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Temperature crossover of decoherence rates in chaotic and regular bath dynamics

A. S. Sanz,1 Y. Elran,2 and P. Brumer3

1Instituto de Fı́sica Fundamental (IFF–CSIC), Serrano 123, 28006 Madrid, Spain
2The Weizmann Institute of Science, Rehovot, Israel

3Chemical Physics Theory Group, Department of Chemistry and Center for Quantum Information and Quantum Control,
University of Toronto, Toronto, Ontario, Canada M5S 3H6

(Received 30 January 2012; published 30 March 2012)

The effect of chaotic bath dynamics on the decoherence of a quantum system is examined for the vibrational
degrees of freedom of a diatomic molecule in a realistic, constant temperature collisional bath. As an example,
the specific case of I2 in liquid xenon is examined as a function of temperature, and the results compared with an
integrable xenon bath. A crossover in behavior is found: The integrable bath induces more decoherence at low
bath temperatures than does the chaotic bath, whereas the opposite is the case at the higher bath temperatures.
These results, verifying a conjecture due to Wilkie, shed light on the differing views of the effect of chaotic
dynamics on system decoherence.
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I. INTRODUCTION

Decoherence, and the control of decoherence, is a central
problem in modern quantum physics. In particular, “quantum
technologies,” such as quantum cryptography, quantum com-
puting [1], and quantum control [2] rely upon the maintenance
of quantum effects over significant periods of time. As such,
decoherence serves as a primary obstacle to progress in the
experimental implementation of a number of these quantum
based scenarios. Of particular interest is the nature and rates
of decoherence in systems in the condensed phase.

In this regard, it has been long argued [3–14] that traditional
uncoupled oscillator or standard spin bath models (e.g.,
the spin-boson [15,16], boson-boson [17–19], spin-spin [20]
models) are inadequate to describe dynamics in condensed
phases since they lack intraenvironmental coupling. Such
intraenvironmental coupling can display different types of
behavior, including chaotic dynamics, and therefore its effect
on decoherence can be significantly different from traditional
models.

For example, in such uncoupled bath cases, when the system
perturbs the bath, it cannot relax internally; energy must
flow through the subsystem in order for the bath to return
to equilibrium. This causes the system energy to increase
initially even when relaxation is expected [21]. Second, the
system becomes strongly entangled with the bath as a result
of this energy flow and hence the system decoheres more
strongly than it should. Finally, the equilibrium state that the
bath reaches may not be the expected canonical state [22].

Applications of uncoupled oscillators to model condensed
phase environments may be especially problematic. For
example, anharmonic corrections are known to be important
in the study of phonons in Si [23] and are essential for the
explanation of heat transport. Both the vibrational dynamics
of Si [24] and its electronic structure [25] are believed to be
chaotic. Dynamics of a colloidal particle in water have also
been shown to be chaotic [26].

The effect of the structured environment on some issues
in solid state has been examined. For example, it has recently
been shown, for the central spin model [27–33], that the role of
structured environments on solid-state (ferromagnetic phase)

implementations is important. In particular, the dynamical
regime of the bath has been observed [28] to determine the
efficiency of the decoherence process. For example, in a
perturbative regime, decoherence is stronger in the integrable
limit; on the other hand, in the strong coupling regime the
chaotic limit is more efficient. Also, the two-spin system
decoherence has been found to exhibit different behavior
depending on the characteristics of the coupling with the
environment, as well as on the internal dynamics and initial
state of the environment.

Clearly, studies on more realistic models than the uncoupled
oscillator or spin models are needed for condensed phase
environments. Efforts to generalize the oscillator bath model
in such cases are very preliminary. When intrabath coupling is
added to the boson or spin bath, general analytic solutions
are unavailable and exact solutions can only be obtained
computationally for very small baths. In the case of oscillator
bath models, the bath cannot consist of more than three or
four oscillators. For spin baths results have been reported for
approximately 20 spins.

