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In this work we formulate a consistent Bayesian approach to modeling stochastic (random) dynamical systems
by time series and implement it by means of artificial neural networks. The feasibility of this approach for both
creating models adequately reproducing the observed stationary regime of system evolution, and predicting
changes in qualitative behavior of a weakly nonautonomous stochastic system, is demonstrated on model
examples. In particular, a successful prognosis of stochastic system behavior as compared to the observed
one is illustrated on model examples, including discrete maps disturbed by non-Gaussian and nonuniform noise
and a flow system with Langevin force.
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I. INTRODUCTION

Construction of parametrized models (global reconstruc-
tion) of deterministic dynamical systems from time series has
been broadly discussed in the literature in the past 20 years
[1–10]. The mathematical apparatus substantiating such a pos-
sibility has been developed. Different methods of constructing
models of evolution operators have been proposed; basic
limitations have been understood and formulated recently [11].
In particular, some authors demonstrated that these approaches
can be used for prediction of changes in the qualitative
behavior of a weakly nonautonomous system for times longer
than the duration of the observed time series [11–13].

This paper is concerned with the Bayesian approach to re-
constructing random (or, in other words, stochastic) dynamical
systems (RDS) from time series (TS). Mathematically RDS is
an object consisting of a model of noise and a model of the
system perturbed by noise [14]. Physically RDS is a dynamical
system subject to random external action in the course of
evolution. This action is frequently referred to as dynamical
or interactive noise [15]. The majority of natural systems are
known to be open, that is, subject to numerous external actions.
Therefore, it is physically justified to represent natural systems
in the form of RDS. We can say that the problem of RDS
reconstruction from TS is the necessary and important step to-
ward reconstructing real (natural) systems when their adequate
first-principle mathematical models (based on equations of
gas- and hydrodynamics, chemical kinetics, balance relations
for the quantity of substance, pulse, energy, and so on) are
unknown.

Note that, even when it is justified to regard the ob-
served system to be deterministic, that is, finite embedding
dimension of the attractor can be found, construction of a
deterministic model of this dimension from the TS generated
by such a system and use of this model for a prognosis
of qualitative behavior of the system has quite a number
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of principal restrictions. The first of them is restriction on
system complexity. The point is that reconstruction of a
phase trajectory following Takens [16] is possible in a phase
space of not too small dimension dE : dE � 2dS + 1, where
dS is the box-counting dimension of the chaotic attractor of
the system that has generated the initial TS [17]. Generally
speaking, this means that a model in the form of a deterministic
dynamical system (DDS) describes correctly behavior of the
reconstructed system on the manifold of dimension dS that
can be much smaller than the dimension of the phase space
of the model dE . But it is not guaranteed and generally
not true that this manifold is going to be stable in the
(2dS + 1)-dimensional phase space of the model. The second
restriction is prior information. The available methods [18]
for determining such dimensions are inapplicable for analysis
of the TS generated by real (e.g., atmospheric) systems. The
point is that methods for determining system dimension work
poorly when the studied TS contains a random component
(“measurement noise”). An exponential dependence between
the dimension of the system and the duration of the TS is
required for correct determination of system dimension [19],
so that the duration of measurements needed for reconstruction
of not too simple systems becomes almost unattainable. We
believe that the above restrictions explain why only a few
works demonstrated the efficiency of global reconstruction by
means of DDS models from TS generated by natural systems,
that is, unavailable in well-controlled experimental conditions
(see, for example, [6–8]).

Reconstruction in the form of RDS mitigates or lifts
the restrictions mentioned above, thus making the proposed
approach more universal. This study is dedicated to the
development of a consistent Bayesian approach to such
a reconstruction with the ultimate goal of predicting any
qualitative changes that may occur in system behavior. We
assume that the classification of qualitatively different regimes
is application driven, so that an investigator has a classifier
function which maps a point in the parameter space of the
model to a finite set of possible behaviors of interest.

