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Consequences of flooding on spectral statistics
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We study spectral statistics in systems with a mixed phase space, in which regions of regular and chaotic motion
coexist. Increasing their density of states, we observe a transition of the level-spacing distribution P (s) from
Berry-Robnik to Wigner statistics, although the underlying classical phase-space structure and the effective Planck
constant heff remain unchanged. This transition is induced by flooding, i.e., the disappearance of regular states
due to increasing regular-to-chaotic couplings. We account for this effect by a flooding-improved Berry-Robnik
distribution, in which an effectively reduced size of the regular island enters. To additionally describe power-law
level repulsion at small spacings, we extend this prediction by explicitly considering the tunneling couplings
between regular and chaotic states. This results in a flooding- and tunneling-improved Berry-Robnik distribution
which is in excellent agreement with numerical data.
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I. INTRODUCTION

The universal relation between the statistics of quantum
spectra and classical mechanics is a fundamental cornerstone
of quantum chaos: For systems with regular dynamics it was
conjectured that spectral statistics show Poissonian behavior
[1]. In contrast, systems with chaotic dynamics should be
described by random matrix theory [2,3], which can be
explained in terms of periodic orbits [4–6]. For generic
Hamiltonian systems with a mixed phase space, in which
disjoint regions of regular and chaotic motion coexist, univer-
sal spacing statistics were obtained by Berry and Robnik [7].
Their derivation is based on the semiclassical eigenfunction
hypothesis [8–10], which states that eigenfunctions of a
quantum system semiclassically localize on those regions in
phase space that a typical orbit explores in the long-time limit.
For regular states in one-dimensional systems this corresponds
to the WKB quantization condition [11,12]∮

Cm

p dq = heff

(
m + 1

2

)
. (1)

It shows that the regular state, labeled by the quantum number
m, localizes on the quantizing torus Cm which encloses the area
heff(m + 1

2 ) in phase space. On the other hand the semiclassical
eigenfunction hypothesis implies that chaotic states uniformly
extend over the chaotic region of phase space. Assuming that
the disjoint regular and chaotic regions give rise to statistically
uncorrelated level sequences, one obtains the Berry-Robnik
level-spacing distribution [7]; see Fig. 1 (dash-dotted lines).

The assumption of uncorrelated regular and chaotic level
sequences does not hold in the presence of dynamical tunneling
[13–26], which quantum mechanically couples regular and
chaotic states. If such tunneling couplings are small, regular
eigenstates will typically have tiny chaotic admixtures and
vice versa. The influence of such weak couplings on spacing
statistics can be described perturbatively [27–31]. Based on
this description a tunneling-improved Berry-Robnik distri-
bution was derived recently, which explains the power-law
distribution of small spacings in mixed systems [31].

For systems with a large density of states, it is observed
[15,32–36] that a regular WKB state strongly couples to many

chaotic states. As a consequence, the corresponding regular
eigenstate disappears and chaotic eigenstates penetrate into
the regular island, ignoring the semiclassical eigenfunction
hypothesis. This effect is called flooding [33,34]. It causes
the number N f

r of regular eigenstates that actually exist
in the regular island to be smaller than the number N sc

r
expected from the semiclassical eigenfunction hypothesis. In
Refs. [33,34] it was found that in addition to the WKB
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FIG. 1. (Color online) Level-spacing distribution P (s) of the
model system (see Sec. II) for heff ≈ 1/13. The numerical data
(black histogram) is compared to the flooding-improved Berry-
Robnik distribution (red dashed lines), Eq. (23), as well as to the
flooding- and tunneling-improved Berry-Robnik distribution (green
solid lines), Eq. (29), for system sizes (a) M = 1 (weak flooding)
and (b) M = 6765 (strong flooding); M is introduced in Sec. II A.
For comparison the Wigner distribution (dotted lines) and the Berry-
Robnik distribution (dash-dotted lines) are shown. The insets show
averaged Husimi functions of chaotic eigenstates.
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quantization condition (1) the regular state on the mth
quantizing torus exists only if

γm <
1

τH,c
. (2)

Here, γm is the tunneling rate, which describes the initial
exponential decay of the mth WKB state to the chaotic region.
The Heisenberg time τH,c = heff/�c is the ratio of the effective
Planck constant heff and the mean level spacing of the chaotic
spectrum �c.

