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Onset of chaos and relaxation in isolated systems of interacting spins: Energy shell approach
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We study the onset of chaos and statistical relaxation in two isolated dynamical quantum systems of interacting
spins 1/2, one of which is integrable and the other chaotic. Our approach to identifying the emergence of chaos is
based on the level of delocalization of the eigenstates with respect to the energy shell, the latter being determined
by the interaction strength between particles or quasiparticles. We also discuss how the onset of chaos may be
anticipated by a careful analysis of the Hamiltonian matrices, even before diagonalization. We find that despite
differences between the two models, their relaxation processes following a quench are very similar and can be
described analytically with a theory previously developed for systems with two-body random interactions. Our
results imply that global features of statistical relaxation depend on the degree of spread of the eigenstates within
the energy shell and may happen to both integrable and nonintegrable systems.
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I. INTRODUCTION

In recent years, a great deal of attention has been paid to
the issue of thermalization in isolated quantum systems caused
by interparticle interactions [1–12]. Apart from theoretical
aspects, this interest has been triggered by remarkable ex-
perimental progresses in the studies of quantum systems with
ultracold gases trapped in optical lattices (see, e.g., Ref. [13]).

A necessary condition for the onset of thermalization
is the statistical relaxation of the system to some kind of
equilibrium, which is followed by further fluctuations of
the observables around their average values. In classical
mechanics, as discussed in Ref. [14], there are two mechanisms
leading to the emergence of statistical behavior in dynamical
(deterministic) systems.

The first scenario, known since the early days of statistical
mechanics, is the thermodynamic limit in which the number
of particles diverges N → ∞. In this case, the statistical
description is valid even in the absence of chaos. A completely
integrable system, such as the Toda lattice, can manifest perfect
statistical and thermodynamical properties for a finite although
large number of particles (practically, for N � 1 [15]). Even
though there are initial conditions that correspond to solitons,
they are rare and can be safely neglected in practice. This first
mechanism, termed linear chaos in Ref. [14], is at the core of
the foundation of statistical mechanics.

The other mechanism, which is more recent, is based on
the concept of local instability of motion in phase space. The
understanding is that an isolated dynamical system can behave
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in a statistical way even for a very small number of interacting
particles N � 2 provided the motion is strongly chaotic (see,
e.g., Refs. [16,17]). Chaoticity does not imply true randomness
in the equations of motion, but a pseudorandomness (or
deterministic chaos), which depends on the number of particles
and the strength of the interparticle interaction. Ergodicity is
not essential here provided the measure of initial conditions
corresponding to regular motion is very small. In this case,
an apparent irreversibility of motion emerges since any weak
external perturbation gives rise to nonrecurrence of the initial
conditions. It should be stressed that, although the two mech-
anisms above are different, in both cases the time dependence
of the observables can be described by an infinite number of
statistically independent frequencies (see details in Ref. [14]).

In quantum systems, the notion of trajectories and thus of
their local instabilities loses its meaning. Yet it has been argued
that thermalization may still happen even if the system is finite
and isolated provided it is chaotic. Chaos at the quantum level
refers to specific properties of spectra, eigenstates, and dy-
namics of the system. They were initially observed in quantum
systems whose classical counterparts were chaotic, but were
soon found also in quantum systems without a classical limit
and in quantum systems with disordered potentials. Nowadays,
the term quantum chaos is used in a broad sense when referring
to those properties, irrespectively of the existence of a true
classical limit.

After intensive investigation, the properties of one-body
quantum chaos became well understood (see, e.g., Refs. [18–
20]). In contrast, the theory of many-body chaos with respect
to quantum systems of interacting Fermi or Bose particles
is far from being complete. In fact, even in the classical
limit, a proper analysis of chaos becomes complicated due
to the large number of interacting particles and therefore large
dimensionality of the phase space.
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Initial studies of quantum chaos in many-body systems
focused on the statistics of the energy levels; however, it
soon became clear that crucial information is contained in the
eigenstates. Typically, the eigenstates are written in the basis
corresponding to noninteracting particles. This corresponds to
using a picture where the total Hamiltonian of the model is
separated into a sum of two terms H = H0 + V , where H0 de-
scribes the noninteracting particles (in a more general context,
quasiparticles), and V absorbs the interparticle interactions.
In nuclear physics the latter term is referred to as residual
interaction.