The current paper consists of seven parts. A general
problem of global reconstruction of a random dynamical
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system using the Bayesian approach is formulated in Sec. II.
In Sec. III we propose a stochastic model of an evolution
operator efficient for applications. In Sec. IV the evolution
operator is approximated by an artificial neural network
(ANN) [20] and efficiency of reconstructing a system with
inhomogeneous, non-Gaussian, and nonwhite dynamical noise
is demonstrated on a model example. At the end of the section
we describe the technique of representing (classifying) regimes
of behavior of stochastic systems based on their invariant
measures. The proposed approach is generalized to the case
of nonautonomous stochastic systems in Sec. V. A possible
application of the approach under consideration, namely,
prognosis of changes in qualitative behavior of a stochastic
system, is formulated in Sec. VI and is illustrated on an
example of a system with inhomogeneous and non-Gaussian
dynamical noise.

Finally, in Sec. VII we generalize the proposed approach
for the case of a continuous time dynamical system with noise
(a stochastic flow) and illustrate it using a Lorenz system
with Langevin noise source as an example. To conclude, we
formulate problem solutions which will enable us to determine
applicability boundaries of the new approach and discuss some
possible applications.

II. FORMULATION OF THE PROBLEM

Let us take normalized and centered vector time series
{U(tn) = Un}Nn=1, U(t) ∈ Rd, E(U) = 0, var(U) = 1 (E and
var mean mathematical expectation and variance, respectively)
obtained as a result of successive measurements of the states
of a dynamical system having dimension d by a fixed lag at
time instants tn. Making use of the definition of a RDS given in
Ref. [14] we suppose that these states are coupled by a random
evolution operator ϕ:

Un+1 = ϕ(ωn,Un), ϕ : � × Rd → Rd , ωn+1 = θ (ωn),

θ : � → �, (1)

where � is the measurable set (sample space) for which
σ -algebra � and probability measure P are specified, and
θ is the endomorphism in the probability space (�,�,P ).

The Bayesian approach to reconstructing such a random
operator consists of determining the probability P (U|ϕ) (also
referred to as likelihood) of observation of the measured time
series for ϕ of a definite class. We assume that each operator
of this class correlates one-to-one with a point from RL. Such
a map will be called parametrization, and the corresponding
point will be referred to as the operator parameter; L is the
dimension of the space of parameters. Depending on the
context, ϕ will be understood either as an operator or its
parameters.

According to the Bayes theorem, posterior distribution of
parameters ϕ is specified to an accuracy of normalization by
the following expression:

Pposterior(ϕ|U) ∝ P (U|ϕ)Pprior(ϕ), (2)

where prior distribution Pprior(ϕ) is determined by prior
restrictions on operator parameters. Construction and analysis
of (2) thereby solves the problem of modeling.

III. SOLUTION

For the sake of convenience we transform (1) to

Un+1 = f(Un) + η(ωn,Un), (3)

where f(U) = E(ϕ(ω,U)), η(ω,U) = ϕ(ω,U) − f(U). The
form (3) allows one to separate explicitly the deterministic
and random components (f and η, respectively) in the model
evolution operator. Physically, reconstruction of the RDS
using model (3) means time-scale separation of the processes
available in the TS: the deterministic component will be
determined primarily by “long correlated” processes, and
the random component by processes with a relatively short
correlation time. With allowance for the above mentioned, we
will represent the random component in the form

η(ω,U) = ĝ(U) · ζ (ω), ĝ : Rd → Rd×M, ζ : � → RM.

(4)

Records of vector random process ζ n = ζ (ωn) having di-
mension M will be assumed to be independent or, in other
words, white noise described by the probability density
w(ζ ) = E(δ(ζ − ζ (ω))). With allowance for (4), Eq. (3) will
take on the form

Un+1 = f(Un) + ĝ(Un) · ζ n. (5)

The matrix function ĝ in Eq. (5) describes the distribution
of a random component in the phase space of the model
[clearly Eq. (5) is the expression close to that used in the
classical least-squares method, the only difference is that the
error dispersion is supposed to depend on the point in phase
space]. The resulting likelihood will have the form

P (U|ϕ) =
∏
n

P (Un+1|Un) =
∏
n

∫
δ[Un+1 − f(Un)

− ĝ(Un)ζ n]w(ζ )dζ . (6)