In this paper we study the consequences of flooding on
spectral statistics in systems with a mixed phase space. With
increasing density of states we observe a transition of the
level-spacing distribution from Berry-Robnik [see Fig. 1(a)]
to Wigner statistics [see Fig. 1(b)], although the underlying
classical phase-space structure and heff remain unchanged.
This transition is demonstrated quantitatively for model
systems with a simple phase-space structure, but it is expected
to hold for generic systems with a mixed phase space. In order
to explain the transition, we introduce a flooding-improved
Berry-Robnik distribution which takes into account that only
N f

r � N sc
r regular states survive in the regular region. We find

good agreement with numerical data; see Fig. 1 (red dashed
lines). We unify this intuitive prediction with the tunneling-
improved Berry-Robnik distribution [31], which explicitly
considers the tunneling couplings between regular and chaotic
states. This results in a tunneling- and flooding-improved
Berry-Robnik distribution, which excellently reproduces the
observed transition from Berry-Robnik to Wigner statistics as
well as the power-law level repulsion at small spacings; see
Fig. 1 (green solid lines).

This paper is organized as follows: In Sec. II we introduce
a family of model systems. Their level-spacing distribution is
studied in Sec. III, where we demonstrate the transition from
Berry-Robnik to Wigner statistics numerically and explain it
by the flooding of regular states. We conclude with a summary
in Sec. IV.

II. MODEL SYSTEM

In this section we introduce a family of model systems for
which the consequences of flooding can be studied in detail.

A. Classical dynamics

We consider systems with a mixed phase space where
classically disjoint regions of regular and chaotic motion
coexist. As examples we choose one-dimensional kicked
systems, described by the classical Hamilton function

H (q,p,t) = T (p) + V (q)
∑
n∈Z

δ(t − n), (3)

where T (p) is the kinetic energy and the potential V (q) is
applied once per kicking period. The dynamics of such systems
is determined by the stroboscopic mapping M of the positions
and the momenta (qn,pn) at times t = n just after each kick
[37],

M : (qn+1,pn+1) = (qn + T ′(pn),pn − V ′(qn+1)). (4)

We design the example systems similarly to those in
Refs. [21,23,33,38] by the piecewise linear functions

t ′(p) =
{−1 + s1(p + 1/4) for p ∈ ]−1/2,0[,

+1 − s2(p − 1/4) for p ∈ ]0,1/2[,
(5)

v′(q) = −rq − (1 − r)�q + 1/2�, (6)

where �x� is the floor function and t ′(p) is periodically
extended. Smoothing the functions t ′(p) and v′(q) with a
Gaussian Gε(z) = exp(−z2/2ε2)/

√
2πε2, one obtains ana-

lytic functions

T ′(p) =
∫ ∞

−∞
dz t ′(z)Gε(p − z), (7)

V ′(q) =
∫ ∞

−∞
dz v′(z)Gε(q − z). (8)

By construction these functions have the periodicity properties

T ′(p + k) = T ′(p), (9)

V ′(q + k) = V ′(q) − k, (10)

for k ∈ Z. This allows to consider the map M on a torus, i.e.,
(q,p) ∈ [−M/2,M/2[ × [−1/2,1/2[ with periodic boundary
conditions and M ∈ N. Due to the choice of T ′(p) and V ′(q),
the dynamics is equivalent in each unit cell of phase space with
q ∈ [k − 1/2,k + 1/2[ and k ∈ Z; see Fig. 2. In the following
we choose the parameters s1 ∈ [5,20], s2 = 2, r = 0.46, and
ε = 0.005 such that each unit cell has a regular island centered
at (q̄k,p̄) = (k,1/4). The area of one such island is Ar ≈ 0.32,
which equals the relative size of the regular region in phase
space.

