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Bistability and chaos in the Taylor-Green dynamo
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Using direct numerical simulations, we study dynamo action under Taylor-Green forcing for a magnetic Prandtl
number of 0.5. We observe bistability with weak- and strong-magnetic-field branches. Both the dynamo branches
undergo subcritical dynamo transition. We also observe a host of dynamo states including constant, periodic,
quasiperiodic, and chaotic magnetic fields. One of the chaotic states originates through a quasiperiodic route
with phase locking, while the other chaotic attractor appears to follow the Newhouse-Ruelle-Takens route to
chaos. We also observe intermittent transitions between quasiperiodic and chaotic states for a given Taylor-Green
forcing.
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I. INTRODUCTION

Dynamo theory has been applied to explain generation
and properties of magnetic fields present in celestial bodies
[1–3]. In this mechanism, a small magnetic field fluctuation
is amplified by the currents induced by the motion of the
conducting fluid. The growth of the magnetic field could be
either due to a linear instability or a nonlinear instability. The
kinematic dynamo, which involves a small magnetic field for
a given velocity configuration, is an example of a linearly
unstable dynamo in which the magnetic field grows or decays
exponentially. Nonlinear dynamos incorporate the complete
set of nonlinear interactions of the magnetohydrodynamic
(MHD) equations. The transition from fluid to dynamo state in
the initial phases is called a “dynamo transition.” An important
investigation in dynamo research is whether the dynamo transi-
tion is supercritical or subcritical. In supercritical bifurcation,
the magnetic field perturbation grows monotonically as μ

exceeds μc, where μ is a system parameter and μc is a critical
value of the parameter for the transition. Also, the amplitude of
the steady-state magnetic field grows as

√
μ − μc, whereas,

in subcritical bifurcation, the corresponding magnetic field
magnitude exhibits a sudden jump, as well as hysteresis, near
the transition.

As a result of the nonlinearity, the nature of the transition is
very rich, exhibiting a host of interesting behavior, including
supercritical or subcritical bifurcations [4–8], a variety of
dynamo states [7,9], multiple coexisiting attractors [7], etc.
The magnetic field of the Earth is temporally and spatially
chaotic [10]. The solar magnetic field is spatially random,
but the sun-spot cycle appears to indicate that the primary
dipolar field is quasiperiodic [11]. In the von Kármán sodium
(VKS) experiment, Monchaux et al. [9] and Pétrélis et al. [12]
reported various dynamo states, including constant, periodic,
quasiperiodic, and chaotic magnetic fields. In this paper, we
will study dynamo transition in the Taylor-Green dynamo. Our
analysis is based on the total energy as well as the large-scale
modes.

It has been found that the nature of dynamo onset depends
critically on various system properties, e.g., the magnetic
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Prandtl number (ratio of the kinematic viscosity and the
magnetic diffusivity), forcing function, system geometry,
rotation frequency, etc. Note that the magnetic Prandtl number
(Pm) of liquid metals and the convective fluids of the Earth’s
outer core and the Sun is very small (of the order of 10−5),
while that of the intergalactic medium is very large (around
1014). In this paper, we explore the nature of dynamo for a
magnetic Prandtl number of 0.5.

A strong motivation for dynamo research is to understand
the nature of geodynamo and solar dynamo. To this end,
scientists attempt to study the possible dynamo states and the
extent of the induced magnetic field in these systems. The
magnetic Reynolds number Rm (ratio of magnetic advection
and magnetic diffusion) of the geodynamo is estimated to
be around 125 [10], which is somewhat near the dynamo
transition, so we expect our present work on dynamo transition
to be relevant for the geodynamo. For the geodynamo, the ratio
of the magnetic energy and the kinetic energy is large [10].
Hence, it is called a strong-field dynamo. Roberts [13] argued
that a rotating sphere with magnetoconvection could show
bistability with a weak- and a strong-field branch. Pierre [14]
and Stellmach and Hansen [15] reported the occurrence of
such dynamo branches in rotating convection in Cartesian
geometry. Kuang and Bloxham [16] numerically simulated the
convective dynamo in a rotating spherical shell and observed
a weak-field dynamo solution in a simplified system, and
strong-field dynamo solutions in a more realistic system. In
this paper, we will show that similar bistability is exhibited in
the box geometry without rotation or convection.