The separation of the Hamiltonian into two different parts
is, in fact, nothing but the mean-field (MF) approach, widely
used in atomic and nuclear physics. In many cases, the choice
of unperturbed MF basis in which H0 is diagonal is not
well defined (not unique). However, this choice is usually
well supported physically, especially when the interaction
between particles can be considered small. Examples include
interactions between outer shell electrons in atoms, electrons
in quantum dots, and interactions between spins.

The key point of many-body quantum chaos is that the
eigenfunctions (EFs) in the MF basis spread as the interac-
tion between particles increases and may eventually have a
very large number of contributing components. However, in
contrast to full random matrices, where the eigenstates are
completely extended independently of the choice of basis, in
isolated systems with finite-range interactions, the perturbation
couples only part of the unperturbed basis states |n〉. Therefore,
only a fraction of the coefficients Cα

n composing the full
Hamiltonian eigenstates |α〉 = ∑

n Cα
n |n〉 can be essentially

different from zero. In the energy representation, this fraction
constitutes the energy shell of the system, which can be partly
or fully filled by the exact eigenstates [21,22]. When the
number of nonzero elements Cα

n is a small portion of the shell,
the eigenstates are localized, while a large portion implies
either sparse or ergodic states [23]. In ergodic eigenstates, the
coefficients Cα

n become random variables following a Gaussian
distribution around the envelope defined by the energy shell.
This latter scenario is used as a rigorous definition of chaotic
eigenstates and occurs when the interaction exceeds a critical
value [2–5,21,22]. An example of such chaotic eigenstates was
reported in Ref. [24], where a careful analysis of experimental
data for the cerium atom revealed that excited states with
fixed total angular momentum and parity Jπ = 1+ are random
superpositions of a restricted number of basis states.

The energy shell is associated with the limiting form of the
strength function (SF) written in the energy representation [21,
22]. This function is obtained by projecting the unperturbed
states onto the basis of exact eigenstates. It is also known as the
local density of states and is broadly used in nuclear and solid
state physics. The SF contains much information about global
properties of the interactions. It has been shown, for example,
that its shape changes from a Breit-Wigner (Lorentzian) type
to Gaussian as the interparticle interaction increases [2,3,5,
25–27].

When the eigenstates are chaotic and the quantum system
has a well-defined classical limit, the shapes of both EFs
and SFs in the energy representation have classical analogs
[21–23]. The first matches the distribution of the projection
of the phase-space surface of H onto H0 and the second

matches the projection of the surface of H0 onto H . The
onset of delocalization of EFs in the energy shell is then
directly related to the chaotization of the system in the classical
limit [23] and provides a tool to reveal the transition to quantum
chaos even for dynamical quantum systems without a classical
limit.

The emergence of chaotic eigenstates has been related to
the onset of thermalization in isolated quantum many-body
systems [1–11]. It has been shown, for instance, that when
the eigenstates become chaotic, the distribution of occupation
numbers achieves standard Fermi-Dirac or Bose-Einstein
forms, thus allowing for the introduction of temperature [4–7].
In particular, an analytic expression connecting the increase
of temperature with the interaction strength and the number
of particles was obtained using a two-body random matrix
model [5]. Therefore, the interparticle interaction plays the
role of a heat bath for the isolated system. Another important
aspect is that since the components of chaotic eigenstates can
be treated as random variables, the eigenstates close in energy
are statistically similar. This fact is at the heart of the so-called
eigenstate thermalization hypothesis (ETH) [1] and has been
employed to justify the agreement between the expectation
values of few-body observables and the predictions from the
microcanonical ensemble [1,8,10,11].

The aim of the present work is to analyze the emergence of
statistical properties in isolated quantum many-body systems.
We consider two dynamical models of interacting spins 1/2:
One is integrable for any value of the perturbation and the
other undergoes a transition to chaos. Our approach is based
on the concept of the energy shell, in which the eigenstates
undergo a transition from localized or sparse to delocalized
and random. Strictly speaking, chaotic eigenstates filling
completely the energy shell appear only for the nonintegrable
model. However, even for the integrable system, chaoticlike
eigenstates, where a large part of the MF basis contributes to
the state, may be found in the limit of a strong interaction.
We demonstrate that the critical strength of the interaction
above which the eigenstates may be considered chaoticlike
corresponds to the point where the shape of SF becomes
Gaussian.