Since the islands are transporting to the next unit cell in
the positive q direction, i.e., M(q̄k,p̄) = (q̄k+1,p̄), the center
of each island is a fixed point of the Mth iterate of the
map,MM (q̄k,p̄) = (q̄k,p̄). The surrounding chaotic sea has an
average drift in the negative q direction as the overall transport
of the system is zero [39,40]; see Fig. 2. Quantum mechanically
this transport suppresses the localization of chaotic eigenstates.
In our model systems the hierarchical regions around the
regular islands are sufficiently small, and also the effects of
partial transport barriers and nonlinear resonance chains are
irrelevant to the numerical studies.
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FIG. 2. (Color online) Phase-space portrait of the model system,
Eq. (4). For one unit cell M = 1 (a) the regular island (red lines) is
embedded in the chaotic sea (blue dots). For systems with M > 1
(b) the phase space consists of M such unit cells side by side. The
arrows indicate the transport in the regular islands and in the chaotic
sea.
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B. Quantization

The quantum system is given by the time-evolution operator
over one period of the driving,

Û = exp

(
− i

h̄eff
V (q̂)

)
exp

(
− i

h̄eff
T (p̂)

)
; (11)

see, e.g., Refs. [12,41,42]. Quantizing the map M on a
two-torus induces the Bloch phases θq and θp [42,43] which
characterize the quasiperiodicity conditions on the torus. The
Bloch phase θp is limited by M(θp + N/2) ∈ Z because of
the periodic boundary conditions, whereas θq ∈ [0,1[ can be
chosen arbitrarily [34,43].

Due to the quantization on a compact torus the effective
Planck constant heff = 2πh̄eff is determined by the number of
unit cells M and the dimension of the Hilbert space N ,

heff = M

N
. (12)

Here N ∈ N is a free parameter of the quantization and
the semiclassical limit is reached for heff → 0. Note that
M and N are chosen by continued fractions of heff =
1/(d + σ ) with σ = (

√
5 − 1)/2 being the golden mean and

d ∈ N. This ensures that heff = M/N is as irrational as
possible [33]. If M and N were commensurate the quantum
system would effectively be reduced to less than M cells.
In the following we choose d = 12, leading to (M,N ) =
(1,13),(21,265),(610,7697),(6765,85 361), such that the ef-
fective Planck constant is approximately fixed at heff ≈ 1/13.

The eigenvalue equation

Û |φn〉 = eiφn |φn〉 (13)

gives N eigenphases φn ∈ [0,2π [ with corresponding eigen-
vectors |φn〉. For fixed heff it is possible to tune the density
of states by varying M and N , i.e., for increasing M,N with
approximately constant heff = M/N the density of states rises
and flooding becomes more and more prominent, as will be
discussed in Sec. III B. In order to numerically solve the
eigenvalue equation (13) for N > 104 we use a band-matrix
algorithm; see the Appendix.

III. SPECTRAL STATISTICS AND FLOODING

In this section we study the consequences of flooding
on spectral statistics. In Sec. III A we consider the model
systems introduced in Sec. II. Increasing their density of
states (M → ∞) at fixed heff gives the flooding limit for
which we obtain a transition of the level-spacing distribution
P (s) from Berry-Robnik to Wigner statistics. In Sec. III B we
discuss flooding of regular states. Based on this discussion,
we introduce the flooding-improved Berry-Robnik distribution
Pfi(s) in Sec. III C, which intuitively explains how the flooding
of regular states causes the transition from Berry-Robnik to
Wigner statistics. In Sec. III D we unify this prediction with
the results of Ref. [31], leading to the more sophisticated
flooding- and tunneling-improved Berry-Robnik distribution
Pfti(s). This distribution additionally accounts for the effects of
level repulsion between regular and chaotic states. In Sec. III E
we consider three limiting cases in which level repulsion
vanishes. In particular we discuss that the semiclassical limit,

heff → 0 with fixed M , leads to the standard Berry-Robnik
statistics, while Wigner statistics are obtained in the flooding
limit considered in this paper.

A. Spacing statistics of the model system

We investigate the spectral statistics of the model systems
introduced in Sec. II numerically. In order to increase the
statistical significance of the spectral data, we perform en-
semble averages by varying the parameter s1 of the map; see
Eq. (5). This modifies the chaotic dynamics but leaves the
dynamics of the regular region unchanged. Also the Bloch
phase θq is used for ensemble averaging. For the parame-
ters (M,N ) = (1,13),(21,265),(610,7697),(6765,85 361) we
choose 50,50,10,4 equidistant values of s1 in [5,20] and
400,19,10,1 equidistant values of θq in [0,1[, respectively.
For each choice the ordered eigenphases φn give the unfolded
level spacings

sn := N

2π
(φn+1 − φn). (14)

Assuming an uncorrelated superposition of regular and chaotic
subspectra corresponding to disjoint regular and chaotic
regions in phase space, these spacings are expected to follow
the Berry-Robnik distribution [7]. The only relevant parameter
of this distribution is the density of regular states which
semiclassically equals the relative size of the regular region
in phase space, Ar; see Eq. (18). This gives the standard
Berry-Robnik distribution

PBR(s) = d2

ds2

{
exp(−Ars) erfc

(√
π

2
(1 − Ar)s

)}
. (15)

For purely chaotic systems one has Ar = 0 such that the
Wigner distribution Pc(s) = (πs/2)e−πs2/4 is recovered. For
purely regular systems one has Ar = 1, giving the Poisson
distribution Pr(s) = e−s .

