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Time-periodic lattice of spiral pairs in excitable media
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The feasibility of a spiral-type solution, periodic both in time and in space, of a reaction-diffusion equation
(specifically the FitzHugh-Nagumo system) in an excitable medium is numerically demonstrated. The solution
consists of arrays of interacting spiral pairs, which repeatedly create by partial annihilation a system of residual
portions (RPs). The latter behaves as a source to the next generation of the spiral-pair array. If basic (highest)
translational symmetry is not conserved, pointwise perturbations, above a certain threshold, are shown to be able
to destroy the pattern after a certain transient time by changing its symmetry. If the basic translational symmetry
is preserved, such perturbations do not cause destruction unless occurring at the nearest vicinity of the RP site.
Singular value decomposition methods are used to analyze the structure of the pattern, revealing the importance
of the spiral pairs and the RPs.
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I. INTRODUCTION

Periodic spatial patterns (lattices) and periodic temporal
patterns (oscillators) have been intensively studied hitherto.
Periodic spatiotemporal patterns (PSTPs) (i.e., patterns that
are periodic both in time and in space) are usually classified
as waves, either standing or propagating. Two-dimensional
(2D) waves were investigated mainly as waves on fluid
surfaces (see, e.g., Ref. [1]). PSTPs of the convective fields
appear in the Rayleigh-Benard analysis [2]. Spiral-type PSTPs
have been observed experimentally in different physical and
biological instances. Atrial fibrillation is the most abundant
cardiac arrhythmia [3]. Though not fatal in itself, it can lead
to complications (clots), which are life threatening. Recent
studies [4,5] by optical mapping of animals’ hearts exhibit
periodic spatial patterns that are also repeated in time. Some
PSTPs appear in the brain [6,7] and can perhaps be connected
with the memory process. Note that in Ref. [6] the spatial
phases are only randomly chosen and that our periodic spatial
patterns can lead to both sequences and songs in the language
of Ref. [7]. Recurrent dreams or memories may possibly be
obtained from PSTPs in the nervous system under special
conditions.

In this work we demonstrate the feasibility of a spiral-pair
PSTP solution to a nonlinear system [the FitzHugh-Nagumo
(FHN)] in a 2D excitable medium. The FHN system and the
patterns emerging from it have been extensively analyzed since
the 1970s (see, e.g., Refs. [8–10] and a recent review of the
use of FHN for neurodynamics [11]). Thus, repetitive activity
in the FHN is discussed in Ref. [8], while the existence of
temporal orbits and pulse waves are respectively treated in
Refs. [9] and [10]. The possibility of a single temporally
periodic spiral-pair solution to the system is also well known
[12,13]; however, a description of a spiral-type solution in an
excitable medium that is also periodic in space is needed.
A single spiral pair is usually created by the vulnerable
window technique devised by Winfree [14,15]. We use here
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our unidirectional method [16,17] for the creation of the spiral
pairs. In this method, two adjacent squares of different sizes
are simultaneously stimulated in an excitable medium. Two
short current surges are induced at time zero: the larger square
is activated below the threshold, while the smaller one, above
the threshold. This kind of forcing leads to unidirectional spiral
pair pulse propagation [18]. Spiraling inwards, the arms of
the pair collide with each other and are annihilated. Under
appropriate conditions [16], a small residual portion (RP) of the
colliding arms outlasts the collision, and becomes the source of
new spiral pairs. Here we use this method to generate spiral pair
PSTPs. The parameter ranges of this solution are calculated
and the possible generation process is investigated.

II. MODEL

We use the 2D FitzHugh Nagumo system [12] to charac-
terize the medium, and solve it in a square domain. It reads:

∂v

∂t
=D

(
∂2

∂x2
+ ∂2

∂y2

)
v+v(v − a)(1 − v) − w + δ(t)I (x,y),

∂w

∂t
= ε(v − dw), (1)

where all variables are dimensionless. For the heart tissue,
v is the action-potential, w is the refractivity, an inhibitory
variable, and δ(t)I (x,y) is the instantaneous input current.
The constants D, a, and ε are the diffusion constant, the
excitability parameter, and the ratio between the fast and the
slow time constants, respectively. The constant d controls
the shape of the wave. δ(t) is the Dirac delta function and
I (x,y) is the spatial shape of the amplitude of the applied
current. The FHN equations are solved in a square domain
of 80 × 80 grid points (a unit cell) with periodic boundary
conditions. This unit cell comprises four squares 40 × 40
each and the initial current is applied to the two diagonal
squares [see Fig. 1(a)]. The results here are shown in a larger
domain of 160 × 160 (4 unit cells) for the sake of clarity
of presentation. All calculations were carried out with the
parameter values a = 0.12,D = 0.2,ε = 0.005,d = 3, unless
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FIG. 1. (Color online) Time evolution of v(x, y) for the PSTP. Green large squares [appears as shaded area in part (a)] initially stimulated
by a below-threshold pulse. Brown small squares [appears as darker areas in part (a)] initially stimulated by an above-threshold pulse. Gray
shaded areas correspond to v > 0.5.