Hereinafter we will assume that vector ζ has normally
distributed independent components: ζl ∝ N (0,1), l = 1,M .
We will show by way of example that such simplification
of the model enables successful solution of the reconstruction
problem in the case of obviously non-Gaussian statistics of the
reconstructed system. The substitution of normal distribution
into Eq. (6) yields

P (U|f,Ĝ) ∝
∏
n

1√
|Ĝ(Un)|

exp

{
− 1

2
[Un+1 − f(Un)]T

× Ĝ−1(Un)[Un+1 − f(Un)]

}
. (7)

An important consequence of (7) is that all the models
Eqs. (3) and (4) having equal deterministic components
and equal covariance matrices of the stochastic component
Ĝ = ĝT ĝ are equiprobable. This means that we can limit
the dimension of random process ζ to the phase space
dimension d without restricting generality. Besides, as Ĝ

is a symmetric matrix, it may be described by d(d + 1)/2
independent functions of the phase coordinates.

Thus, the likelihood (7) specifies the probability density for
the class of functions f(U) and Ĝ(U) defined a priori, which
solves the formulated problem completely.
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IV. RECONSTRUCTION OF AN AUTONOMOUS
STOCHASTIC SYSTEM. MODELS OF

DETERMINISTIC AND STOCHASTIC COMPONENTS
IN THE FORM OF ARTIFICIAL NEURAL NETWORKS

Useful tools for parametrizing the evolution operator in
reconstruction of deterministic systems from TS are artificial
neural networks (ANN) [20] with the corresponding prior
distributions of network parameters [21]. In the current paper
we demonstrate potentialities of the approach using the same
approximation:

Adout
din

(U) =
⎡
⎣ m∑

i=1

αki tanh

⎛
⎝ din∑

j=1

wijUj + γi

⎞
⎠

⎤
⎦

dout

k=1

,

f(U) = Ad
d (U), G(U) = Ad(d+1)/2

d (U), (8)

where din is the number of ANN inputs, dout is the number of
outputs, and m is the number of neurons in the hidden layer. In
line with the considerations put forth in Ref. [21] we set prior
distributions of network parameters in the form

Pprior(α,w,γ )

∝ exp

⎡
⎣−

m∑
i=1

⎛
⎝ d∑

k=1

α2
ki

2σ 2
α

+
d∑

j=1

w2
ij

2σ 2
w

+ γ 2
i

2σ 2
γ

⎞
⎠

⎤
⎦ , (9)

where σ 2
α = 1/m,σ 2

w = 1, and σ 2
γ = d are the dispersions of

the corresponding parameters. The considerations standing
behind these dispersions are quite simple. They are supposed
to reflect our prior knowledge (or expectations) about the
underlying system. What was implicitly restricted in the
problem setup is the system’s spatial and temporal scales. With
regard to the spatial scale, it is easy to show that the range of
the function in the form (8) can be estimated by the expression√

mσ 2
α . σw defines how steep the model is allowed to be as a

function of phase coordinates. Ultimately, it is connected to
the shortest time scale of the system. Finally, σγ is responsible

for the area of sensitivity of the model. It is chosen so that this
area is appropriate to the observed data range.

Thus, being substituted into Eq. (2), the expressions (7)–(9)
determine posterior probability density of the neural network
parameters. Here we will restrict consideration to analysis of
the most probable models, that is, the models corresponding
to maximum posterior distribution. In other words, in such a
formulation the problem of model construction will consist
of finding the maximum posterior probability density by net-
work parameters approximating deterministic and stochastic
components.

By way of example, consider first a stochastic dynamical
system in the form of a logistic map perturbed by noise:

xn+1 = f (xn) + σηn, f (x) = 1 − λx2. (10)

The system (10) becomes unstable if unbounded noise η is
used. To avoid this instability we derived the noise η from

white Gaussian process {ζn},ζn

iid∼ N (0,1) by rejecting values
ζi leading to transitions of the system beyond the domain
[x1,−x1], that is, the noise η becomes constrained by the con-
dition |f (xi) + σηi | � −x1, where x1 = −(1 + √

1 + 4λ)/2λ

is the left unstable equilibrium point of the logistic map.
However, we have to note that the probabilities of such events
are quite small at durations of the time series and noise levels
σ used below, so that the process η can be considered almost
Gaussian.