For the model systems introduced in Sec. II, one has
Ar ≈ 0.32, such that Eq. (15) predicts the same level-spacing
distribution for all system sizes M . This is in contrast to
our numerical findings, which show a transition of the level-
spacing distribution from Berry-Robnik to Wigner statistics
with increasing system size M and fixed heff . In Fig. 3
numerical results for the level-spacing distribution of the
model systems are shown as black histograms. For the case
of only one unit cell [Fig. 3(a)] the level-spacing distribution
roughly follows the Berry-Robnik distribution (dash-dotted
line). With increase of the system size to M = 21 unit
cells [Fig. 3(b)] the level-spacing distribution shows global
deviations from the Berry-Robnik distribution. For even larger
system sizes [Figs. 3(c) and 3(d)] we observe a transition to the
Wigner distribution (dotted line). This transition is caused by
flooding of regular states, which we discuss in the following
section.

B. Flooding of regular states

We now show how the number of regular and chaotic states
is modified in the presence of flooding. According to Eq. (1)
each regular state occupies an area heff in phase space. Hence,
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FIG. 3. (Color online) Level-spacing distribution P (s) of the
model system for heff ≈ 1/13. The numerical data (black histograms)
show a transition from the Berry-Robnik distribution (dash-dotted
lines) to the Wigner distribution (dotted lines) with increasing system
size M = 1, 21, 610, and 6765 (a)–(d). These data are compared
to the flooding-improved Berry-Robnik distribution (red dashed
lines), Eq. (23), as well as to the flooding- and tunneling-improved
Berry-Robnik distribution (green solid lines), Eq. (29). The insets
show the same distributions on a double logarithmic scale.

the maximal number of quantizing tori mmax per island is given
by

mmax =
⌊

Ar

heff
+ 1

2

⌋
≈ Ar

heff
(16)

and the quantum number m runs from 0 to mmax − 1. Since
we consider a chain of M islands there are M regular levels
supported by the mth quantizing tori of the M islands. Hence,
we semiclassically expect

N sc
r = mmaxM ≈ ArM/heff (17)

regular states supported by the M regular islands of size Ar.
The semiclassically expected density of regular states ρsc

r is
therefore given by the relative size of the regular region,

ρsc
r := N sc

r

N
≈ Ar. (18)

Similarly we expect N sc
c = N − N sc

r chaotic states and ρsc
c =

1 − ρsc
r .

Due to dynamical tunneling, regular and chaotic states are
coupled. The average coupling of the regular states localizing
on the mth quantizing tori to the chaotic states is given by the
typical coupling vm [31]. It is determined by the tunneling rate
γm which describes the initial exponential decay of the mth
regular WKB state to the chaotic sea,

vm = N

2π

√
γm

N sc
c

= 1

2π

√
γm

heffρsc
c

√
M. (19)

We compute the system-specific tunneling rates γm numeri-
cally [23]. They depend only on Planck’s constant heff and the
classical phase-space structure of one regular island, which are
fixed in our investigations. Hence, the factor

√
γm/(heffρsc

c ) in
Eq. (19) is constant for our model systems and the typical
coupling vm is tunable by the system size M . Note that the
couplings v used in Refs. [33,34] differ by the factor ρsc

c
from our definition, Eq. (19), due to a different choice of
dimensionless units.