specified otherwise. The system of equations was solved by
using for the time coordinate the second-order Euler forward fi-
nite difference, usually a stable scheme, often referred to as the
second-order Runge-Kutta (RK2) method. The second-order
derivatives in the spatial coordinates x and y were replaced
by central differences. The time and space increments were
�t = 0.125,�x = �y = 0.5. This mesh provided sufficient
accuracy, since a finer one (�t = 0.05,�x = �y = 0.25)
yielded no apparent change in the numerical solutions.

FIG. 2. (Color online) Absolute value of the Fourier transform of
v at x = y = 0; the dominant peak is at ω = 0.0335.

III. RESULTS

The initial input current I (x,y) is applied to the pattern
displayed in Fig. 1(a). There are two diagonal squares of size
40 × 40 (marked in green) in each unit cell of size 80 × 80 with
periodic boundary conditions, in which the initial stimulation
current amplitude is A1 = 0.1555, just below the threshold
value of 0.1556. The initial above-threshold stimulation, A2 =
0.2, is applied in the smaller square of 8 × 8 (marked in brown),
located adjacent to the upper side of the green square. No input
current is applied to the white squares. For a system of four
unit cells occupying a region of size 160 × 160, with periodic
boundary conditions on the expanded perimeter, the dynamical
evolution appeared to be identical to the computation of a unit
cell (80 × 80). Figure 1 illustrates the stages of the PSTP
evolution for a lattice of 4 unit cells in order to emphasize
the emerging patterns. Marked in gray are the areas where the
value of v is above 0.5 (videos are available [19]).

TABLE I. Parameter ranges for a single spiral pair (SSP) and for
the lattice PSTP creation. Each parameter is varied while the others
are kept constant at their respective mean values.

Range Value (SSP) Range Value (PSTP) Parameter

0.1 � D � 0.38 0.1 � D � 0.35 D

0 < d � 3.4 1 � d � 3.2 d

0.00496 � ε � 0.00540 0.00496 � ε � 0.00540 ε

0.1197 � a � 0.1202 0.1197 � a � 0.1202 a
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FIG. 3. (Color online) The effect of a point perturbation [marked by x in Fig. 3(a)] breaking the highest translational symmetry (in a 2 × 2
unit cell with periodic boundary conditions on the perimeter). The perturbation is located at x = 10, y = 10 and is applied at t = 0, intensity
I = 0.06.

As can be seen, similar to the single spiral pair case, the
patterns are based on a residual portion (RP), which remains
unimpaired following an encounter of the arms of the structures
and their partial annihilation. However, in contrast to the single
case where the encounter is between the arms of the single
spiral pair, the situation here is more complex. The encounter
here occurs [Fig. 1(c)] between all diagonally nearest-neighbor
spiral pairs, essentially between every foursome, creating first
a lattice of colliding spiral pairs stretching across the entire
lattice area [Figs. 1(d) and 1(i)]. This lattice then transforms
into separate units [Fig. 1(e)] by two annihilation processes:
being too small to survive, the holes, marked A in Fig. 1(i),
disappear and the thin connecting bridges, B in Fig. 1(i),
are gradually cut off. The units evolve into composite shapes
[Fig. 1(j)] presenting a lower fuller part and an upper thinner
part. The fuller part shrinks and disappears while the narrow
one survives [Fig. 1(f)], and comprises the RP, which is
the source of the next generation PSTP. The system was

run for hundreds of periods and, following a transient time,
an almost exact limit cycle is settled down asymptotically.
Temporal Fourier spectra were computed at the following
space coordinates: [(0, 0); (10, 10); (50, 0); (20, 50)], all
producing almost identical results. One such spectrum is
shown in Fig. 2. It is seen that the period is T = 2π /w =
187.5 time units, somewhat surprisingly equal to that for a
single spiral pair in the unidirectional method [16,17] with
the same set of parameter values. By a careful observation
of the patterns, this equality of period can be explained as
follows. For a single spiral pair, the arms of the pair must
encounter each other (an autocollision) in order to create the
RP. Here, although the arms of different spiral pairs meet and
partly annihilate [intercollision, Fig. 1(c)], the actual RP is
again created by an autocollision of the remaining tips [C in
Fig. 1(d)] of each of the individual pairs. The intercollisions do,
however, decrease the viability of the arms, making it harder
to obtain the next RP (see below).