We show that in comparison with the chaotic model, the lack
of ergodicity of EFs in the integrable system leads to larger
fluctuations of the delocalization measures and for the overlaps
between neighboring eigenstates. This coincides with recent
results obtained for bosonic and fermionic systems [10,11].
In the spirit of the ETH, these findings were used to explain
the better agreement between eigenstate expectation values of
few-body observables and thermal averages for systems in the
chaotic domain.

Despite differences in some static properties, the relaxation
processes for both models after a quench are found to be very
similar, as inferred from the study of the time dependence
of the Shannon entropy for initial states corresponding to MF
basis states. Our numerical data agree very well with analytical
predictions developed for two-body random matrices [28],
when the interaction strength is strong. In this case, the entropy
shows a linear growth before reaching complete relaxation.
Crucial for this behavior is that the eigenstates are delocalized
(although not necessarily ergodic) in the energy shell, which
may occur even when the system is integrable.
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We also discuss how one can predict the onset of chaoticlike
eigenstates by analyzing the structure of the Hamiltonian ma-
trices without resorting to their diagonalization. Remarkably,
the estimates coincide very closely with the critical values
obtained from energy-level statistics and the shapes of the SF
and EF.

The paper is organized as follows. Section II describes
the models studied, their symmetries, and the structure of the
Hamiltonian matrices. Section III A analyzes the fluctuations
of the energy spectrum and quantifies the level of chaoticity
of the system based on the level spacing distributions. Section
III B investigates the integrable-chaos transition from the per-
spective of the eigenstates. We study the shape of the strength
functions, the spreading of the eigenstates in the energy shell,
and delocalization measures. We also propose a signature of
chaos based on correlations between neighboring eigenstates.
Section IV focuses on the time evolution of the Shannon
entropy for both integrable and nonintegrable models aiming
at identifying the conditions for statistical relaxation. Both
numerical and analytical results are provided. A summary is
presented in Sec. V.

II. SYSTEM MODEL

We consider isolated one-dimensional (1D) systems of
interacting spins 1/2. These prototypical quantum many-body
systems are employed in the studies of a variety of subjects,
ranging from quantum computing [29–31] and quantum
phase transition [32] to the transport behavior in magnetic
compounds [33–39]. The recent viability to experimentally
realize such models in optical lattices [40–43] have further
increased the interest in them. In one dimension, these systems
may remain integrable even in the presence of an interaction,
while the crossover to chaos can be induced by different
integrability-breaking terms [44–49]. This particularity turns
them into natural test-beds for the analysis of the integrable-
chaos transition and for comparative studies between the two
regimes.

Two 1D spin-1/2 systems are investigated in this work.
Model 1 has only nearest-neighbor (NN) couplings and is
integrable for any value of the interaction strength. Model 2
includes nearest- and next-nearest-neighbor (NNN) couplings
and becomes chaotic when the strengths of the two are
comparable. Both are dynamical systems, that is, they are
devoid of random elements. The source of chaos in such
scenarios is the complexity derived from the interparticle
interactions.

A. Hamiltonian

The Hamiltonians for models 1 and 2 are respectively given
by

H1 = H0 + μV1,

H0 =
L−1∑
i=1

J
(
Sx

i Sx
i+1 + S

y

i S
y

i+1

)
, (1)

V1 =
L−1∑
i=1

JSz
i S

z
i+1

and

H2 = H1 + λV2,

V2 =
L−2∑
i=1

J
[(

Sx
i Sx

i+2 + S
y

i S
y

i+2

) + μSz
i S

z
i+2

]
. (2)

Here h̄ is set equal to 1, L is the number of sites, and
S

x,y,z

i = σ
x,y,z

i /2 are the spin operators at site i, with σ
x,y,z

i

being the Pauli matrices. The coupling parameter J determines
the energy scale and is set equal to 1. The Zeeman splittings,
caused by a static magnetic field in the z direction, are the same
for all sites and are not shown in the Hamiltonians above. We
refer to a spin pointing up in the z direction as an excitation.

In model 1, H0 corresponds to the unperturbed part of
the Hamiltonian and μ is the strength of the perturbation.
The unperturbed part is known as the flip-flop term and is
responsible for moving the excitations through the chain. A
system described by H0 is integrable and can be mapped
onto a system of noninteracting spinless fermions [50] or
hard-core bosons [51]. It remains integrable with the addition
of the Ising interaction V1 no matter how large the anisotropy
parameter μ is. The total Hamiltonian H1 is referred to as
the XXZ Hamiltonian and can be solved with the Bethe
ansatz [52–54]. We assume that J and μ are positive, thus
favoring antiferromagnetic order.