In Ref. [33] it was shown that in addition to the WKB
quantization condition (1) regular states exist on the mth
quantizing tori only if the tunneling rate γm is smaller than
the inverse Heisenberg time of the chaotic subsystem, γm <

1/τH,c, Eq. (2). Using Eq. (19) and τH,c = heff/�c = N sc
c we

rewrite this existence criterion in terms of the typical coupling,

vm <
1

2πρsc
c

. (20)

If the existence criterion (20) is fulfilled, the typical coupling
of the WKB states on the mth quantizing tori is smaller than
the chaotic mean level spacing and the corresponding regular
eigenstates exist. If vm increases beyond this threshold, the
regular states on the mth quantizing tori effectively couple
to an increasing number of spectrally close chaotic states.
Consequently the corresponding regular eigenstates disappear.
This process is called flooding of regular states [33,34,44,45].
Thus for large typical couplings vm the number N f

r of regular
states which actually exist in the regular islands is smaller than
the semiclassically expected number N sc

r of regular states. The
quantizing tori of the N sc

r − N f
r regular states which violate

Eq. (20) are flooded by chaotic states in phase space. Note
that for our model systems the relation v0 < v1 < v2 < · · ·
holds, such that the quantizing tori are flooded in the order of
decreasing quantum number m from the border to the center
of the regular islands.

C. Flooding-improved Berry-Robnik distribution

We now introduce a flooding-improved Berry-Robnik
distribution which takes the flooding of regular states into
account. For that purpose we compute the density of regular
states ρf

r in the presence of flooding. Starting from the
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FIG. 4. (Color online) Density of regular states ρf
r in the presence

of flooding, Eq. (22), vs the system size M for heff ≈ 1/13 on a
logarithmic abscissa. For comparison, the semiclassically expected
density of regular states ρsc

r is shown (green dotted line). The insets
illustrate the classical phase space where the gray tori enclose the area
ρf

r for M = 1, 21, 610, and 6765. In addition, the averaged Husimi
function of all chaotic eigenstates folded into the first unit cell is
shown.

semiclassically expected density of regular states, Eq. (18),
and using Eqs. (12) and (17) we obtain

ρsc
r ≈

mmax−1∑
m=0

heff . (21)

This expression shows that each quantizing torus semiclas-
sically contributes one Planck cell to the density of states.
To compute the density of regular states ρf

r in the presence
of flooding we include only those quantizing tori in the sum
in Eq. (21) for which the existence criterion (20) holds, and
obtain [33,34]

ρf
r :=

mmax−1∑
m=0

heff

[
1 − �

(
vm − 1

2πρsc
c

)]
. (22)

In Fig. 4 the density of regular states ρf
r is shown for the

example system at heff ≈ 1/13 versus the system size M on
a logarithmic abscissa. It decreases with increasing system
size M and has a step whenever a typical coupling vm equals
1/(2πρsc

c ). The semiclassical density of regular states ρsc
r is an

upper limit. In the spirit of Eq. (18), ρsc
r ≈ Ar, we interpret the

density of regular states ρf
r in the presence of flooding by an

area in phase space. For M = 1, 21, 610, and 6765 the insets of
Fig. 4 show this area enclosed by a gray torus. In addition the
averaged Husimi functions (bright/yellow to darker/red color
scale) illustrate that the surviving regular states are localized
in this area ρf

r , which decreases in the flooding limit M → ∞.
Already for the system with one unit cell, M = 1, we find that
ρf

r is smaller than its semiclassical expectation ρsc
r because the

outermost regular state of quantum number m = 3 violates the
existence criterion (20).

Note that the amount by which a regular state is flooded can
also be described by smooth functions, e.g., by the fraction of
regular states [34] or the asymptotic flooding weight [45].
However, they do not provide a significant advantage for our
investigations.

To obtain a description of the level-spacing distribution
which includes flooding, we now use prediction (22) for the
density of regular states ρf

r instead of the relative size of
the regular region Ar as the relevant parameter in Eq. (15).
With ρf

c := 1 − ρf
r this leads to the flooding-improved Berry-

Robnik distribution

Pfi(s) = d2

ds2

{
exp

(−ρf
r s

)
erfc

(√
π

2
ρf

cs

)}
, (23)

which is our first main result. In Fig. 3 we compare the numer-
ically determined nearest-neighbor level-spacing distribution
to the analytical prediction (23) for our model system. With
increasing system size M and fixed heff we find a global
transition of the level-spacing distribution from Berry-Robnik
to Wigner statistics. This global transition is well described
by the flooding-improved Berry-Robnik distribution, Eq. (23).
It is a consequence of flooding, which reduces the density of
regular states below its semiclassical expectation, ρf

r � ρsc
r .

According to Eq. (18) this can be interpreted as a flooding-
induced decrease of the regular region in phase space. In
the limit M → ∞ the regular islands are completely flooded
and no regular state exists. Hence, the Wigner distribution is
obtained.

