Due to viscous diffusion, the steepness of the velocity
profiles is gradually reduced toward the stationary wall. In
Fig. 3 the nondimensionalized wall-normal velocity W and
spanwise velocity V at the channel midplane are shown. These
results clearly illustrate that these two velocity components are
practically zero in magnitude and hence negligible.

IV. ANALYTICAL SOLUTIONS

The results from the numerical solution of the full Navier-
Stokes equation showed beyond any doubt that the secondary
velocity components V and W are negligible for all practical
purposes. The streamwise velocity component U is therefore
governed by the Laplace equation (2) for which an analytical
solution now will be sought. Assuming separation of variables
U(y,z) = Y(y)Z(z), we obtain the decoupled equations

Y' = —k*Y, 7' =k%Z, 3)

where k is a constant. The general solution to the equation
for Y in terms of cos(ky) and sin(ky) and periodic boundary
conditions Y(y +2L) = Y(y) imply a discretization of k
according to k = nm/L, where n € N. Standard theory of
Fourier series to satisfy all boundary conditions gives the
answer

UP(y,2) 2z

(U) 2h

A o) sinh (2n+Ll)rrz sin (2n+Ll)rry

h (2n+£)2;1h 2n+1

)

T .
=0 S
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where the average of the two wall velocities is (U) = %(U_ +
U ). One notes that the velocity, when reduced by the average
of the two wall velocities, depends on U_ and U exclusively
through a single parameter

A=Us-U)/(U) 4)
according to (here and henceforth (U) # 0)

Uy,2) _ z
w0y + AfnL(y,2). (6)

The first term is obviously the simple linear Couette flow
profile for a single wall moving at velocity (U ). All information
about the shear layer is now contained in the function
Sn.L(y,z). We will call the second term the asymmetry term
of U(y,2).

From Eq. (4) we may obtain the solution for the case of
Neumann boundary conditions at y = 00 by taking the limit
L — o0. The sum then becomes an integral according to the
Euler-Maclaurin formula (see, e.g., Ref. [11]). It is possible
to solve the resulting integral in closed form; however, the
Neumann solution is more elegantly obtained using complex
analysis.

The boundary-value problem is conformally invariant under
the Schwarz-Christoffel-type map

nn

+i 4 arctanh¢
= 1 = —_— s .
TEyTE=T 4h

¢ = tanh @)

The boundaries of the original problem are now mapped onto
the real ¢ axis so that z = O maps to ¢ € (—1,1), the boundary
z =2h, y > 0 where the velocity is U, is mapped to ¢ €
(1,00), and z = 2h, y < 0 where the velocity is U_ to ¢ €
(—1, —00). All other points in the original strip domain are
mapped conformally to the upper half of the complex 7 plane.
Seeking w(n) so that U(n) = Im[w(n)], we can instead find a
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FIG. 2. Spanwise variations of the streamwise velocity U/ U_ at
different wall-normal positions z//: numerical solution of the full
Navier-Stokes equation.
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FIG. 3. Normalized (a) wall-normal velocity W/U_ and (b)
spanwise velocity V /U_ contours in the midplane: numerical solution
of the full Navier-Stokes equation.

function w(¢(n)) satisfying the boundary conditions. Such is
the case for

U_ U
w(t) = —In¢ + 1) — —In(1 — ¢) (8)
T T

and with some manipulation we find

UNbc , A
ﬁ == + — arctan | tanh Ty tan T .9
(U) 2h  w 4h 4h
It is easy to see that simple linear Couette profiles are obtained

far aside of the shear layer as they should, noting that for
y > h, tanh(Z;) — sgn(y), i.e., the signum function.

V. DISCUSSION

The closed-form analytical solution (9) is applicable when
the flow is subjected to Neumann boundary conditions in
the spanwise direction, whereas the solution (4) applies for
spanwise periodicity. We first verified that the latter series
solution with 2L = 16.8h coincided with the closed-form
solution (9) in the shear zone. A comparison between the
latter and the full Navier-Stokes solution is provided in
Fig. 4. Recall that the width of the computational domain
on which the Navier-Stokes equations were integrated was
L, =16.8h whereas the displayed velocity profiles only
span the central 8.4k of the shear zone. The numerical
and analytical solutions agree to a relative error of order
0.01%, except in the immediate vicinity of the discontinuity
in the wall velocity where deviations of about 1% are
found. Hence the shear layer is excellently described by
the analytical expression given as the second term on the
right-hand side of Eq. (9) and an analytical expression for its
width variations in the wall-normal direction can be found as
follows.