The most common question addressed in such studies is
whether intrabath coupling increases or decreases the decoher-
ence of the embedded subsystem. Surprisingly, this apparently
simple question has generated considerable controversy. It
was first conjectured by Zurek that decoherence should be
greater for chaotic baths [3]. This was quantitatively verified
in a study wherein a single harmonic oscillator subsystem
interacts with a bath consisting of a single chaotic oscillator [5].
Unfortunately, the relevance of this result to the usual paradigm
of a small system interacting with a large environment is
unclear. Furthermore, Alicki has argued [7], by contrast,
that the decoherence rate in the limit of pure decoherence
(i.e., in the absence of dissipation) will be greater for an
integrable bath than for a chaotic bath. This is because the
energetically available bath states in the integrable case can be
highly degenerate, whereas only one state is available in the
chaotic bath at a given energy due to level repulsion. Thus
if a chaotic system-bath state is microcanonical, the wave
function of the system plus bath will be a simple product
state, since there is only one energetically available bath state
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with which the system can couple. Accordingly, there should
be greater decoherence in the integrable case. This viewpoint
can also be supported with semiclassical arguments [6]. It
can be shown that the square of the off-diagonal matrix
elements of the system-bath coupling operator scale as h̄N−1

for a chaotic bath [34]. The off-diagonal coupling matrix
elements thus vanish in the thermodynamic limit. At low
temperatures the diagonal matrix elements change slowly with
energy [6] and so the subsystem dynamics is shifted but not
strongly decohered. By contrast, selection rules for integrable
systems guarantee large off-diagonal matrix elements which
cause strong decoherence. These conclusions were verified
numerically for a low temperature spin bath [6].

Thus, there are two well-defined and apparently contra-
dictory positions on the issue of whether a chaotic bath may
increase or decrease decoherence. Numerous low temperature
spin-bath studies [4,6,8–12,14] support Alicki’s [7] predictions
that decoherence should be greater for integrable baths.
However, there are spin-bath studies that draw the opposite
conclusion [13] and hence support Zurek’s conjecture that
chaotic baths cause greater decoherence.

Based on these results Wilkie has speculated [35] that
some sort of transition occurs with increasing temperature; a
chaotic bath could cause less decoherence at low temperature
and greater decoherence at high temperature. This conjecture
would be consistent with the spin-bath results [4,6,8–14] and
would not be in direct conflict with the oscillator calculation
[5]. However, the existence of such a transition is difficult to
verify in exact spin-bath or oscillator-bath calculations. High
temperature calculations for a bath of ten spins [6] did not
show such a transition and calculations for larger spin baths
could not be carried out at high temperature.

An alternative approach would be to explore the possibility
of such a transition using an approximation scheme. This
approach is the focus of this paper. Recently it has been shown
that quantum decoherence can be accurately computed using
classical dynamics simulations based on the quantum Wigner
function [36,37]. In this Wigner approach, regions of phase
space where the Wigner function of the initial state takes
negative values are Monte Carlo sampled using the absolute
value and the resulting classical trajectories carry a negative
sign as a weighting factor. The resulting approximation
can be very accurate, and in this paper we employ this
approach to examine the decoherence of a superposition of
vibrational states of I2 in liquid Xe baths comprising 512
atoms.

Our key observations are (a) we observe less decoherence
of vibrational superposition states of I2 at low temperatures
for liquid Xe than for its ideal gas counterpart obtained
via simulations without Xe-Xe interactions, but (b) as the
temperature is increased, a transition is observed and liquid
Xe becomes the stronger source of decoherence. Thus, we
show the existence of the two regimes in a physically realistic
model. Note, as an immediate application, that the decoherence
of a vibrational superposition state is a significant impediment
to coherent control via pump-dump scenarios [2]. Hence,
understanding conditions responsible for decoherence in such
systems is important. Indeed, this was the original motivation
for examining this particular system.

This paper is organized as follows. The model considered,
as well as the details of the numerical simulations, are
discussed in Sec. II. Section III reports the numerical results
of the simulations for two different initial states at three
temperatures and qualitative explanations for the observed
behavior are proposed. Finally, Sec. IV contains a summary of
conclusions.

II. MODEL

A. Hamiltonian

Consider the decoherence rates for different superpositions
of vibrational states of I2 coupled to a bath of Xe atoms. The
subsystem of interest is the vibrational degree of freedom of
the diatomic, and the environment comprises the translational
degrees of freedom of the I2 and of the Xe atoms. The
Hamiltonian describing the full system [38] can be written as
a standard system-plus-environment Hamiltonian, as follows:

H = Hs + He + Hse, (1)

where

Hs = p2

2μI2

+ V (q), (2a)

He = p2
I2

2mI2

+
∑

i

p2
i

2mXe
+

∑
i<j

φXe-Xe(rij ), (2b)

Hse =
∑

i

φI2-Xe(r0i ,q). (2c)

Here, Eqs. (2a) and (2b) describe the independent evolution
of the I2 vibrational degree of freedom (q) and the bath
dynamics, respectively, while Eq. (2c) accounts for their
interaction. The isolated I2 is described by a Morse oscillator,