The unperturbed part of model 2 is the XXZ Hamiltonian.
The parameter λ refers to the ratio between the NNN exchange,
as determined by the perturbation V2, and the NN couplings,
characterized by H1. A sufficiently large λ leads to the onset
of chaos.

With respect to symmetries, conservation of total spin in
the z direction Sz = ∑L

i=1 Sz
i occurs for all parameters of the

Hamiltonians (1) and (2). Our analysis is thus restricted to
a particular Sz subspace. In order to deal with a reasonably
large sector without resorting to very large system sizes, other
symmetries [55] are avoided as follows.

(i) We deal with open boundary conditions, instead of
closed boundary conditions, to prevent momentum conser-
vation.

(ii) We choose subspaces filled with L/3 up spins to
guarantee that Sz �= 0. The Sz = 0 sector, which appears
when the chain size is even and has L/2 up spins, shows
invariance under a π rotation around the x axis. The dimension
of the Sz subspace that we consider is therefore DL/3 =
L!/[(L/3)!(L − L/3)!]. Unless stated otherwise, all figures
are obtained for L = 15.

(iii) We use μ �= 1 throughout to circumvent conservation
of total spin S2 = (

∑L
i=1

�Si)2. Different values of μ are studied
for model 1, but for model 2, where the main interest is in the
effects of the integrability-breaking term V2, we set μ = 0.5.

(iv) Parity is not avoided. We take it into account by
analyzing even and odd eigenstates separately. The dimension
of each parity sector is DP ∼ DL/3/2.

Since our numerical studies require all eigenvalues and
eigenvectors of the systems, exact full diagonalization is
performed. However, as it will be clear in the following, much
information can be obtained just from the Hamiltonian matrix
itself.

036209-3



L. F. SANTOS, F. BORGONOVI, AND F. M. IZRAILEV PHYSICAL REVIEW E 85, 036209 (2012)

B. Structure of the Hamiltonian matrix and strength of the
perturbation

An essential point for the study of the Hamiltonian matrix is
the basis considered. In general, the choice of basis is made on
physical grounds, depending on the question being addressed.
In the case of the Fermi-Pasta-Ulam model, for example, one
focuses on the equipartition of energy among normal modes
[56]. When studying spatial localization, in contrast, the most
appropriate basis is the coordinate basis, which in the case of
lattice systems corresponds to the site basis. For systems (1)
and (2), the site basis corresponds to arrays of spins pointing
up and down in the z direction.

Here our goal is to understand the effects of the residual
perturbations V1 and V2. They add complexity to the system,
without necessarily bringing it to the chaotic domain. It
then becomes essential to select a basis associated with the
uncoupled particles (or quasiparticles) with which we may
separate regular from complex behavior. This is the role of a
MF basis, which appears in various contexts of many-body
physics. The derivation of Fermi-Dirac or Bose-Einstein
distributions, for instance, requires the selection of a MF basis.
The same is true when studying the structures of nuclear and
atomic systems, as well as their transition to quantum chaos.
Nevertheless, there is not a well-defined mathematical recipe
for identifying the MF basis; this is done based on the physical
properties of the system. For the total Hamiltonians H1 and
H2, we choose the eigenstates of H0 and H1, respectively, as
the unperturbed basis states |n〉.

To give an idea of how to extract information from the
Hamiltonian matrix, we show in Fig. 1 the density plot of
the absolute values of the matrix elements for model 1 (left
panel) and model 2 (right panel). The matrices are written in
the MF basis, the latter being ordered from lowest to highest
energy. Light colors indicate large values. Only elements
associated with even states are shown, so no trivial symmetries
are present. Both matrices have large diagonal elements and
significant couplings even between distant basis vectors. It
is only far from the diagonal that the elements fade away,
as expected for realistic physical models. More zeros are
found in the matrix of model 1, which is thus more sparse
than the matrix of model 2. Both matrices are obviously

FIG. 1. (Color online) Absolute values of the matrix elements
of model 1 (left panel) and model 2 with λ = 0.5 (right panel) for
L = 12 (therefore DP ∼ 250) and μ = 0.5. The MF basis is ordered
in energy. Only even states are considered. Light color indicates large
values.

symmetric with respect to the diagonal since Hnm = Hmn. In
addition to this, model 1 shows an impressive regular structure
that must be related to its integrability; various curves of
high density suggest strong correlations between the matrix
elements. For example, for the lines in the middle, such as
m = 121,122, . . . ,135, we find that several elements, but not
all, satisfy the relation |Hm,1+k| = |Hm,DP −k|. In this paper
we do not discuss the interesting exercise of identifying the
sources of such correlations.

