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Reflection-antisymmetric spatiotemporal chaos under field-translational invariance
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We propose a route to spatiotemporal chaos, in which the system is assumed to have spatial reflection
antisymmetry and field-translation symmetry. The lowest-order nonlinear equation that satisfies these symmetries
is explored with the weak nonlinear analysis around the bifurcation point. We conclude that the nonlinear term
∂2

x u∂3
x u is important to make a nontrivial dynamics, and show that the nonlinear dynamical equation having this

term produces a turbulent dynamics.
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I. INTRODUCTION

The route to spatiotemporal chaos and turbulence in a
spatially extended system has been explored for a long time.
Spatially extended oscillatory nonlinear systems show the
simplest route to spatiotemporal chaos, in which the uniform
oscillatory state becomes unstable against long-wavelength
modulation via the Benjamin-Feir instability [1]. The steady
convective flow is also noticed to be a possible origin of a
transition to phase and defect chaos [2]. Understanding the
turbulence in a nematic liquid crystal or Rayleigh-Benard
(RB) convection proved considerably difficult, because of
the symmetry constraints [3]. To understand the origin of
spatiotemporal chaos in nonoscillatory systems, many studies
noted the importance of mean flow effects due to long-
wavelength deformation of a periodic structure in two or
higher dimensions [4]. Sasa and Kaiser et al. independently
showed that the nonlocal drift creates the zigzag instability
that continues to cause turbulence [5–7]. On the other hand,
many recent studies for amplitude and phase dynamics are
concerned with the nonlocally extended systems beyond the
local descriptions [8–17].

Among the various models that generate spatiotemporal
chaos, the Kuramoto-Sivashinsky (KS) equation is well known
as the simplest equation [1,18]. The KS equation is described
by the two forms, ∂tu = −∂2

xu − ∂4
xu − (∂xu)2 and ∂tv =

−∂2
x v − ∂4

x v − v∂xv, which are mutually transformed by v =√
2ux . Although these two forms of the KS equation are

mathematically equivalent, they are not physically equivalent
because they have different symmetries. The first form is
invariant against the two operations: the arbitrary translation
of the scalar field, u → u + const, and the spatial reflection,
x → −x. On the other hand, the latter form is invariant
against spatial antisymmetric transformation, x → −x and
v → −v, but it is variant against translation of the scalar
field. Several equations that produce spatiotemporal chaos
have been proposed until now, such as the Benny equation [19],
the Kolmogorov-Spiegel-Sivashinsky equation [20], and the
Nikolaevskii equation [21,22], each of which satisfies one of
the symmetries mentioned above for the KS equation. If a
system does not satisfy one of the symmetries, for example,
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the system is invariant against the spatial reflection and the
translation of the scalar field then the spatiotemporal chaos
becomes hard to be realized. This is the reason why it has
been hard to understand the turbulence in a nematic liquid
crystal or RB convection, in which the system is invariant
against the arbitrary translation and the spatial reflection
when the system is around the critical point [5–7]. This
leads to the question: Is there any simple mechanism that
shows spatiotemporal chaos without the symmetries that the
KS equation satisfies? This question is quite important when
considering rotationally symmetric spatially extended systems
that do not have oscillatory instability because these systems
are not in the range of application of the KS equation. In
fact, it is known that spatiotemporal disturbance appears
in homeotropic nematics, where disturbance suddenly arises
from a spatially uniform state without oscillatory instability
[23–25]. Thus, in this paper, we explore the further possibility
of producing spatiotemporal chaos without the symmetries that
the KS equation satisfies, and, hence, we propose an alternate
route to spatiotemporal chaos.

II. LONG WAVELENGTH EXPANSION

Let us consider a one-dimensional scalar field u(x,t), whose
dynamics is described by

∂tu = fμ(u), (1)

where μ is the bifurcation parameter. We assume that this
equation has a trivial solution u = 0, which is stable for
μ < μc, while the solution becomes unstable beyond the
critical value μ = μc. Now, we assume that the bifurcation
parameter is sufficiently close to the critical value. To consider
the general weak nonlinear description, we further assume that
only the long-wavelength mode becomes unstable beyond the
critical value. Because u is sufficiently long waved, we can
approximate the right-hand side of Eq. (1) by the function �,
which includes only the low-order local derivatives,

fμ(u) = �μ

(
u,∂xu,∂2

xu, . . . ,∂m
x u

) + O(ε2), (2)

where the parameter ε is defined by ε = μ/μc − 1, and
m is some integer. Now, we expand � with low-order
arguments, expecting that a self-sustained description of the
slow long-wavelength mode is possible around the critical
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point. To determine the leading terms of the expansion, we
must select only the low-order terms satisfying the symmetry
constraint. Here we assume the following two invariances:
i) � is independent of u, and ii) � is invariant with respect
to the simultaneous transformations x → −x and u → −u.
Selecting the O(u2) terms from the expansion satisfying these
symmetry conditions, we obtain

ut = ε2∂
2
xu − ε4∂

4
xu + ε6∂

6
xu − · · ·

+ g1∂xu∂2
xu + g2∂

2
xu∂3

xu + g3∂xu∂4
xu + · · · . (3)