FIG. 4. (Color online) The influence of perturbation at (x = −20, y = 20, t = 300) in a single unit cell with periodic boundary conditions,
which therefore implies that the same perturbation appears in every unit cell (highest translational symmetry conserved). I = 0.2, �L = 2 × 2,
(D = 0.2, a = 0.12, ε = 0.005). Perturbation is at a distance from an RP.
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FIG. 5. (Color online) The influence of perturbation at (x = −10, y = 10, t = 400) in a single unit cell with periodic boundary conditions.
I = 0.2, �L = 2 × 2, (D = 0.2, a = 0.12, ε = 0.005). Perturbation is near an RP.

The parameter ranges where the PSTP is present are given
in Table I. They are compared to the ranges for a single spiral
pair (SSP, no lattice). For both cases it is seen that while the
ranges of D and d are quite large, the other two parameters
can only stay within very narrow ranges. The restricting factor
common to both cases is the ability to create a viable RP. It
follows that the spiral arms collide not head-on but at their
curved external parts [16]. The reduced ranges of D and d in
the PSTP case are due to the interaction of each spiral pair
with its neighbors [intercollisions, see, e.g., Fig. 1(d)]. For
the ranges included in the SSP case but not in the PSTP this
interaction diminishes somewhat the width of the spiral pair
arms. The latter thus become weaker to such a degree that the
RP resulting from their coalescence is no longer viable.

The transient period of the phenomenon is very short,
lasting only until the first creation of the RP. Following this
occurrence, absulute periodicity sets in.

IV. STABILITY UNDER PERTURBATIONS

The PSTPs are quite delicate entities. In the seminal works
[20–22] the stability of regular spirals produced by the complex
Ginzburg-Landau equation was established, both as solutions
to differential equations [20], and under perturbations by
mutual interaction. Spiral stability encountering plane waves
[23] is also to be noted. Due to their complex nature, the
stability of the structures considered here is even more
subtle. Not only must next generation RPs be created [16],
but the intercollisions should be mild enough such that
the retained arms strength should be sufficient for viable
RPs. These severe conditions lead to a rather small stability
range of the parameters (Table I). Moreover, even very small
local perturbations, not conserving the system’s translational
symmetry, lead to structure disappearance, as is presently
demonstrated.

A perturbation conserving the highest translational sym-
metry must be one that is periodically reproduced at the

same location in every single unit cell, defined above. Such
a perturbation will normally leave the dynamical pattern
relatively stable. Alternatively, if the perturbation is applied,
say, on every square cluster of four unit cells, the translational
symmetry will be lowered (spatial period of two unit cell sides,
in both directions), producing disordered patterns, and their
ultimate destruction, as demonstrated in Fig. 3, above. The size
of the studied system in Fig. 3 is (160 × 160), comprising four
unit cells, with periodic boundary conditions on its perimeter.
The system is activated to produce unidirectional spiral pairs,
as explained above. The perturbation consists of a weak (I
= 0.06) instantaneous pulse, applied in a very small cluster
of four grid points around the coordinates (10, 10). The
time evolution of the perturbed system, from its seemingly
innocuous appearance to a full disruption of the pattern, is
clearly demonstrated. The perturbation first distorts its nearest

FIG. 6. (Color online) The SVD eigenvalues, S, for two complete
periods of v.
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FIG. 7. (Color online) The leading SVD modes for v (t1 = 240, t2 = 618, �t = 6). Green (lightly shaded): 0 < v < 0.01; Brown (darkly
shaded): 0.01 < v < 0.5.

spiral pair by slightly rotating it [Fig. 3(c)]. The rotated pair
interacts with its nearest pairs which continue in this manner,
and after a relatively long time, leads to a distorted pattern
[Fig. 3(h)]. This pattern is not viable and ultimately completely
disappears. The perturbation was applied at times, both within
the transient period, and during the steady state of the PSTP,
with no change in the destruction process. To demonstrate
this point Fig. 3 depicts the situation where the perturbation is
applied at the beginning of the process while Figs. 4 and 5 show
the case where the perturbations are applied during the steady
state.