V = D[1 − e−β(q−q0)]2, (3)

with D = 1.2547 × 104 cm−1, β = 1.8576 Å−1, q0 = 0, and
μI2 = mI2/4, with mI2 being the I2 molecule mass and μI2

being its reduced mass. The degrees of freedom of the
environment include the translational degree of freedom of the
I2 (its center of mass, with mass mI2 ), as well as the collection
of N Xe atoms. The interaction between Xe pairs is described
by the Xe-Xe interaction potential φXe-Xe(rij ), where rij is the
distance between the ith and j th Xe atoms. This interaction is
modeled by a realistic pairwise Lennard-Jones potential:

φXe-Xe(rij ) = 4εXe-Xe

[(
σXe-Xe

rij

)12

−
(

σXe-Xe

rij

)6
]

, (4)

where εXe-Xe = 154.00 cm−1 is the well depth of the potential
and σXe-Xe = 3.930 Å is related to the position of the minimum
of the well [V (rmin) = −εXe-Xe], rmin = 21/6σXe-Xe. Here,
εXe-Xe gives an estimate of the intensity of the interaction
between two Xe atoms and σXe-Xe is the effective diameter
of the Xe atoms. Note that under these conditions and at the
densities and temperatures considered in this work Xe is a
liquid.

The coupling between the I2 vibration and the bath is
described by the interaction Hamiltonian [see Eq. (2c)]. If
vibration and translation were not coupled in the I2, this term
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FIG. 1. (Color online) Dependence on temperature of the purity
as a function of time for the I2 initially in a superposition of the ground
and second-excited states: (a) T = 177.36 K, (b) T = 221.7 K,
and (c) T = 554.25 K. In all graphs, the black solid line indicates
the Xe-Xe coupling is active, the red dashed line corresponds to the
“ideal gas” bath (no intrabath interactions), and the blue dotted line
corresponds to the isolated I2.

would just account for the interaction between the I2 with the
Xe atoms and, therefore, would look like Eq. (4), with εXe-Xe

and σXe-Xe replaced by εI2-Xe and σI2-Xe, and rij replacing r0i

between the I2 and the ith Xe atom. In such a case, εI2-Xe and
σI2-Xe can be taken as the average of the corresponding Xe-Xe
and I2-I2 interactions, i.e., ε = √

εXe-XeεI2-I2 and σ
(0)
I2-Xe =

(σXe-Xe + σI2-I2 )/2 (here, εI2-I2 = 382.27 cm−1 and σI2-I2 =
4.982 Å denote the well depth and position of the minimum
for the corresponding I2-I2 pairwise Lennard-Jones potential
function). Here, however, since the diatomic is “breathing”
while it vibrates, σ plays the role of an effective radius given by
σI2-Xe = (σXe-Xe + σI2-I2 + αq)/2 = σ

(0)
I2-Xe + αq/2 [38]. Since

diatoms expand and contract in one direction, α � 1. This
model, termed an effective breathing sphere, models the
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FIG. 2. (Color online) Dependence on temperature of the Lya-
punov exponent as a function of time for the I2 initially in a
superposition of the ground and second-excited states: (a) T =
177.36 K, (b) T = 221.7 K, and (c) T = 554.25 K. In all graphs,
the black solid line indicates the liquid Xe case and the red dashed
line indicates the ideal gas Xe results. Note how �(t) is similar in all
three cases for the ideal gas Xe bath case.

interaction of I2 with the surrounding environment through
the interaction potential:

φI2-Xe(r0i ,q) = 4εI2-Xe

[(
σI2-Xe

r0i

)12

−
(

σI2-Xe

r0i

)6
]

, (5)

a potential that is known [38] to be quantitatively reliable for
this system.

To obtain the analog of an uncoupled oscillator bath for
comparison purposes, we simply ignore the Xe-Xe interac-
tions, setting the third term in Eq. (2b) to zero. Collisional
interactions between the Xe atoms of the bath are thus
removed, although collisions with the I2 are retained, a model
referred to below as the “Xe ideal gas.”
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B. Dynamics

We consider initial states consisting of a thermally equili-
brated Xe bath within which is embedded an iodine molecule
in a superposition of vibrational states. Conceptually, such a
superposition could be prepared by laser excitation from the
ground vibrational state, where a multiphoton path can be
utilized to overcome any selection rule issues. The subsequent
dynamics calculations are done by sampling the Wigner
distributions corresponding to the initial superpositions of
Morse eigenstates [39] with classical trajectories [40], fol-
lowed by standard molecular dynamics (MD) techniques
[41] using the velocity-Verlet algorithm [42] to propagate
the trajectories. The result is the time-evolving density
ρ(q,p,r0,p0,{ri,pi}Ni=1,t) for the full system + bath. A total
number of 2 × 106 trajectories was considered. In all reported
simulations the total number of particles (I2 plus Xe atoms)
is 512, which was found to be adequate to converge the
calculation of the purity, used as a measure of the system
coherence. Finally, a density (I2 in Xe) ρ∗ = 3053 g/cm3 was
used in all the calculations to fix the size of the MD cell.
Conversion factors and parameters used in the simulation are
provided in the Appendix.