The parameters εi are determined by the expansion of
the eigenvalue spectrum λ(k) � −ε2k

2 − ε4k
4 − ε6k

6 − · · ·
calculated by the linear stability analysis of the original
equation (1). The effective nonlinear equation for the case
that ε2∂

2
xu is the main destabilizing term, that is, ε2 → −0

and εi > 0(i � 4) was studied by Kuramoto, with which
he discussed the spontaneous wavelength modulation of a
periodic pattern [26]. In this paper, to explore the further
possibility, we consider the case that the main destabilizing
term is the quartic diffusion term ε4∂

4
xu. When we interpret

the linear terms in the sense of nonconservative surface, each
linear term is interpreted as surface tension, bending rigidity,
and higher-order rigidity. While we should assume that the
quartic term means surface tension, the sextic term means
bending rigidity, and the quadratic term should be zero in the
case of conservative surface. Therefore, when we assume a
nonconservative surface, the destabilization expressed by ε4 <

0 corresponds to generation of a negative bending rigidity,
while Kuramoto’s situation corresponds to generation of a
negative surface tension.

When the quartic diffusion term is the main destabilizing
term, we should consider the limit, ε2 → +0 and ε4 →
−0. However, this limit is not unique but depends on the
convergence rates. To determine the well-defined limit, we
assume the scaling relation |ε2| ∼ cεν , where ε ≡ |ε4| and
c is a small constant. Now, we remember the fact that the
parameter ε describes a small shift from the bifurcation point.
Due to its small value, we expect that the solution u has a
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FIG. 1. (Color online) Transition of the eigenvalue spectrum, λ =
−0.3ενq2 + εq4 − 0.01q6. Here, the value of the exponent ν is set to
ν = 0.3. Solid lines are eigenvalue spectrums for ε = 0.15,0.13,0.11,
and 0.09, in which the darker line is obtained when the value of ε is
smaller.

scaling form, although we must take note of the fact that
the system should have multiple scales (see Fig. 1). Let us
assume that the system has a characteristic length scale 1/q∗
in the limit ε → 0, which distinguishes the scaling behaviors
of the solution. The solution u is assumed to have the scaling
forms as u = u(ε−ηx) when q < q∗ and u = u(εμx) when
q > q∗. The scaling parameters η and μ are determined by
the balances between the quadratic and quartic diffusion terms
and between the quartic and sextic diffusion terms in Eq. (3),
which leads to η = (1 − ν)/2 and μ = 1/2. When the solution
has these scalings, the derivative ∂n

x u is expected to scale as
∂n
x u ∼ ε−ηnu when n < n∗, and scale as ∂n

x u ∼ ε−ηn∗+μ(n−n∗)u

when n � n∗, where n∗ is some critical order, which should be
n∗ = 3 ∼ 5 when the destabilizing term is quartic. Now, we
restrict our attention to the lowest-order effective description
for q∗ < q, which is equivalent to ignoring the second-
order linear term. Moreover, when ε → 0, the linear terms
including high derivatives are ignored. To select the most
effective nonlinear term, we consider how each nonlinear
term in Eq. (3) scales. For example, when we assume that
n∗ = 3, the nonlinear terms scale as ∂xu∂2

xu ∼ ε−3η,∂2
xu∂3

xu ∼
ε−5η,∂xu∂4

xu ∼ ε−4η+μ, and ∂3
xu∂4

xu ∼ ε−6η+μ, from which
we can determine the most effective term depending on the
value of ν.

As the first example, we consider the case ν < 0. In this
case, we see the most effective nonlinear term is ∂xu∂2

xu, and,
therefore, the lowest-order equation is

ut = ∂4
xu + ∂6

xu + ∂xu∂2
xu, (4)

where we eliminated the parameters, ε,ε6, and g1, considering
the adequate scalings of the variables. Although Eq. (4) is
somewhat different, it is not so attractive, because the solution
of Eq. (4) does not display a complex behavior. This is
understood by the fact that Eq. (4) has the Lyapunov functional
F defined by

∂tu = −δF/δu, (5)

F = 1

2

∫
dx

(
−(

∂2
xu

)2 + (
∂3
xu

)2 + 1

3
(∂xu)3

)
, (6)

which characterizes the inevitable relaxation to some steady
state. By the numerical simulation of Eq. (4), we see that the
system shows the steady wave pattern.