Let us define the shear layer symmetrically about y = 0,
that is, it is the area within which the asymmetry term of
U(y,z) in Eq. (6) differs from its asymptotic form far from the
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FIG. 4. (Color online) Streamwise velocity U(y,z)/U- varia-
tions along the wall-normal direction z/ 4. The full numerical solution
(circles) is compared with the analytical equation (9) (solid lines) at
spanwise positions (top to bottom) y/h = —4.2, —-2.1,—0.95, —0.42,
—0.16, —0.03, 0.03, 0.16, 0.42, 0.95, 2.1, and 4.2. The top two and
bottom two lines nearly coincide.

shear region by more than a small relative measure &, typically
1%. Far from the shear layer the asymmetry term tends to that
for simple Couette flow, sgn(y)Az/4h, so according to Eq. (9)
the edges of this shear layer are given as the positive- and
negative-y solution of

A Ty b4 Az
A h(Z <) = 1— 8=,
- arctan |:tan <4h ) tan <4h )] sgn(y)( )4h

It is clear that in the laminar regime the thickness of the shear
layer is completely independent of the velocities U_ and U .
The shear layer is quite obviously symmetric around y = 0
such as we have defined it. We take the tangent of either side
and expand to linear order in §. Noting that for |tanh x| close
to unity we may use the approximation tanh x & sgn(x)[l —
2 exp(—2x)], we find the approximate shear-layer thickness
dhayer as a function of z as

Dayer _Eln(ﬂ—, o ) (10)
h T 4h sin 7
For small § this is an excellent approximation except in the
immediate vicinity of the discontinuity as shown in Fig. 5.

According to its definition, the shear-layer thickness van-
ishes at z = 2h, but not near the stationary wall at z = 0. This
is a consequence of the definition of the shear layer, which
is the region within which the relative difference between
the real velocity profile and the asymptotic (plane Couette)
flow at infinity is above some threshold. Thus, although all
absolute velocities tend to zero at z = 0, the values of U taken
at different y relative to each other remain finite and nonzero
in this limit, hence the shape of the shear layer as shown in
Fig. 5.

With our ratio L/h = 8.4 there is very little mutual
influence between the shear profileat y = Oandthataty = +L
appearing due to the periodic boundary conditions. To quantify
we plot the difference between the periodic and Neumann
boundary condition velocity profiles (4) and (9), respectively,
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in Fig. 6. For comparison, the same is plotted when the period
L is halved and doubled. For our choice of L/h ratio the
influence of the periodic boundary conditions remains below
the 1% level all the way out to the halfway points y = +L/2.
Doubling the spanwise period further reduces the influence by
five orders of magnitude.

VI. CONCLUSION

We have considered the shear layer between two cocur-
rent streams with constant vorticities a, = U, /2h and a; =
U_/2h, respectively. The numerical solution of the full three-
dimensional Navier-Stokes equation first showed that V and
W were totally negligible away from the plane of the velocity
discontinuity. The streamwise momentum equation therefore
simplified to a Poisson equation (2) for U(y,z). By assuming
spanwise periodicity, the analytical solution (4) was derived.
As the period tends to infinity, the analytic solution simplified
to the closed-form solution (9).

The width of the shear zone increased monotonically from
the moving split wall toward the fixed bottom plane where
the width 2djayer & 6.8h. Outside of the shear region, the two
cocurrent streams are constant-vorticity Couette flows where
the spanwise vorticity w, = 0U/0dz is generated by the wall
motion and diffused downward. In the shear zone, w, of the
fastest-moving fluid is reduced in the lower part and increased
as the moving wall is approached, whereas w, of the low-speed
flow is enhanced in the lower part but decreases near the upper
wall. In addition, the shear zone gives rise to a wall-normal
vorticity w, = —dU/dy > 0 and the highest level of w, is
reached in the vicinity of the moving wall at y/h = 0. In
the present flow the variations of w, and w, are governed
solely by viscous diffusion. It is noteworthy that in order to
maintain w, = 0, tilting of w, and w, by means of velocity
strains, i.e., w, 0U/dy and w, 0U/0z, respectively, is exactly
outweighed.