Morin and Dormy [6] performed numerical simulation in
a rotating spherical shell with thermally driven convection
and showed that the dynamo transition shifts from super-
critical to subcritical as the magnetic Prandtl number is
decreased. Krstulovic et al. [17] observed similar behavior
in a low-dimensional model. Numerical simulations of the
Taylor-Green (TG) dynamo by Ponty et al. [4] demonstrate
that low-Pm TG dynamo shows subcriticality, while with
Pm = 1 (and higher values, probably) the TG dynamo shows
supercriticality, a result also observed by Yadav et al. [7]. We
will revisit the issue of subcriticality in this paper.

Ponty et al. [18] have reported that the Rm required to
sustain a dynamo tends to increase rapidly for lower magnetic
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Prandtl numbers. This makes direct numerical simulation of
flows with small Pm progressively difficult. For example,
the Rm for the dynamo transition in the VKS experiment is
around 20. Since liquid sodium has Pm ≈ 10−5, the critical
Reynolds number touches Rm/Pm = 20/10−5 ≈ 106 [9],
which is beyond the computational power of the present-day
supercomputers due to the requirement of very high numerical
grid resolution. However, many researchers have modeled
such extreme parameters using hyperdissipation, large-eddy
simulations [18], and shell models [5,8]. We use Pm = 0.5,
which allows us to investigate the TG dynamo in reasonable
detail using relatively coarse grid resolution.

Earlier, Nore et al. [19] simulated the TG dynamo for Pm
near unity. Ponty et al. [4] observed a subcritical dynamo
bifurcation for the TG dynamo in the low-Pm regime. Mininni
et al. [20] and Yadav et al. [7] studied the energy transfers and
the geometry of the velocity and the magnetic field structures.
Yadav et al. [7] also observed a supercritical pitchfork bifurca-
tion for the dynamo transition at Pm = 1. Dubrulle et al. [21]
investigated various bifurcations in both hydrodynamic (with
no magnetic field) and magnetohydrodynamic systems under
TG forcing. Scientists have also studied dynamo behavior for
various kinds of forcing, e.g., Roberts, ABC, Ponomarenko,
and random, as well as for different geometries, e.g., box,
cylinder, sphere, etc. [22]. Dynamo transition and subsequent
dynamo states have also been studied using low-dimensional
models of the dynamo [23].

The outline of the paper is as follows: The numerical
procedure is described briefly in Sec. II. Bifurcation analysis
is presented in Sec. III. We analyze several chaotic states and
the routes to chaos in Sec. IV. We conclude in Sec. V.

II. SIMULATION METHODOLOGY

The governing equations of the dynamo for an incompress-
ible fluid with unit density are

∂tu + (u · ∇)u = −∇p + (J × B) + ν∇2u + F, (1)

∂tB = ∇ × (u × B) + η∇2B, (2)

∇ · u = 0, (3)

∇ · B = 0, (4)

where u is the fluid velocity, B is the magnetic field, J = ∇ × B
is the current density, p is the hydrodynamic pressure, ν is the
kinematic viscosity, η is the magnetic diffusivity, and F is the
external force field. The three important parameters related to
dynamo instability are the magnetic Prandtl number Pm =
ν/η, the Reynolds number Re = UL/ν, and the magnetic
Reynolds number Rm = UL/η, where U and L are the large
velocity scale and the large length scale, respectively. Note that
Rm = Re × Pm, hence only two of the above three parameters
are independent. In our study, we fix the magnetic Prandtl
number to 0.5 with ν = 0.1 and η = 0.2.

We solve the MHD equations (1)–(4) numerically in a box
geometry of size (2π )3 with periodic boundary conditions in
all the directions. We use a pseudospectral code TARANG [24]
to carry out our simulations. We apply the fourth-order Runge-
Kutta scheme for time advancement with dynamically adjusted
dt = �x/

√
20Eu [the Courant-Friedrichs-Lewy (CFL) con-

dition], where �x is the grid spacing and Eu is the total

kinetic energy. On the velocity field, we apply the Taylor-Green
forcing

F(k0) = F0

⎡
⎣

sin(k0x) cos(k0y) cos(k0z)
− cos(k0x) sin(k0y) cos(k0z)

0

⎤
⎦ , (5)

where F0 is the amplitude of the forcing and k0 is the wave
number. We set k0 equal to 2. Note that the TG force field
has components only along the x and y directions. Numerical
simulations reveal that the TG forcing induces counter-rotating
eddies, and it has certain qualitative similarities with the VKS
experiment [9] and the spherical-shell dynamo with rotation
(to be discussed later).