Note that even for the case of only one unit cell [see
Fig. 3(a)] nonzero couplings vm exist such that the numerical
data are better described by the flooding-improved Berry-
Robnik distribution, Eq. (23), than by Eq. (15).

At small spacings deviations between numerical data and
the flooding-improved Berry-Robnik distribution are visible.
They occur due to level repulsion between the surviving regular
and the chaotic levels, which is not considered within this
approach and will be incorporated in the following section.

D. Flooding- and tunneling-improved
Berry-Robnik distribution

We now unify the flooding-improved Berry-Robnik distri-
bution, Eq. (23), with the tunneling-improved Berry-Robnik
distribution [31]. The resulting flooding- and tunneling-
improved Berry-Robnik distribution allows us to describe both
the effect of flooding and the power-law level repulsion at
small spacings. The derivation is done along the lines of
Ref. [31]. We incorporate the effects of flooding into this
theory by replacing the number of regular states N sc

r with
the number of surviving regular states N f

r which fulfill the
existence criterion (20). The other regular states, which fulfill
the WKB quantization condition (1) but have strong couplings
to the chaotic sea, vm > 1/(2πρsc

c ), are assigned to the chaotic
subspectrum. Level repulsion is then modeled by accounting
for the small tunneling couplings vm between the N f

r surviving
regular states and the chaotic states perturbatively.

Following Refs. [7,28,30,31] the flooding- and tunneling-
improved Berry-Robnik distribution Pfti(s) consists of three
distinct parts:

Pfti(s) = pr-r(s) + pc-c(s) + pr-c(s). (24)

Here pr-r(s) describes the contribution of level spacings
between two regular levels, pc-c(s) the contribution of level
spacings between two chaotic levels, and pr-c(s) the contribu-
tion of level spacings formed by one regular and one chaotic
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level in the superposed spectrum. In our model systems the
number of quantizing tori mmax is small, e.g., mmax ≈ 4, and
the M regular levels with the same quantum number m are
equispaced with distance N/M in the unfolded spectrum [46].
Hence, the regular levels do not follow the generic Poissonian
behavior occurring for large mmax, but are well separated,

pr-r(s) ≈ 0. (25)

Furthermore,

pc-c(s) = Pc(s)
[
1 − ρsc

r s
]
, (26)

where Pc(s) is the Wigner distribution, which describes the
probability of finding a spacing s in the chaotic subspectrum.
The second factor [1 − ρsc

r s] describes the probability of
finding a gap in the regular subspectrum. For the third term in
Eq. (24) one finds [31]

pr-c(s) = p(0)
r-c (s)

1

N f
r

N f
r −1∑

m=0

ṽm

vm

X

(
s

2vm

)
, (27)

with X(x) := √
π/2 x exp(−x2/4)I0(x2/4), where I0 is

the zeroth-order modified Bessel function and ṽm =
vm/

√
1 − 2π (ρsc

c vm)2. The contribution of the zeroth-order
regular-chaotic spacings, p(0)

r-c (s), is given by

p(0)
r-c (s) = 2ρsc

c ρsc
r exp

(
−π

(
ρsc

c s
)2

4

)
. (28)

Using Eqs. (25), (26), and (27) in Eq. (24), we obtain the
flooding- and tunneling-improved Berry-Robnik distribution

Pfti(s) = Pc(s)
[
1 − ρsc

r s
] + p(0)

r-c (s)
1

N f
r

N f
r −1∑

m=0

ṽm

vm

X

(
s

2vm

)
,

(29)

which is our final result. In Eq. (29) one has to sum
over the N f

r � N sc
r regular states which fulfill the existence

criterion (20). This selection of the regular states takes flooding
into account. In addition power-law level repulsion at small
spacings is described by the last term of Eq. (29).

In Fig. 3 we compare the numerical results for the level-
spacing distribution to the flooding- and tunneling-improved
Berry-Robnik distribution, Eq. (29) (green solid lines). We find
excellent agreement. The global transition of the level-spacing
distribution from the Berry-Robnik distribution in Fig. 3(a)
for a system with one unit cell to the Wigner distribution
in Fig. 3(d) for a system with M = 6765 is well described.
This transition is caused by the disappearance of regular states
due to flooding. Furthermore, the flooding- and tunneling-
improved Berry-Robnik distribution, Eq. (29), reproduces the
power-law level repulsion of P (s) at small spacings, which
is caused by small tunneling splittings between the surviving
regular and chaotic states. This can be seen particularly well
in the double logarithmic insets of Fig. 3.