Second, we consider the same system but with records made
next but one:

xn+2 = 1 − λ
(
1 − λx2

n + σηn

)2 + σηn+1. (11)

System (11) is interesting in that its random component is
inhomogeneous and essentially non-Gaussian. The results of
the reconstruction of system (11) are presented in Fig. 1. The
TS 1000 records generated by system (11) for λ = 1.85 were
used as initial data. It is clear from Fig. 1 that in spite of the non-
Gaussian stochastic component of the system, its distribution
in phase space has been correctly reconstructed by the models
(2), (5), (7), and (9).
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FIG. 1. On the left: Reconstruction of autonomous stochastic system (11) using the ANN model. The ensemble of points labeled “data” is
the state of the system, and labeled “model” is the state of the model. Noise level σ = 0.01. On the right: Comparison of random components
of the system and the model: standard deviation of the distribution ĝ(U) · ζ obtained analytically for system (11) (“noise2”), and calculated by
the model in the form of the ANN (“model2”). Points “noise1” and “model1” are the same but for system (10). Noise level σ = 0.01.
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FIG. 2. Invariant measure plot as an analog of bifurcation diagram for stochastic systems on an example of logistic map xn = 1 − λx2
n−1 +

σηn−1. On the left: bifurcation diagram of deterministic system σ = 0. On the right: invariant measure plot of stochastic map σ = 0.01, shades
of gray show function px(x,λ). Hereinafter we use normalized units for x values, that is, the entire time series is reduced to have zero mean
and unit variance.

A traditional method of qualitative representation of the
dependence of the regime of behavior of a deterministic
DS on control parameter is construction of a bifurcation
diagram visualizing asymptotic (limiting) regimes of behavior
corresponding to different values of parameters (see Fig. 2,
left panel as an example). In the case of a stochastic system,
limiting the regime of behavior is characterized by invariant
measure px(x,λ) [14] that is probability density of states x

in phase space; λ is a control parameter of the system. In the
current work we represent qualitative behavior of the stochastic
system using the invariant measure depicted by shades of
gray on the plane of one of the phase coordinates and control
parameter (Fig. 2, right panel).

V. PROGNOSIS OF QUALITATIVE BEHAVIOR OF A
WEAKLY NONAUTONOMOUS STOCHASTIC SYSTEM

In this section we will demonstrate capabilities of the
proposed approach on an example of the prognosis of quali-
tative behavior of RDS when its evolution operator depends
slowly on time. This means that functions f(U) and Ĝ(U)
describing the stochastic model must depend explicitly on
“slow” time. We assume that the characteristic time scale of
this dependence is much longer than the length of the observed
TS. Note that this situation is essentially different from one
considered in Ref. [22] where the changes of parameters of
weakly nonautonomous system were also reconstructed. The
difference with our study is that the duration of the time series
in Ref. [22] must be (much) greater than nonstationarity time
scale, which makes it possible to reconstruct the feature space
of the system as an embedding for the system parameters.
Thus, if parameters of the system are changing in a cyclic
manner, it is possible to reconstruct this cycle in the feature
space. In essence it means that it is possible to predict future
behavior of the system if it has already been observed in the
past. But it is not the case in our situation since when making
a prediction we have no information about other possible
regimes but those currently observed.

The authors of [13] showed that in the case of interest the
functions f(U,t) and Ĝ(U,t) may be approximated by the ANN
in which output layer parameters depend linearly on time:

Adout
din

(U,t) =
⎡
⎣ m∑

i=1

(αki +tβki) tanh

⎛
⎝ din∑

j=1

wijUj + γi

⎞
⎠

⎤
⎦

dout

k=1

,

f(U,t) = Ad
d (U,t), G(U,t)=Ad(d+1)/2

d (U,t). (12)

Like in the previous section, prior distributions of network
parameters are supposed to be Gaussian and, analogously to
(9), the dispersion σ 2

α = σ 2
β = 1/m,σ 2

w = 1, and σ 2
γ = d. With

allowance for the explicit time dependence, the likelihood (7)
transforms to

P (U|f,Ĝ) ∝
∏
n

1√
|Ĝ(Un,tn)|

exp

{
− 1

2
[Un+1 − f(Un,tn)]T

× Ĝ−1(Un,tn)[Un+1 − f(Un,tn)]

}
. (13)

By substituting (12) and (13) into Eq. (2) and finding
the maximum of posterior probability density by network
parameters, we obtain the most probable model of the system
in which slow time t is a unique control parameter. Similar to
the work in Ref. [13], this model may be used for prognosis
of changes in system behavior, which corresponds to time
extrapolation of model parameters outside the observation
interval. Model examples of such a prognosis will be given
below.