The simulation box is uniformly discretized in all the
directions using 643 grid points. This resolution was sufficient
to resolve our simulation near the dynamo transition, as
demonstrated by the fact that the product of the Kolmogorov
length and the largest wave number lies between 1.3 and 9 for
all our runs. We also verified the grid independence by running
some simulations on a 643 grid as well as on a 1283 grid. All our
simulations were dealiased using the 2/3 rule. We performed
approximately 150 simulations for various forcing parameters
with F0 = 1 : 46, and studied the global kinetic and magnetic
energies as well as the amplitudes of the velocity and magnetic
Fourier modes. In our simulations, the magnetic Reynolds
number for the dynamo states ranged from approximately
3 to 90.

The importance of large-scale modes has been amply
highlighted in dynamo literature. In our present dynamo
simulations, as well as for Pm = 1 reported earlier by
Yadav et al. [7], some of the magnetic and kinetic Fourier
modes play dominant roles. For the magnetic Reynolds
numbers employed in these simulations, the dominant velocity
modes are (±2,±2,±2), (±4,±4,±4), (±4,±4,0), and the
dominant magnetic modes are (0,0,±1), (0,0,±2), (0,0,±3),
(±2,±2,∓3), (∓2, ∓ 2,±1). Here, the three arguments refer to
the x, y, and z components of the wave number in the Fourier
space. The (±2,±2,±2) velocity modes contain maximum
kinetic energy due to the TG forcing at k0 = 2. The above set
of modes carries more than 95% of the total energy. Note,
however, that higher wave number velocity and magnetic
Fourier modes become important in turbulent dynamos. We
also point out that the above modes play similar roles as
the large-scale modes described in the earlier dynamo studies
[1,25].

In this paper, we analyze time series and phase-space
plots of the Fourier modes. This exercise provides us with
information about various dynamo states as well as the nature
of bifurcations. Primary and secondary instabilities can be
conveniently illustrated using bifurcation diagrams. In the next
section, we will describe bifurcation diagrams constructed
using globally averaged quantities and some of the dominant
magnetic Fourier modes.

III. BIFURCATION ANALYSIS AND WEAK AND STRONG
DYNAMO BRANCHES

To understand various dynamo states of the TG dynamo,
as well as their origin, we construct a bifurcation diagram
by plotting the ratio of the total magnetic energy and the
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FIG. 1. (Color online) Bifurcation diagram: Ratio of the total
magnetic energy and the total kinetic energy (Eb/Eu) vs the forcing
amplitude F0. In the figure, ND = no-dynamo state, FP = fixed point
(constant in time), P = periodic state, QP = quasiperiodic state, and
C = chaotic state.

total kinetic energy (Eb/Eu) as a function of the TG forcing
parameter F0. These quantities are computed for the steady
states. An average value is taken for periodic and chaotic
dynamo states. In Fig. 1, we plot the time-averaged values of
Eb/Eu versus F0, which demonstrates the presence of various
dynamo states including no-dynamo, fixed point (constant in
time), periodic, quasiperiodic, and chaotic configurations. The
figure shows two distinct features: (1) a finite jump in the
magnetic field during the transition; (2) two distinct classes of
dynamo states labeled by “α” and “β.” An important point to
note is that multiple states could exist for a given F0. Hence,
to keep ourselves on a particular branch, we use the final state
of a dynamo state with a smaller F0 as an initial condition for
the dynamo with a larger F0.

Similar features are observed in Fig. 2 in which we plot Eb

versus Rm. The two branches α and β are quite distinctive.
The magnetic energy Eb, as well as the ratio Eb/Eu, are larger
for the β branch than that for the α branch. Thus, we call the
former a “strong-field” branch and the latter a “weak-field”
branch. The scatter in the data points in the figure is due to
the numerous secondary bifurcations. A jump in Eb, as well

FIG. 2. (Color online) Bifurcation diagram: Total magnetic en-
ergy (Eb) vs the magnetic Reynolds number (Rm). Description of
different symbols is provided in Fig. 1.

FIG. 3. (Color online) Bifurcation diagram: Time-averaged val-
ues of |B(0,0,1)| for various forcing amplitude F0. The inset for F0 =
14:16 illustrates a sudden jump and a hysteresis loop indicating that
the transition is subcritical. Also, oval A exhibits the quasiperiodic
route to chaos (see Sec. IV A), and the rectangular box B exhibits the
Newhouse-Ruelle-Takens route to chaos (see Sec. IV B). Description
of different symbols is provided in Fig. 1.

as the kneelike feature in the β branch, demonstrate that the
dynamo transition is subcritical. The origin of subcriticality
and “bistability” (dual branches) is intriguing, which will be
explored using large-scale Fourier modes.