E. Limiting cases

Depending on the interplay between the flooding limit
M → ∞ and the semiclassical limit heff → 0, we identify

three cases in which the tunneling corrections of Sec. III D are
insignificant.

Case (i) is the flooding limit with fixed heff and M → ∞
in which all regular states are flooded. Asymptotically one
obtains the Wigner distribution; see Fig. 3(d). Note that a
further increase of the system size after all regular states
have been flooded completely, may lead to the localization
of chaotic eigenstates which affects spectral statistics [47,48].

P (s)

0.0

0.5

0 21 s

(d)

M = 1597
0.1

1

0.01 0.1 1

P (s) (c)

M = 89
0.1

1

0.01 0.1 10.0

0.5

P (s) (b)

M = 34
0.1

1

0.01 0.1 10.0

0.5

P (s) (a)

M = 5
0.1

1

0.01 0.1 10.0

0.5

FIG. 5. (Color online) Level-spacing distribution P (s) of the
model system at fixed density of regular states ρf

r ≈ 0.58ρsc
r . The

numerical data (black histograms) are compared to the flooding-
improved Berry-Robnik distribution (red dashed lines), Eq. (23),
as well as to the flooding- and tunneling-improved Berry-Robnik
distribution (green solid lines), Eq. (29), for (M,N ) = (5,63),
(34,735), (89,2458), and (1597,77 643) (a)–(d), corresponding to
heff ≈ 1/13, 1/22, 1/28, and 1/49, respectively. For comparison, the
Wigner distribution (dotted lines) and the Berry-Robnik distribution
(dash-dotted lines) are shown. The insets show the same distributions
on a double logarithmic scale.
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Case (ii) considers the semiclassical limit heff → 0 for
fixed system sizes M . In this case both flooding and tunneling
corrections vanish due to exponentially decreasing tunneling
couplings. Hence, the spacing statistics tend toward the
standard Berry-Robnik distribution, Eq. (15) [31,49].

In case (iii) the semiclassical limit heff → 0 and the flooding
limit M → ∞ are coupled such that ρf

r is constant and smaller
than ρsc

r . In this limit flooding is present yet the tunneling
corrections at small spacings vanish. In this case the spacing
statistics are given by the flooding-improved Berry-Robnik
distribution, Eq. (23).

In Fig. 5 we illustrate spectral statistics in the limit of
case (iii). We consider the model systems for (M,N ) =
(5,63),(34,735),(89,2458),(1597,77 643) such that the den-
sity of regular states is fixed, ρf

r ≈ 0.58ρsc
r , and heff ≈

1/13,1/22,1/28,1/49 decreases. Both the numerical data and
the flooding- and tunneling-improved Berry-Robnik distri-
bution, Eq. (29), tend toward the flooding-improved Berry-
Robnik distribution, Eq. (23). The vanishing influence of the
tunneling corrections at small spacings is particularly visible
in the insets, which show the spacing distributions on a double
logarithmic scale.

IV. SUMMARY

In this paper we study the impact of flooding on the
level-spacing distribution P (s) for systems with a mixed phase
space. Numerically we find a transition from Berry-Robnik to
Wigner statistics with increasing density of states and fixed
heff . We explain this transition by the flooding of regular
islands. It reduces the density of regular states ρf

r below its
semiclassical expectation ρsc

r , which can be interpreted as a
flooding-induced decrease of the regular region in phase space.
Taking this into account we derive a flooding-improved Berry-
Robnik distribution, which reproduces the observed transition
of the level-spacing statistics. We unify this prediction with
the tunneling-improved Berry-Robnik distribution [31] which
includes power-law level repulsion. This gives the flooding-
and tunneling-improved Berry-Robnik distribution, which
shows excellent agreement with numerical data.