Further details about the matrices may be obtained with the
help of Figs. 2 and 3.

The diagonal elements Hnn are shown in the top panels
of Fig. 2. Changes are seen as the perturbation increases,
especially for model 2. This indicates that contributions to Hnn

come not only from the unperturbed part of the Hamiltonians,
but also from the perturbation. Also noticeable is an asymmetry
between low and high energies, which is enhanced for larger
perturbation. For model 1, larger values of |Hnn| are reached
for negative energies, while the opposite occurs for model 2.
This imbalance is carried to various other properties of the
systems, as will be seen later.

The bottom panels of Fig. 2 show the average values of
the absolute values of the off-diagonal elements 〈Hn,n+k〉 =
[
∑DL/3−k

n=1 |Hn,n+k|]/(DL/3 − k) vs the distance k from the
diagonal. They are significantly smaller than the diagonal
elements and decrease slowly as we move away from the
diagonal. Thus, even though the Hamiltonians in the site basis
have only NN and NNN couplings, long-range (but finite)
interactions become present in the MF basis.

Figure 3 shows the values of the connectivity Mn of each
line n, that is, the number of directly coupled basis vectors in
each row. We present results for μ,λ = 0.5; they do not change
much for larger values of the perturbation. To compute Mn, we
discard the off-diagonal elements Hnm for which |Hnm| < η,
where η is the variance of the absolute value of all off-diagonal
elements. This is done because the Hamiltonian is initially
written in the site basis and then numerically transformed into
the MF basis, which causes all matrix elements to become
nonzero.

The connectivity for the integrable model is significantly
lower than for the chaotic system. For model 2 in the middle

FIG. 2. (Color online) Information about the matrix elements of
model 1 (two left columns) and model 2 (two right columns). The
matrices are written in the MF basis, which is ordered from lowest to
highest energy. The perturbation strength for each column is shown
in the top panels. The top panels show the diagonal elements. The
bottom panels show the average values of the absolute values of the
off-diagonal elements vs the distance k from the diagonal.
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FIG. 3. (Color online) Connectivity of each line n for model 1
(left) and model 2 (right).

of the spectrum, almost all basis vectors with the same parity
are coupled. On average, for the middle of the spectrum, we
find

〈Mn〉 ∼ DP /4 (model 1),
(3)

〈Mn〉 ∼ DP (model 2).

This confirms that H1 is more sparse than H2, as already
observed in Fig. 1. Also in connection to that figure we see
here an interesting structure of separated layers for the values
of the connectivity of model 1, which must be related to its
integrability. For model 2, in contrast, Mn has a smoother
behavior with n.

From the Hamiltonian matrix we can estimate also the
relative strength of the perturbation. For this we compare for
each line the average value of the coupling strength vn with
the mean level spacing dn between directly coupled states.
Taking into account that not all unperturbed states are directly
coupled, we define vn = ∑

m�=n |Hnm|/Mn and compute the
mean level spacing from dn = [εmax

n − εmin
n ]/Mn, where εmax

n

(εmin
n ) is the unperturbed energy Hmm corresponding to the

largest (smallest) m where Hnm �= 0. Strong perturbation is
achieved when vn/dn � 1.

Figure 4 depicts the ratio vn/dn for model 1 (left panels)
and model 2 (right panels). The critical values above which
the perturbation becomes strong are approximately μcr ∼ 0.5
and λcr ∼ 0.5. As we will show later, these estimates coincide
with values obtained using the eigenvalues and eigenstates of
the systems. Interestingly, the ratio is not flat; it increases with

FIG. 4. (Color online) Ratio of the average coupling strength vn

to the mean level spacing dn between directly coupled states for
each line n of model 1 (left panels) and model 2 (right panels). The
horizontal (green) line stands for vn/dn = 1.

n for model 1 and decreases with n for model 2. This is a
reflection of the asymmetry of the diagonal elements, already
seen in Fig. 2, and it will reappear in Sec. III B 3 when we
discuss the level of delocalization of the eigenstates.