As described in Sec. II, the dominant magnetic modes
are B(0,0,1) and B(0,0,2). We redo the bifurcation analysis
using the magnetic Fourier modes B(0,0,1) and B(0,0,2)
as the relevant quantities. It is noteworthy that the mode
B(0,0,1) is the most dominant one in the α branch. On the
contrary, B(0,0,2) is the dominant mode in the β branch with
B(0,0,1) ≈ 0. We also observe that for an arbitrary initial
condition, the α branch is much more likely than the β branch.
That is, the basin of attraction for the α branch is much larger
compared to the β branch. Moreover, the α branch shows richer
bifurcations than the β branch in the parameter regime studied
in this paper. In Fig. 3, we plot the time-averaged values of
the magnitude of B(0,0,1) for various F0 in the α branch. We
do not plot the β branch dynamo states in this figure to avoid
cluttering. Since the Fourier amplitudes are generally complex,
it is convenient to use the absolute value of a Fourier mode to
depict the dynamo states. Note that for some of the dynamo
states, 〈|B(0,0,1)|〉 is negligible, as shown by the data points
near the F0 axis of Fig. 3. For these states, other modes in the
α branch, which mostly carry small energy, become dominant,
for instance, the B(0,0,3) mode.

The jump in the value of 〈|B(0,0,1)|〉 provides further
insights into subcriticality. The inset of Fig. 3 shows an
enlarged view of the dynamo transition region near F0 = 15.8.
We first observe a dynamo state at approximately F0 = 15.8,
for which |B(0,0,1)|, as well as the Eb, shows a finite
jump. However, when we use the dynamo state at F0 = 15.8
as our initial condition and gradually decrease the forcing
amplitude, as shown in the inset of Fig. 3, the dynamo state
continues until F0 ≈ 15.2, at which point there is a sudden
jump to the fluid state. This feature of hysteresis for F0 =
15.2:15.8 demonstrates the subcritical nature of the dynamo
transition, with a “subcritical pitchfork bifurcation” at X and a
“saddle-node bifurcation” at Y (see the inset of Fig. 3). These
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FIG. 4. (Color online) The total kinetic energy (top panel) and
the total magnetic energy (bottom panel) for a forcing amplitude of
15.8, indicating a constant value for the field in the steady state.

points are joined together using a dashed curve to depict the
unstable branch. In a recent study, Krstulovic et al. [17] also
observed a subcritical dynamo transition in their simulation
and low-dimensional model. Morin and Dormy [6] observed
a subcritical dynamo transition for lower magnetic Prandtl
numbers in the spherical-shell dynamo. Using shell models,
Sahoo et al. [8] have reported a subcritical dynamo transition
for Pm as low as 10−4. In a planetary dynamo context, Kuang
et al. [26] argued that the sudden termination of the Martian
dynamo could be due to the subcriticality.

Another noteworthy feature during the dynamo transition
is that the Re is sufficiently high (≈60) for the fluid to
be temporally chaotic in the no-dynamo state. However, at
the same F0, both the temporal and spatial fluctuations in
velocity field are suppressed in the corresponding dynamo
state. Figure 4 contains the time evolution of a dynamo state at
F0 = 15.8, while Fig. 5 exhibits the volume-rendered velocity
and magnetic fields for a no-dynamo state and a dynamo
state near the dynamo transition. The suppression of chaotic
modulations in the velocity field after the dynamo transition
is due to the presence of the newly born finite magnetic field.
Morin and Dormy [6] reported similar effects of magnetic field
in their simulations. After F0 ≈ 16.2, the dynamo solution
bifurcates to periodic states, and subsequently to quasiperiodic
and chaotic states as shown in Fig. 3.