III. COMPUTATIONAL RESULTS AND DISCUSSION

As a measure of decoherence, we compute the purity χ of
the I2 dynamics [43], defined as

χ = Tr
[
ρ2

s (t)
] =

∫
ρ2

s (q,p,t)dq dp, (6)

where

ρs(q,p,t) =
∫

ρ
(
q,p,r0,p0,{ri,pi}Ni=1,t

)
dr0 dp0 
N

i=1dri dpi

(7)

is the reduced density associated with the subsystem of interest,
which here is the I2 vibrational degree of freedom. Since the
initial state (a vibrational superposition) is described by a
wave function, the purity is initially unity, but decays with
time as a consequence of the entanglement of the system
and bath degrees of freedom. A small amount of decay in
χ is also observed as a function of time for the isolated
diatomic propagated in the absence of the bath. This decay
[see, e.g., Fig. 1] is a measure of the computational accuracy
and is found to be very small over the relevant 5 ps time
scale.

Figure 1(a) shows the purity as a function of time for
the two cases of Xe liquid and Xe ideal gas where the
initial vibrational degree of freedom of the I2 is in an equal
superposition of the ground and second-excited vibrational
state. At 177.36 K both liquid Xe and ideal gas Xe are
seen to cause decoherence of I2 on a picosecond time scale.
In this case it is apparent that the liquid Xe bath causes
substantially less decoherence than does the ideal gas Xe
bath.

To verify that the liquid Xe dynamics is indeed chaotic
we calculated the Lyapunov exponent, denoted by �(t),
as the distance between two nearby Xe initial conditions
[44], which is known to grow exponentially for a chaotic
distribution dynamics and subexponentially for integrable

dynamics. Examination of the Lyapunov exponent �(t) as
a function of time for the two cases [see Fig. 2(a)] clearly
shows exponential growth for liquid Xe and subexponential
growth for ideal gas Xe. Hence, the liquid Xe is chaotic,
whereas the “ideal gas” case is not. The results shown in Fig. 1
support the Alicki conjecture that bath chaos tends to suppress
decoherence at low temperatures.

Similar results to those above are obtained at a temperature
of 221.7 K. Figures 1(b) and 2(b) show the purity and
Lyapunov exponents, respectively, plotted against time for the
two cases for the same 0-2 superposition. The liquid Xe shows
the expected exponentially increasing dependence of �(t) with
time, showing that the bath is chaotic. Indeed, the slope of the
logarithm of �(t) has increased, suggesting that the liquid is
even more chaotic than at the lower temperature. Again, the
liquid Xe case is found to induce less decoherence than does
the ideal gas Xe, but the difference between them is now less
pronounced.

The situation at high temperature, however, is quite dif-
ferent. As seen in Fig. 1(c), at 554.25 K liquid Xe bath
causes greater decoherence than does the ideal gas Xe. The
Lyapunov exponent displayed in Fig. 2(c) confirms that liquid
Xe bath is chaotic, with an even larger Lyapunov exponent [as
manifest in the slope of �(t) versus t]. Thus, a transition has
occurred from a low temperature regime where the bath chaotic
bath induces less decoherence than does the noncollisional
bath, to a high temperature regime where the reverse is the
case.

It is evident from Fig. 3 that the decoherence dynamics
for the integrable ideal gas case is relatively unchanged as
a function of temperature. Hence, it is the chaotic case that
goes from weak to strong decoherence as the temperature
increases, and is responsible for the crossover behavior in the
decoherence of regular versus chaotic baths.

To verify that this transition occurs for other initial
conditions we also show simulations for a second coherent
vibrational superposition state. Figures 3(a)–3(c) show the
purity as a function of time for three different temperatures
(177.36, 221.7, and 554.25 K) calculated for a coherent
superposition of the fifth and eighth vibrational states of the
I2. The decay of the purity is faster for this second initial state
than it is for the first. Here the dynamics appears to occur
on two time scales: a fast initial decay followed by a slower
falloff. The fast initial decay is common to both the liquid and
ideal gas simulations. Otherwise the plots are qualitatively
similar to those for the first initial state examined above. Sig-
nificantly, the crossover at high temperatures is again apparent:
Decoherence of the liquid is smaller than that of the ideal gas
at 177.36 and 221.7 K, but larger at the highest temperature
554.25 K.