VI. PROGNOSIS IN THE CASE OF INHOMOGENEOUS
AND NON-GAUSSIAN NOISE

In the examples presented in this section, we used as
the initial data nonstationary TS 1000 records generated by
a nonautonomous RDS in the form of the stochastic map
(11) in which the control parameter λ was varied linearly in
the interval [1.7,1.4]. As was mentioned above, this RDS is
an example of a stochastic system with non-Gaussian and
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FIG. 3. On the left: invariant measure plot of system (11) corresponding to the true behavior of the system at slow variation of parameter
λ. On the right: the same for the model constructed by the TS corresponding to the range λ ∈ [1.7; 1.4]. The noise level is shown above each
figure. The number of neurons in the hidden layer of the model [f(U) and ˆG(U)] is m = 6.

nonwhite noise distributed nonuniformly over the attractor
(see Sec. III). From the initial time series we constructed
the nonautonomous models (1), (5), (12), and (13) and its
parameters were extrapolated to the “future,” to the times
equivalent to changes of parameter λ in the interval [1.4,0.5].
Figure 3 shows the invariant measure plot of the original
system (11) (on the left) and model (on the right) for different
noise levels. It is well seen in these figures that the model
adequately describes behavior of the nonautonomous RDS
throughout the range of variation of the control parameter.

Note that there exist principal restrictions on a prognosis
of deterministic system behavior: it is impossible to make a
prognosis “from simple to complex” in a deterministic system
since only a limiting regime and no transients are available.
By from simple to complex we mean that the bifurcation
we are going to predict results in an increase in minimal
embedding dimension. For instance, we could not predict a
period-doubling transition in the unperturbed (σ = 0) system
(10) at λ ≈ 0.75 analyzing the time series corresponding to
the stable equilibrium point at λ < 0.75. The situation is
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FIG. 4. On the left: invariant measure plot of system (10) corresponding to the true behavior of the system at slow variation of parameter
λ. On the right: the same for the model constructed by the TS corresponding to the range λ ∈ [0.5; 0.74]. Noise level σ = 0.04. Number of
neurons in the hidden layer of the model [f(U) and Ĝ(U)] is m = 6.

quite different if σ > 0. Technically, the dimension of the
trajectory reconstructed from stochastic time series is always
infinitely large. In case of small enough noise we still can
see structure similar to what the corresponding deterministic
system produces, but it is not really a complication in case
of a stochastic system (noise resets the initial conditions
so we have sort of transient dynamics). In this section we
will demonstrate that it is possible to make a prognosis of
qualitative behavior for RDS in both directions. We took as
the initial data nonstationary TS 1000 records generated by
a nonautonomous RDS in the form of the stochastic logistic
map (10) in which the control parameter λ changes linearly
in the interval [0.5; 0.74]. From the initial TS we constructed
the nonautonomous model (13) and the model parameters were
extrapolated to the future for the times equivalent to changes of
parameter λ in the interval [0.74; 1.4]. The invariant measure
plots of the initial system (on the left) and the model (on the
right) demonstrating results of the prognosis of behavior of
a nonautonomous RDS system are given in Fig. 4. Clearly
the model provides a correct prediction of the change of
the type of behavior of the system closest in time, including
prediction of the bifurcation point. Eventually the model ceases
to adequately describe system behavior and does not reproduce
the transition of the system to more complicated regimes.

VII. PROGNOSIS OF THE DYNAMICS
OF A STOCHASTIC FLOW

We now demonstrate how the described approach can be
used for modeling the stochastic systems with continuous time
using as an illustration the classical Lorenz system [23] with
a Langevin noise source in the third equation:

ẋ = 10(y − x),
ẏ = x(r − z) − y,

ż = xy − 8
3z + sξ.