The dynamo transition of the β branch differs significantly
from that of the α branch described earlier. We highlight
the differences in Fig. 6. For the α branch, the jumps in the
kinetic and magnetic energies shown in Fig. 6(a) are consistent
with the subcritical nature of the transition described earlier.
However, the β branch exhibits chaos at the dynamo transition
itself. The origin of the chaotic state becomes apparent when
we decrease F0 from the fixed point solution. As shown in
Fig. 6(b), the fixed point bifurcates to quasiperiodic (triangular
data points) and, subsequently, to chaotic state (square data
point) as the F0 is decreased. The route to chaos for the β

branch may be similar to that observed by Pal et al. [27] for

FIG. 5. (Color online) Three-dimensional volume rendering of
velocity and magnetic field for F0 = 15.2 near the dynamo transition.
(a) Spatially chaotic velocity field for no-dynamo state. (b) Uniform
velocity field for the dynamo state due to the suppression of chaos
in the presence of finite mean magnetic field. (c) Uniform magnetic
field structure for the dynamo state. Note that magnetic field of (c)
does not contain B(0,0,2). It is, in fact, an approximate superposition
of B(0,0,1), B(0,0,3), and B(0,0,5) modes.

zero Prandtl number convection. The quasiperiodic and the
chaotic states are clustered in Fig. 1 near the transition.

The weak- and the strong-field branches of the dynamo
have been reported in the context of convection-driven hydro-
magnetic dynamos [13,16,29,30]. Pierre [14] and Stellmach
and Hansen [15] numerically demonstrated this phenomenon
in the Childress-Soward dynamo where they reported that the
strong-field branch goes even further back than the weak-field
branch in the parameter space, analogous to the β branch
reported in this paper. Similar behavior has also been reported
by Sreenivasan and Jones [31] in a rapidly rotating spherical
dynamo. It is interesting that our system in the box geometry,
without any convection or rotation, exhibits weak and strong
dynamo branches.

Another significant feature of our dynamo simulation is
the subcritical transition for Pm = 0.5. Note that the earlier
results on convective dynamo (with rotation) by Morin and
Dormy [6], and the low-dimensional model of Krstulovic
et al. [17], indicate that the dynamo transition could shift
from supercritical to subcritical as we decrease the Pm. Our
subcritical dynamo transition for Pm = 0.5 supplemented by
Yadav et al.’s [7] supercritical dynamo transition for Pm = 1
are consistent with the aforementioned works.
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FIG. 6. (Color online) Plots of the total kinetic energy (Eu) and
the total magnetic energy (Eb) vs the F0 near the dynamo transition:
(a) The α branch portrays the subcritical nature of the transition,
and (b) the β branch illustrates transition from a fixed point state
(filled circular data points) to a quasiperiodic state (triangular data
points) and subsequently to a chaotic state (square data point) as F0

is decreased.

The above results demonstrate common features of weak
and strong dynamo branches, as well as transition from
supercriticality to subcriticality with decreasing Pm, for the
TG dynamo and the spherical-shell dynamo. These similarities
could be due to some geometrical resemblance between the
two systems. Rotating convection generates Taylor columns,
with the adjacent columns having the opposite sense of
rotation and helicity (see Fig. 5 in Ref. [28]). In Fig. 7, we
plot the kinetic helicity u · (∇ × u) for a dynamo state near
transition. The alternating signs in the helicity are qualitatively
similar to the Taylor columns in spherical dynamo simulations.
This resemblance encourages us to investigate these features
further. In the next section, we will focus on several chaotic
dynamo states and study routes to chaos for these states.

IV. ROUTES TO CHAOS

The phase-space portraits drawn using the Fourier modes
reveal multiple windows of chaos near the dynamo transition
itself. In this section, we describe routes to chaos for two
chaotic windows: the oval enclosure A and the rectangular
box B shown in Fig. 3. In the following discussion, we show
that the origin of chaos for the dynamo states of oval A follow
a quasiperiodic route to chaos through phase locking, while
the corresponding route to chaos for the box B is through the
Newhouse-Ruelle-Takens scenario.

FIG. 7. (Color online) Kinetic helicity u · (∇ × u) for the F0 =
15.2 dynamo state. The alternating sign of the helicity is qualitatively
similar to the Taylor columns of spherical-shell dynamo with
rotation [28].

We study the routes to chaos using some of the dominant
modes of the magnetic field, viz., B(0,0,1), B(0,0,2), and
B(0,0,3). We use time series, phase-space projections, and
Poincaré sections for this study [32].