In order to check the stability of the present flow, the
numerical integration of the full Navier-Stokes equation was
repeated with random noise superimposed on the initial flow
field. The solution eventually evolved to the same steady
state as before, thereby suggesting that the laminar flow
is stable at the Reynolds number Re_ = 260 considered
here.
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FIG. 5. (Color online) Numerical shear-layer thickness for § =
0.01 (solid line) compared with the approximation (10) (dashed line).
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FIG. 6. (Color online) Absolute difference between U in the cases
of periodic (period 2L) and Neumann (L = 0o) boundary conditions,
whose analytical expressions are Eqgs. (4) and (9), respectively. This
quantifies the interaction of shear layers at y =0 and +L. We
compare the period used in this paper, 2L = 16.8h, with half and
twice this period. For the longest period the difference is at the level
of the cutoff error from including just 80 terms in the Fourier series
(4) giving rise to the oscillating behavior in this case.

The stability of the shear layer at a higher Reynolds number
was further investigated by Narasimhamurthy et al. [12], where
Re_ was increased to 1300 while keeping the Re, equal to
260. The computational domain and the number of grid points
were the same as before. This resulted in a velocity ratio
of U_/U; =5.0. The higher Re_ considered in Ref. [12]
is well above the subcritical transition Reynolds number of
300-370 (see Refs. [13,14]) for which the plane Couette
flow is fully turbulent. As a result, the interface between a
laminar and a turbulent plane Couette flow was studied in
Ref. [12] rather than the present shear layer between two
laminar Couette flows. The higher Re_, i.e., turbulence, had a
distinct effect on the interface where shear-layer instabilities
were developed resulting in large-scale interactions between
the turbulent and the nominally nonturbulent part flow. Such a
large-scale mixing zone is shown in Fig. 7 where instantaneous
velocity components from Ref. [12] are plotted. The secondary
flow in Fig. 7(c) together with the meandering motion or the
unsteadiness in the other two velocity components as depicted
in Figs. 7(a) and 7(b) clearly indicate that the shear layer is no
longer stable under turbulent conditions. As a result, a mixing
layer was established in Ref. [12] rather than the present stable
shear layer (see Ref. [12] for more details on the momentum
transfer and turbulent diffusion mechanisms occurring in the
mixing zone).

The dynamics of a laminar-turbulent interface has also been
investigated in a plane Couette flow configuration at Reynolds
numbers in the range from 180 to 650 by Duguet et al. [15].
Contrary to the cocurrent laminar-turbulent Couette flow [12],
initial perturbations were introduced into a conventional plane
Couette flow driven by continuous wall motion. Sufficiently
strong perturbations at sufficiently high Reynolds numbers
led to turbulence localized in the spanwise direction, which
enabled detailed explorations of the interface dynamics.

The Taylor-Couette flow between rotating cylinders ap-
proaches the plane Couette flow in the limit of large radii
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FIG. 7. Instantaneous velocity components from the direct
numerical simulation of Narasimhamurthy et al. [12] where
U_/U; =50, Re. =1300, and Re; =260. All profiles are
extracted from the midplane: (a) streamwise velocity U/U_,
(b) wall-normal velocity W/U_, and (c) spanwise velocity
V/U_.

and small gaps, as shown, for instance, by Faisst and Eckhardt
[16]. The present flow configuration can thus be considered
as a limiting case of a Taylor-Couette flow with different
rotational speeds of the upper and lower parts of the driving
cylinder.

Another analogy to the currently considered geometry is
that considered experimentally, e.g., by Burin et al. [17], in
which the end walls of a Taylor-Couette setup consist of two
independently moving rings rotating with the inner and outer
cylinders, respectively. Again the present flow configuration is
obtained as a limiting case.

The shear layer that forms between two cocurrent plane
Couette flows shares some similarities with the shear zone
formed in the junction between the two halves of a fluid-filled
duct that move in opposite directions. Rabaud and Couder [7]
derived an analytic solution for the latter problem by assuming
that the secondary motion was negligible and thereafter solving
Laplace’s equation (2). The width of the resulting shear zone
was largest midway between the two parallel duct walls,
whereas the width of the present shear layer increased all
the way from the split moving plate to the stationary wall.
Another distinguishing feature of the present flow is that linear
Couette flow profiles are recovered outside the shear zone
such that both spanwise vorticity and viscous shear still exist.
Outside the shear zone in the flow analyzed by Rabaud and
Couder [7], the fluid was conveyed as a solid body along with
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the moving halves of the duct and neither vorticity nor viscous
shear stresses prevailed.

A different shear layer has been introduced in this paper.
Contrary to the classical shear layer, the width of the shear
zone varies in the direction perpendicular to the shear but
is independent of the streamwise direction. An analytical
solution has been derived that compared perfectly well
with accurate numerical solutions of the three-dimensional
Navier-Stokes equations. The solution turned out to be
independent of the fluid viscosity, which implies that the
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solution is valid for all Reynolds numbers sufficiently low for
the flow to remain stable.
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