IV. CONCLUSIONS

We have explicitly compared decoherence in the same
system immersed in a liquid Xe bath, a well-known paradig-
matic system. In doing so we have confirmed that subsystems
interacting with condensed phase environments cannot be
analyzed using approaches that neglect intraenvironmental
coupling within the bath. Further, we demonstrated that this
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FIG. 3. (Color online) Dependence on temperature of the purity
as a function of time for the I2 initially in a superposition of the
fifth- and eighth-excited states: (a) T = 177.36 K, (b) T = 221.7 K,
and (c) T = 554.25 K. In all graphs, the black solid line indicates the
Xe-Xe coupling is active, the red dashed line indicates the of-coupling
situation, and the blue dotted line indicates the isolated I2.

coupling leads to a crossover in the decoherence dynamics as
a function of temperature.

The transition described in the previous section has not
been previously observed computationally. It is clear that the
integrable bath case, in the liquid domain, is relatively insen-
sitive to temperature, whereas the chaotic shows increasing
decoherence with increasing temperature. Since the chaotic
bath case displays weaker coherence than the integrable
bath case at low temperature, the increasing decoherence of
the chaotic case with temperature results in a crossover of
behavior. The low decoherence of the chaotic case at low
temperatures is in accord with the analysis in terms of spectral
properties of the bath. What is remarkable to note is that the
Wigner method is capable of properly displaying this behavior.

The results suggest a more detailed analysis of the origins
of the difference between the chaotic and integrable baths
in different density regions and the interrelationship between
the rates of decoherence and the Lyapunov exponent of the
chaotic bath would be of interest. Work on such systems is
planned.
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APPENDIX: COMPUTATIONAL ASPECTS

The MD simulations were carried out using well-known
standard procedures [41]. All the parameters involved were
rescaled taking into account the parameters associated with
the solvent particles (here, the Xe atoms). That is,

interparticle distance: r∗ = r/σXe-Xe,

time: t∗ = ηt,

frequency: ω∗ = ω/η,

density: ρ∗ = σ 3
Xe-Xeρ,

temperature: T ∗ = kBT /εXe-Xe,

with η =
√

εXe-Xe/mXeσ
2
Xe-Xe

1/2

� 3.015 × 1011 s−1 (i.e.,
1 MD time unit is equivalent approximately to 3.32 ps) and
where the magnitudes with an asterisk denote the rescaled
magnitudes. Thus, for example, a density ρ∗ = 0.85 will
correspond to ρ = 3.053 g/cm3 and a temperature T ∗ = 1.26
to T = 280 K, while Planck’s constant will become h̄∗ =
h̄/

√
mXe-Xeσ

2
Xe−XeεXe-Xe � 0.010 388. This scaling leads to a

system of dimensionless equations of motion, which are solved
by means of the standard velocity-Verlet method in the case
of both the system and the environment. Within this scheme,
quantum features are taken into account initially in terms of the
classical Wigner method, i.e., by carrying out a Monte Carlo
sampling based on the Wigner distribution of the initial state
of the I2 vibrational state.

The constants of solute and solvent are those previously
obtained for the Xe + I2 system [38], i.e., εI2-I2/kB = 550 K,
σI2-I2 = 4.982 Å, εXe-Xe/kB = 221.7 K, and σXe-Xe = 3.930 Å
(kB = 1.380 650 5 × 10−23 J/K being Boltzmann’s con-
stant). The solute and solvent masses are, respectively,
m0 = 4.22 × 10−22 g and ms = 2.18 × 10−22 g. Now, tak-
ing into account the rescaling, we will find m∗

Xe = 1,
σ ∗

Xe-Xe = 1, and ε∗
Xe-Xe = 1 for the Xe atoms, while m∗

I2
=

1.936, σ ∗
I2

= 1.268, and ε∗
I2

= 2.481. Regarding the I2 vibra-
tional degree of freedom, we will find that D∗ = 81.4208,
β∗ = 7.300 37 and μ∗

I2
= 0.4839. The vibrational frequency

corresponding to the I2 is ωI2 = √
2β2D/μI2 = 4.0451 ×

1013 s−1, which in MD reduced units becomes ω∗
I2

=
134.16 (the period, in these MD units, is therefore τ =
2π/ω � 0.0468).
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