A. Quasiperiodic route to chaos through phase locking

In Fig. 8, we illustrate the phase-space projections of
dynamo states on the |B(0,0,1)|-|B(0,0,3)| plane for the
forcing range of F0 = 41:46 (corresponding to the oval A of
Fig. 3). For F0 = 41, 42, and 43, the system is quasiperiodic
since the phase-space projection is densely filled up. The

4 4.1 4.2 4.3
1.1

1.15

1.2

1.25

|B(0,0,1)|

|B
(0

,0
,3

)|

41 42 43 43.85 44.75

46

FIG. 8. (Color online) Phase-space projections on the |B(0,0,1)|-
|B(0,0,3)| plane demonstrating a quasiperiodic route to chaos through
phase locking. The forcing amplitudes F0 for different attractors are
marked with arrows. F0 = 41, 42, 43, F0 = 43.85, and F0 = 44.75,
46 correspond to quasiperiodic, phase-locked, and chaotic states,
respectively.
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FIG. 9. (Color online) Poincaré sections of some of the attractors
of Fig. 8 with |B(0,0,3)| = 1.15 as the Poincaré plane: (a)
quasiperiodic attractor for F0 = 43; (b) phase-locked attractor for
F0 = 43.85; (c), (d) chaotic attractors for F0 = 44.75 and 46.

approximate values of the two incommensurate frequencies
for the F0 = 43 dynamo state are 0.0165 and 0.0208 (for the
|B(0,0,1)| time series). For F0 = 43.85, the system becomes
periodic or phase locked. The time period of the periodic
orbit is relatively large. The emergence of periodic orbit
from quasiperiodic solutions is called “phase locking” [32].
A subsequent increase of F0 leads to a chaotic state, as evident
from the phase-space projections for F0 = 44.75 and 46. The
nature of attractors is corroborated by the Poincaré sections for
F0 = 43, 43.85, 44.75, and 46 presented in Figs. 9(a)–9(d),
respectively. These Poincaré sections were obtained by using
|B(0,0,3)| = 1.15 as the Poincaré intersection plane for
the phase-space trajectories in the subspace of |B(0,0,1)|-
|B(0,0,2)|-|B(0,0,3)|. Thus, the chaotic trajectories in the oval
A of Fig. 3 appear through the quasiperiodic route via phase
locking, first reported for the circle map [32].
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FIG. 10. (Color online) Phase-space projections on the
|B(0,0,1)|-|B(0,0,3)| plane. Panel (a) contains a stable 2-torus (F0 =
39.3) and a 3-torus quasiperiodic state (F0 = 39.464) and panel (b)
shows a large chaotic attractor for F0 = 39.51. The corresponding
forcing amplitude is marked with an arrow. The circle drawn in (b)
portrays a rough phase-space span of the attractors shown in (a).
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FIG. 11. (Color online) Power spectral density (PSD) plot of the
dynamo states shown in Fig. 10 constructed using |B(0,0,1)| time
series. The dominant frequencies are depicted in the figures with ar-
rows. (a) For F0 = 39.3, the state has two incommensurate dominant
frequencies. (b) For F0 = 39.464, the state has three incommensurate
frequencies. (c) A dense power spectrum corresponding to the large
chaotic attractor portrayed in Fig. 10(b).

B. Newhouse-Ruelle-Takens scenario

We observe an interesting set of dynamo states in the
rectangular box B of Fig. 3. Figure 10(a) illustrates the
phase-space projections on the |B(0,0,1)|-|B(0,0,3)| plane for
F0 = 39.3 and 39.464, corresponding to the two triangular data
points in the box B of Fig. 3. Also, the power spectral density
plot (PSD) of the |B(0,0,1)| time series of these two dynamo
states is shown in Figs. 11(a) and 11(b). The PSD reveals
that the state at F0 = 39.3 contains two incommensurate
frequencies f1 and f2 [Fig. 11(a)], while the state at F0 =
39.464 has three incommensurate frequencies f1, f2, and f3

[Fig. 11(b)]. Thus, the corresponding dynamo states reside
on “2-torus” (T 2) and “3-torus” (T 3), respectively, in the
subspace. We expect that a further increase in F0 should
push the system to chaos following a Newhouse-Ruelle-Takens
scenario. However, we have not yet found the corresponding
chaotic attractor. Recently, Stefani et al. [33] have observed
similar quasiperiodic routes to chaos in a dynamo model.