Let us now examine a system in which the perturbations are
applied periodically in every single unit cell, thus preserving
the highest translational symmetry. It suffices to refer to
a (80 × 80) square with periodic boundary conditions on
the perimeter. It is observed that, unless applied in a close
proximity of an RP, point perturbations, even large ones, do not
cause any prolonged damage to the pattern. Figure 4 depicts the
influence of a perturbation that is away from an RP while Fig. 5
shows the situation when it is close enough to one. It is seen
that in the first case the system recovers from the perturbation
and regains the original pattern, while in the latter case the
pattern becomes chaotic after a relatively long period of time.

V. STRUCTURE ANALYSIS BY SINGULAR
VALUE DECOMPOSITION

In order to better understand the structure of the PSTPs,
they were analyzed by the singular value decomposition
(SVD) method. This method, also called proper orthogonal
decomposition or the Karhunen-Loeve decomposition [24,25],
is a technique to extract the dominant spatial (time-average)
modes of a PSTP evolution. It generates a spatial vector basis
arranged in order of seniority, such that the projection of the
phenomenon onto these vectors in a sequential way yields, at
each step, the best approximation to it, in a least square error
sense.

The analysis is based on the method of snapshots [26]. The
solution at each time point ti , i = 1,M , is considered to be
a snapshot made up of a fixed number of pixels, xk,k = 1,L.
The snapshot is converted into a vector u(x,ti) of values each
depicting the action-potential amplitude at its specific pixel.
All vectors thus constructed for all ti are assembled into a
rectangular matrix B. The SVD method is applied to this
matrix and leads to its left and right diagonalization: USV † =
B, where S contains the singular values (eigenvalues) on
its diagonal. These values, arranged in a decreasing order,
convey the sequence of energies (the order of importance) of
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FIG. 8. (Color online) The projections of the v-pattern onto the eigenvectors, ai (for t1 = 930, t2 = 1480, �t = 6).

the related eigenvectors. The left-hand eigenvectors, Uj (x) are
the dominant spatial time-averaged modes mentioned above,
which constitute the vector basis for the PSTP. The projection
of the latter on the basis yields time-dependent projection
coefficients, aj (t). An Nth-order best approximation to the
vector u(x,ti) is obtained by

u (x,ti) =
N∑

j=1

aj (ti) Uj (x). (2)

Each eigenvector can subsequently be reconverted into a
picture of the respective mode.

The SVD analysis was carried out for two complete periods,
240–618 time units; different �t’s and different time spans
(each including two complete periods) up to 9000 time units
were used with no significant changes in both the eigenval-
ues and the eigenmodes. The eigenvalues for v are shown
in Fig. 6.

First, note that the values appear somewhat in pairs. Usually
a pair of eigenvalues is considered to indicate a moving pattern.
This movement can be inferred [27] from the two modes and
the time evolution of the two projection amplitudes. In the case
discussed here, the first two eigenvalues are above 500. Their
corresponding vectors are the first two appearing in Fig. 7 and
the temporal projection amplitudes are shown in Fig. 8. These
projections are not as simple as those in Ref. [27]. The latter
consist of two simple oscillations shifted by 90

◦
in phase from

each other. Figure 8 shows a somewhat different behavior.
The two projections are not copies of each other and are not
portraying simple oscillatory patterns. Therefore, they do not
describe a simple movement of the structure. The combination
of the two modes, a1(t)u1 + a2(t)u2, is depicted in Fig. 9 for
the same times as in Fig. 1. It is seen that: i) Utilizing only
the first two modes the result is already quite similar to the
complete pattern (Fig. 1). This demonstrates the power of the
SVD method. ii). No movement of the pattern, except for a
possible outward one, is observed.
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FIG. 9. (Color online) Reconstruction of v with two modes. Gray areas: v > 0.5. Compare to Fig. 1.

Returning to the eigenmodes themselves (Fig. 7) they reveal
the inner structure of the patterns. The first six modes are
the important ones as they incorporate most of the energy
as manifested by their eigenvalues. It is seen that the spiral
pairs (A) are the most accentuated detail, appearing in all
the first four modes. The final RPs (B) only appear in
mode 6, presumably due to their short lifetime, while their
predecessors (C) are already present in modes 1 and 3. This
short lifetime should not be looked upon as lack of impor-
tance, since without these RPs no time-repeating patterns are
possible.

VI. CONCLUSION

Using the unidirectional method of creation, a pattern of
spiral pairs, both time- and spatial-periodic, was shown to be a
valid solution of the FitzHugh-Nagumo system. Its generation
was explained by the encounter and partial annihilation of
multiple spiral pairs, leaving behind a system of residual
portions, which, like the phoenix, resurrect the former pattern.
SVD methods were invoked to derive the most important
modes of the waves. These were shown to be the spiral pairs
and the residual portions. Susceptibility of the patterns to
symmetry-breaking perturbations was demonstrated.
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