When we consider the other value of ν, we get the other
effective description. When we consider the case 0 < ν < 1/2,
the second nonlinear term in Eq. (3) becomes the most
effective, which leads to

ut = ∂4
xu + ∂6

xu − ∂2
xu∂3

xu, (7)

where we eliminated the parameters again, considering the ad-
equate scalings. The selection of the negative sign of the third
term of the right-hand side is more appropriate when explain-
ing the origin of the disturbed dynamics given later. Compared
with the previous nonlinear term, the term ∂2

xu∂3
xu has a quite

irrelevant effect in the dynamics, and one of the reasons is that
this term does not have a potential function. We propose that
this equation is important when considering spatiotemporal
chaos under the reflection-antisymmetric condition.
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III. NUMERICAL INVESTIGATIONS

Now, we investigate Eq. (7) by direct numerical calcu-
lations. In our numerical calculations, we use the expo-
nential time-differencing fourth-order Runge-Kutta method
(ETDRK4) to solve the equation [28,29]. The ETD methods
are effective to rapidly and reliably solve a stiff equation like
Eq. (7) because the error does not depend on the magnitude
of the eigenvalues of the linear operator [28]. The ETDRK4
used here is the stabilized version developed by Kassam and
Trefethen [29], which was verified to work well to solve
the Kuramoto-Sivashinsky equation. Figure 2 shows various
dynamical patterns obtained by solving Eq. (7) on several
values of the system size L. Figure 2(a) shows one of the
spatiotemporal patterns obtained by solving Eq. (7), in which
the system shows a steady mode-2 wave. This kind of steady
pattern is seen in a broad range of the value of the parameter
L, although the stable wave mode changes depending on
the value of L. This property is similar to that of the KS
equation [18]. The dynamics becomes highly diverse in the
three characteristic parameter windows, W1, W2, and W3,
each of which is defined by L � [12.0,14.4],[21.0,21.9],
and [29.0,29.9]. The reason these windows are important
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FIG. 2. (Color online) Spatio-temporal dynamics of the solu-
tion of Eq. (7). (a) Steady wave (L = 18.0). (b) Traveling wave
(L = 12.5). (c) Heteroclinic oscillation (L = 13.7). (d) Heteroclinic
oscillation (L = 29.5). (e) Turbulized dynamics (L = 21.5). Here,
we use the spectral algorithm with a fourth order exponential time
differencing Runge-Kutta method (ETDRK4) [29], where the whole
mode number is N = 512.
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FIG. 3. (a) Time-averaged power spectrum. The spectrum higher
than the n = 10 mode continues to exponentially decrease (not
shown here). (b) Frequency spectrum of low-wavenumber modes:
n = 1,3,5,7, and 9. These are obtained by numerically solving Eq. (7)
with the same parameter values as those used in Fig. 2(e).

is explained later. Figure 2(b) shows the traveling wave
solution obtained in the first window W1. The heteroclinic
oscillation shown in Fig. 2(c) is also seen in the first window.
Figure 2(d) shows the other heteroclinic oscillation, which
is obtained in W3. The further complex behavior as shown
in Fig. 2(e) is obtained within W2, in which the system
shows the turbulent dynamics that never relaxes to a steady
state. The property of this turbulent dynamics is analyzed
by the power spectrum shown in Fig. 3. Figure 3(a) shows
the time-averaged power spectrum 〈Sn〉 defined by 〈Sn〉 =
1
T

∫ T
2

− T
2
dt |un(t)|2, where un(t) = 1

L

∫ L
2

− L
2
dxu(x,t) exp(i 2πn

L
x)

and T is the whole observation time. The exponential decay
in the spectrum implies that the temporal development of the
solution is spatiotemporal chaos [18,27]. Figure 3(b) shows
the frequency spectrum for several low modes. All the modes
show power-law decays whose slopes are −2, which implies
that the dynamics is random.