(14)

Here r is control parameter and ξ is white Gaussian noise.
The bifurcation scenario of this system at s = 0 (hereinafter
referred as an “unperturbed system”) with changing r is
well investigated [24]: for r ∈ (1,13.9) in the phase space
of the system (14) there exist three fixed points—two stable

focuses and a saddle at (0,0,0). At r ≈ 13.93 two saddle loops
appear, and then after further increase of r two unstable
limit cycles are born from these loops, and a strange repeller
appears simultaneously. Finally, at r ≈ 24.06 the transition to
chaos occurs, and soon (at r ≈ 24.74) the focuses lose their
stability. Besides, at high r the system exhibits self-sustained
oscillations. Thus, an invariant measure of the system (14) at
s = 0 is a superposition of two δ functions corresponding to the
stable focuses up to r ≈ 24.06. But if s > 0, this is no longer
the case since transitions (or switches) occur between basins
of attraction of two stable focuses due to noise. In this case a
narrow bridge between two maxima appears in the invariant
measure. The time the phase trajectory spends in the vicinity
of each maximum depends, first, on the noise level: the more
the noise the more often the transitions occur; and second, on
the value of control parameter r which determines the basins
of attraction in the phase space of the unperturbed system.

We generated two scalar time series yi of the variable y of
the system (14) each 2000 time units long with the parameter
r linearly changing in time from 28 to 22 for the first time
series and from 7 to 13 for the second one. The sampling time
step was �t = 0.3 in both cases. Then we used the described
approach to construct a nonautonomous stochastic model with
the ultimate goal to predict the changes in the system behavior
up to t = 7000. Such changes of the control parameter (from
7 to 28 or the other way around) lead to the transition of the
unperturbed system from a chaotic regime to a stable fixed
point and from a fixed point to a chaotic regime, respectively.
Correspondingly, we consider the first case as prognosis “from
complex to simple” and the second one as prognosis “from
simple to complex.”

On the upper panels of Fig. 5 the time series used for
model construction are shown in black. “Future” behavior as
produced by the original system, which is subject to prognosis,
is gray (green online). The qualitative changes that one can
see in the time-series presented are concerned with the time
which the system spends in the vicinity of the maximum of its
invariant measure until it switches to the other one.

We now assume that the model constructed in the form (1)
maps the vector Ui = (yi−d+1, . . . ,yi) to the vector Ui+1 =
(yi−d+2, . . . ,yi+1), where d is the dimension of the “phase”

036216-6



RANDOM DYNAMICAL MODELS FROM TIME SERIES PHYSICAL REVIEW E 85, 036216 (2012)

-20

-15

-10

-5

 0

 5

 10

 15

 20

 0  1000  2000  3000  4000  5000  6000  7000

y

-20

-15

-10

-5

 0

 5

 10

 15

 20

 25

 0  1000  2000  3000  4000  5000  6000  7000

y

time

-20

-15

-10

-5

 0

 5

 10

 15

 20

 25

 0  1000  2000  3000  4000  5000  6000  7000

time

-20

-15

-10

-5

 0

 5

 10

 15

 20

 0  1000  2000  3000  4000  5000  6000  7000

FIG. 5. (Color online) Prognosis of the behavior of stochastic Lorenz system (14). Left: “from complex to simple,” right: “from simple to
complex.” X axis: time t , Y axis: variable y of the system (14). Upper panel: black trace—the observed time series (see explanations in the
text), grey (green online) trace—future behavior to be predicted. Lower panel: the dynamics of the most probable stochastic model constructed
from the observed “black” time series t ∈ (0,2000) and extrapolated to the future t ∈ (2000,7000).

space reconstructed by the method of delayed coordinates [16].
Taking into account the trivial expressions for the first d − 1
components of the resulting vector we can represent the model
in the following form:

U 1
n+1 = U 2

n ,

. . .

Ud−1
n+1 = Ud

n ,

Ud
n+1 = f (Un,tn) + g(Un,tn)ζn.