In order to demonstrate the effect of flooding on spectral
statistics, we investigated model systems with a simple phase-
space structure. However, we expect that flooding has similar
consequences for systems with a generic phase space, which
may contain several regular and chaotic regions as well as
nonlinear resonances, larger hierarchical regions, and partial
transport barriers. This expectation is based on the fact
that even for generic systems tunneling couplings between
classically disjoint regions exist. Hence, increasing the density
of states for fixed heff should still lead to a transition of
the level-spacing distribution from Berry-Robnik to Wigner
statistics.
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APPENDIX: PERIODIC BAND MATRIX

Our aim is to calculate the eigenphases φn from Eq. (13)
numerically up to Hilbert-space dimension N ≈ 105. This is
possible due to a band-matrix algorithm [50] which was used
in Refs. [33,34] and is presented in the following.

We start with the matrix representation of the symmetrized
time-evolution operator,

Û sym = e−(i/2h̄eff )T (p̂) e−(i/h̄eff )V (q̂) e−(i/2h̄eff )T (p̂), (A1)

in the basis of the discretized position states |qk〉,
U

sym
k,l := 〈qk|Û sym|ql〉, (A2)

with qk = heff(k + θp − 1
2 ) and k,l = 0,1, . . . ,N − 1. This

matrix has dominant contributions around the diagonal and
in the upper right and lower left corners, i.e., Û sym can
be approximated by a periodic band matrix. For our model
systems the width of the band depends on the extrema of
V ′(q). The essential step for computing the eigenvalues of
U sym is to find a similarity transformation from this periodic
band matrix to a band matrix. For the Hermitian case a similar
idea was used in Ref. [51].

Since the kicking potential is symmetric about q = 0 for
M(θp + N/2) ∈ Z, V (ql) = V (qN−l), we find

U
sym
k,l = U

sym
N−l,N−k. (A3)

Hence, the set of eigenvectors |φn〉, for which we choose the
phase such that 〈q0|φn〉 = 〈q0|φn〉∗, satisfies

〈ql |φn〉 = 〈qN−l |φn〉∗, (A4)

where the star denotes the complex conjugation and l runs
from 1 to N − 1. Based on these relations it is possible to
find a unitary transformation Â to a set of purely real vectors
|ψn〉 := Â|φn〉, given by

〈q0|ψn〉 = 〈q0|φn〉, (A5)

〈q2k−1|ψn〉 = 1√
2

(〈qk|φn〉 + 〈qN−k|φn〉), (A6)

〈q2k|ψn〉 = 1

i
√

2
(〈qk|φn〉 − 〈qN−k|φn〉), (A7)

〈qN−1|ψn〉 = 〈qN/2|φn〉. (A8)

Here, k runs from 1 to (N − 1)/2 for odd N or from 1 to
(N − 2)/2 for even N and the last row has to be considered
only for even N .

We now define a new operator Ŵ , given by the unitary
transformation of Û sym with Â,

Ŵ := Â Û symÂ−1. (A9)

Its matrix representation W in the basis of position states |qk〉
has a banded structure with twice the bandwidth of the matrix
U sym but without components in the upper right and lower left
corners. Furthermore it is symmetric,

Wk,l = Wl,k, (A10)

with complex matrix elements Wk,l . The unitary transforma-
tion (A9) leads to a new eigenvalue problem with the same

036213-7
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eigenphases as in Eq. (13),

Ŵ |ψn〉 = eiφn |ψn〉. (A11)

Numerical standard libraries provide methods for the eigen-
value computation of only real symmetric or complex Hermi-
tian band matrices but not for unitary band matrices such as
W . Hence, we first calculate the real part of the eigenvalues,
following from Re{W } |ψn〉 = cos φn |ψn〉, and afterwards
the imaginary part from Im{W } |ψm〉 = sin φm |ψm〉. This

is possible since the eigenvectors |ψn〉 are purely real.
From these results one can recover the eigenphases φn by
the requirement cos2 φn + sin2 φm = 1. The corresponding
eigenfunctions |ψn〉 can be obtained from Eq. (A11) by the
method of inverse iteration using an LU decomposition. By
the mapping of the original eigenvalue problem Eq. (13) to
the band matrix form Eq. (A11), it is possible to compute both
eigenvalues and eigenfunctions with a numerical effort scaling
as N2 in contrast to the standard diagonalization procedures
which scale as N3.
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[24] C. Dembowski, H.-D. Gräf, A. Heine, R. Hofferbert, H. Rehfeld,

and A. Richter, Phys. Rev. Lett. 84, 867 (2000).
[25] D. A. Steck, W. H. Oskay, and M. G. Raizen, Science 293, 274

(2001).
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