To explain why Eq. (7) can generate the complex behavior
in more detail, we give the Fourier expansion of u, u =
i
∑

an exp(2πins/L). Substituting this into Eq. (7), we get
the mode interaction equations as

ȧn = n4

(
1 − n2

�2

)
an +

m=∞∑
m=−∞

m2 (n − m)3 aman−m, (8)

where � is defined by � ≡ L/2π , we performed the scale
transformations t → �4t and an → �an, and we used the
fact that a−n = −a∗

n should be satisfied, when u is real valued.
Equation (8) shows that the mode-n wave an becomes unstable
at L ∼ 2πn, from which we see that each window W1,W2,
and W3 is in the neighborhood of the parameter value that the
mode-2, mode-3, and mode-4 becomes unstable, respectively.
The high codimension bifurcation points exist within these
windows, and, therefore, the various changes of motion type
can appear [30]. Now, we analyze the effective dynamics in W2,
in which the system generates spatiotemporal disturbances.
Because the three modes a1,a2, and a3 are unstable or neutrally
stable in W2, the slow dynamics in W2 is determined by the
center-unstable manifold spanned by (a1,a2,a3). The dynamics
on the center-unstable manifold can be calculated with the
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standard center manifold reduction technique [30], which leads
to

ȧ1 = �1a1 − 4a2a
∗
1 − 36a3a

∗
2 + D1a1|a3|2

+D2a
2
2a

∗
3 + O(|a|4), (9)

ȧ2 = �2a2 + a2
1 − 18a3a

∗
1 + D3a3a1a

∗
2

+D4a2|a2|2 + D5a2|a3|2 + O|a|4), (10)

ȧ3 = �3a3 + 12a1a2 + D6a3|a1|2 + D7a
2
2a

∗
1

+D8a3|a2|2 + D9a3|a3|2 + O(|a|4), (11)

where �n = n4(1 − n2/�2), and the O(|a|3) coefficients
are given by D1 = −20736/(�1 + �3 − �4),D2 =
−18432/(�2 − �4), D3 = −9216/(�1 + �3 − �4),D4 =
− 8192/(�2 − �4),D5 = −202500/(�2 + �3 − �5), D6 =
−2304/(�1 + �3 − �4), D7 = −2048/(�2 − �4), D8 =
−90000/(�2 + �3 − �5), and D9 = −472 392/(�3 − �6).
Here, we notice that the coefficient of the nonlinear term a2a

∗
1

in Eq. (9) is negative and the coefficient of the term a2
1 in

Eq. (10) is positive. These properties have a significant role
in these mode equations, because they imply that the system
is able to produce the heteroclinic bifurcation [31]. This fact
was indicated by Armbruster et al., who provided the detailed
bifurcation analysis of the equations similar to Eqs. (9)
and (10) with a3 = 0 [31]. Their pioneering work is helpful to
understand how Eq. (7) produces a complex behavior in W2,
where it could be expected that the heteroclinic orbit perturbed
by Eq. (11) generates the Smale’s horseshoe structure [32]. In
order to consider the dynamics within W3, we have to treat
the center-unstable manifold spanned by (a1,a2,a3,a4) near
μ2 = 16 using the same technique, which should clarify the
other heteroclinic orbit.

Here, we remark on the importance of the nonlinear term
∂2
xu∂3

xu from the viewpoint of nonlocality. As seen before,
this term is essential for the realization of the turbulent
dynamics displayed in Fig. 2(e). So far, the importance of
the ∂2

xu∂3
xu term has not been noticed, probably because it

does not have a significant effect due to the presence of
high-order derivatives. This opinion is appropriate as long

as the second-order linear term is the main destabilizing
term. To maintain this mathematical structure, the derivatives
included in the nonlinear terms should be at most second order
and, hence, the ∂2

xu∂3
xu term must be excluded. However,

in the case that the quartic derivative term is the main
destabilizing term, we must consider the nonlinear terms
including at most ∂4

xu, thus, the ∂2
xu∂3

xu term can appear in
the lowest-order equation. Therefore, the importance of the
∂2
xu∂3

xu term manifests when we consider nonlocal systems.
In the last decade, it has been identified that certain important
aspects of the nonlocal reaction-diffusion models are never
realized by the local amplitude and phase equations [8–14].
For instance, the complex Ginzburg-Landau (CGL) equation
with exponential nonlocal coupling shows a multiaffine fractal
structure [8,9]. The nonlocally coupled phase oscillators show
pattern shredding, phase slips, and a chimera state [15], while
the nonlocal oscillators having two coupling ranges display
phase turbulence [16]. Although it is not clear how these
preceding studies are related to our work, we consider that
our findings develop the study of spatiotemporal chaos and
nonlocal systems.

IV. CONCLUSION

In this paper, we proposed a route to spatiotemporal
chaos. We considered the system that has space-reflection
antisymmetry and field-translation symmetry. We conclude
that Eq. (7) is the lowest-order equation that can show
nontrivial turbulent dynamics within the symmetry constraint.
Because the symmetry constraint assumed in this paper is very
common in spatially extended physical systems, we believe
that this scenario can universally describe the disturbance of
many physical systems. We hope this study becomes a catalyst
for creating a unified picture of various systems that show
turbulent dynamics.
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