Instead of a transition from T 3 to a chaotic dynamo state, a
very small increase of F0 (in the fourth decimal place) pushes
the system to a new chaotic attractor, the span of which is
much larger than those of the T 2 or T 3. In Fig. 10(b), we
illustrate the larger chaotic attractor obtained for F0 = 39.51,
corresponding to the square data point in the box B of Fig. 3.
In Fig. 10(b), T 2 or T 3 states reside in the circled region.
The large attractor for F0 = 39.51 has a different origin, as
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FIG. 12. (Color online) Time evolution of a dynamo state at F0 = 39.4658 showing intermittent transitions among three attractors:
quasiperiodic state T 2 (b), quasiperiodic state T 3 (c), and chaotic state (d). Panels (b)–(d) are the phase-space projections at three different time
intervals during the evolution.

the PSD shown in Fig. 11(c) is quite different from those in
Figs. 11(a) and 11(b). The origin of the larger attractor is not
well understood. However, it is possibly through a “crisis.”
Note that a large number of attractors exist for this range of
F0, as evident from Fig. 3. Chaos can emerge due to merging of
multiple attractors or their basins of attraction [32]. A detailed
investigation of these issues is beyond the scope of this paper.

We performed dynamo simulations near F0 = 39.51 and
observed interesting features involving intermittent transitions
between three attractors; this dynamics will be described in
the next section.

C. Intermittent transitions between various attractors

For the forcing amplitude F0 = 39.4658, we observe inter-
mittency. A long time series for the F0 = 39.4658 simulation
is illustrated in Fig. 12(a), which illustrates that the system
makes intermittent transitions among three attractors, 2F, 3F,
C, shown below the time series. Note that the 2F, 3F, and C
attractors are qualitatively similar to the states shown in Fig. 10,
obtained for F0 = 39.3, 39.464, and 39.51, respectively. Thus,
at F0 = 39.4658, the system appears to traverse through
various attractors. The intermittent transition among various
attractors described above is similar to “intermittency” in
which a system switches between an “ordered” state and a
chaotic state for a single parameter value. In Fig. 12, the
quasiperiodic states are the ordered states. The system has
been evolved for 50 000 eddy turnover times, and only a part
of this time series has been shown in Fig. 12(a). Hence, the
observed phenomena are not transient. The large fluctuations
near time = 21 250 in Fig. 12(a) are transient fluctuations that
settle down quickly.

V. CONCLUSIONS

We performed dynamo simulations with Taylor-Green
forcing for Pm = 0.5. We observe bistability with weak-
and strong-magnetic-field branches. The dominant magnetic
Fourier modes of these branches are B(0,0,1) and B(0,0,2),
respectively. Both of these branches have subcritical ori-
gins. Qualitatively, these branches resemble the weak- and
strong-field dynamo actions in rotating magnetoconvection
(spherical-shell dynamo) reported earlier [13,16].

Our simulations also reveal various kinds of dynamo
states ranging from temporally constant to temporally chaotic
ones. We analyzed two chaotic dynamo states in our sim-
ulations. Chaos for these parameter windows arise through
quasiperiodic routes. One of them undergoes phase lock-
ing, while the other appears to go through the Newhouse-
Ruelle-Takens route. We also observe intermittent transitions
between quasiperiodic attractors (T 2 and T 3) and a chaotic
attractor.

Our study and that of Yadav et al. [7] on the TG dynamo find
dynamo states with time-independent (fixed point), periodic,
quasiperiodic, and chaotic magnetic field configurations,
which have also been observed in the VKS experiment for
different rotation frequencies of the iron propellers [34].
However, there is a major difference between the systems. The
TG dynamo for lower Pm appears to show subcritical dynamo
transition [4,8], but the VKS experiment exhibits supercritical
dynamo transition. Also, the behavior of dynamo transition
and dynamo states for Pm = 0.5 discussed in this paper differs
significantly from the Pm = 1 TG dynamo studied by Yadav
et al. [7]. This feature illustrates the richness of the underlying
nonlinear MHD equations.
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We performed our simulations of the TG dynamo in a peri-
odic box, which is an idealized geometry. Yet, we observe cer-
tain similarities between our results and the convective dynamo
in rotating spheres, e.g, shift from a supercritical to a subcritical
transition with a decrease of magnetic Prandtl number and co-
existence of strong- and weak-magnetic-field branches. These
similarities could be due to some geometrical resemblance be-
tween the two systems as discussed in Sec. III. We need to ex-
plore the connection between the TG dynamo and realistic sys-
tems such as the spherical-shell dynamo. Also, an extension of
this work to lower magnetic Prandtl numbers would yield inter-
esting insights into the challenging problem of MHD dynamo.
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