(15)

where f (U,t) = A1
d (U,t), g(U,t) = A1

d (U,t).
The low panels of Fig. 5 show the evolution of the most

probable models [i.e., corresponding to the maximum of
posterior PDF (2)] constructed from black time series with
d = 3. In both cases the model constructed demonstrates the
behavior qualitatively similar to the original system.

Comparing the actual and predicted dependencies of the
average interval between switches on time (Fig. 6), we can
say that the prognosis of complex to simple seems to be
quantitatively more accurate than simple to complex.

Figure 7 shows evolution of the invariant measure with slow
time predicted by the model (second and fourth columns) in
comparison with the invariant measure of the system (first and

third columns). The upper panels correspond to the observable
behavior, and the lower panels to a time moment in the future
as remote as the observation duration. It is worth noting
that in the case of the prognosis from simple to complex
(the right pair in Fig. 7), although the predicted evolution
of the invariant measure is qualitatively correct, the symmetry
in the model appears to be broken (compare Fig. 7 B3 and B4)
as a consequence of less accurate reconstruction.

Thus, the model quite accurately reproduces the invariant
measure of the system extrapolated to the future for times
comparable to or even exceeding the observation duration.
This works for both the prognosis from complex to simple (left
panels of Figs. 5–7) and (although to less extent) the prognosis
from simple to complex (right panels of those figures).

VIII. DISCUSSION AND CONCLUSION

We developed a Bayesian approach to global reconstruction
of a stochastic system from observed time series. An efficient
form of a stochastic model of an evolution operator was
proposed. In this form an evolution operator is represented
as a superposition of deterministic and stochastic parts, and
the latter is treated as a multivariate Gaussian noise with
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FIG. 6. (Color online) Average interval of time between switches as a function of time corresponding to Fig. 5. Gray (green online)—for
system (14), black (red online)—as predicted by the model constructed from “black” time series.

a covariation matrix dependent on the state of phase space.
This representation is based on the hypothesis that the noise
inhomogeneity is inevitably concerned with nonlinearity of
the underlying system and it has the most profound effect.
The approach was implemented algorithmically using artificial
neural networks. The capabilities of the approach were
illustrated on model examples.

One of the very important conclusions of the asymptotic
stability and bifurcation theory of RDS (see [14] for review)
was that qualitative changes of invariant measure (the so called
P-bifurcations) are not always bifurcations in a strict sense, that
is, concerned with appearance of new or disappearance of old
solutions and/or changes in their stability (D-bifurcations), and
vice versa. Due to this fact the P-bifurcation-based approach
(which is actually much more traditional and intuitive) was
criticized. In this work we illustrate our approach using
examples which are based on P-bifurcations for the sake
of clearness. If an investigator is interested in exploring
D-bifurcations in the system for some reason (as defined in
Ref. [14]) he/she should just use an appropriate classifier,

although “the theory of stochastic bifurcations is sill in its
infancy” [14] and effective methods of RDS bifurcations
investigation are still to be developed.

Two more aspects are worthy of special notice. In some
works concerned with reconstruction of deterministic dynam-
ical systems it was demonstrated that the situation changed
cardinally when measurement noise was present in the data
[9,25]. Like it was done for deterministic systems [9], the
approach developed in the current work may be readily
generalized to the case of noise measurements. The Bayesian
approach allows estimating the most probable dispersion of
measurement noise, thus giving an answer to the question
as to what (and to what extent) the cause of data noise is:
random actions on the system or inaccurate measurements.
Consequently, independent checking of the hypothesis of the
deterministic nature of the modeled system is of no need.
Detailed analysis of “stochastic” reconstruction from noisy
time series will be given elsewhere.

Another important application of the proposed approach is
the possibility of modeling too high-dimensional deterministic
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FIG. 7. (Color online) Projections of invariant measures of the original system (14) and of the model to the plane (U 1,U 2) at two different
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respectively.
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systems (in terms of reconstruction following Takens, see the
Introduction) by means of low-dimensional stochastic models.
Particulary, such an approach can be useful for coping with
the problem of limited length of a time series that prevents
construction of a high-dimensional deterministic model, as
well as with the problem of robustness of the model in relation
to the reconstructed behavior. These aspects will also be
considered elsewhere.
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