III. SIGNATURES OF QUANTUM CHAOS

A. Eigenvalues

Different quantities exist to identify the crossover from
integrability to quantum chaos. Level spacing distribution,
level number variance, and rigidity [19,57–59], for example,
are associated with the eigenvalues, the first being the most
commonly used signature of chaos. In this section we show
briefly some results for the level spacing distribution after
having a look at the density of states.

1. Density of states

We denote the eigenvalues of the system by Eα and
the eigenstates by |α〉. The densities of states ρ(Eα) for
both models are seen in Fig. 5. Since the Hilbert space is
finite, ρ(Eα) consists of two parts. On the left-hand side
of the spectrum, ρ(Eα) increases with energy; there the
microcanonical temperature is positive. The right-hand side
corresponds to negative temperatures. The point of maximum
density of states has infinite temperature.

Independently of the domain, the distributions are very
close to Gaussian, as typical of systems with few-body
interactions (two-body in our case) [60,61]. This is to be
contrasted with ensembles of full random matrices, where the
density of states is semicircular [19,58,59]. The fact that the
density of states vanishes at very low and very high energies
implies that ergodic states are not expected to be found in
the edges of the spectrum, even if the system is chaotic.
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FIG. 5. (Color online) Density of states for model 1 (left panels)
and model 2 (right panels); the bin size is equal to 0.1. The
solid (black) line gives the best Gaussian fit: μ = 0.1 → 〈E〉 =
0.034,σ = 1.330; μ = 0.4 → 〈E〉 = 0.131,σ = 1.375; μ = 1.5 →
〈E〉 = 0.363,σ = 1.857; λ = 0.1 → 〈E〉 = 0.157,σ = 1.400; λ =
0.4 → 〈E〉 = 0.051,σ = 1.494; and λ = 1.5 → 〈E〉 = 0.037,σ =
1.920.

036209-5



L. F. SANTOS, F. BORGONOVI, AND F. M. IZRAILEV PHYSICAL REVIEW E 85, 036209 (2012)

Our analyses of the shapes of the eigenstates, developed in
the following section, thus concentrate on the middle of the
spectrum.

2. Level spacing distribution

The analysis of the level spacing distribution requires
unfolding the spectrum of each symmetry sector separately.
Unfolding the spectrum consists of locally rescaling the
energies so that the mean level density of the new sequence
of energies is unity [19,58,59]. Here we discard 20% of the
energies located at the edges of the spectrum, where the
fluctuations are large, and obtain the cumulative mean level
density by fitting the staircase function with a polynomial of
degree 15.

Quantum levels of integrable systems are not prohibited
from crossing and the distribution is typically Poissonian,

PP (s) = exp(−s),

where s is the normalized level spacing. This is the distribution
obtained for model 1 with any value of μ, as shown in the top
left panel of Fig. 6. In chaotic systems, crossings are avoided
and the level spacing distribution is given by the Wigner-Dyson
distribution, as predicted by random matrix theory. Ensembles
of random matrices with time-reversal invariance, the so-called
Gaussian orthogonal ensembles (GOEs), lead to

PWD(s) = (πs/2)exp(−πs2/4).

This is the distribution obtained for model 2 in the chaotic limit,
as shown in the top right panel of Fig. 6. Notice, however,
that our systems, contrary to GOEs, have only finite-range
two-body interactions and do not contain random elements.
Practically, P (s) is not capable of detecting these differences
and the same is expected for other signatures of quantum chaos
associated with the energy levels, such as rigidity and level
number variance. For an idea of what the results for the level
number variance would look like, we refer the reader to Fig. 5
in Ref. [10], where an equivalent system is considered. More
details about the system are found in the properties associated
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FIG. 6. (Color online) The top panels show the level spacing
distribution. The bottom panels show the parameter β of the Brody
distribution vs the perturbation strength. The left panels show model
1 and the right panels show model 2.

with the eigenstates, as further discussed in the following
section.

The parameter β, used to fit P (s) with the Brody distribution
[61],

PB(s) = (β + 1)bsβexp(−bsβ+1), b =
[



(
β + 2

β + 1

)]β+1

,

can be used to quantify the level of chaoticity of the system
reflected by the spectrum statistics. For the integrable model 1,
β is close to 0 for any value of μ (bottom left panel of Fig. 6),
while for model 2 (bottom right panel), it changes from 0
to 1 as λ increases [62]. The crossover from integrability to
chaos is fast and occurs for λcr ∼ 0.5. This value coincides
with the estimate derived from the Hamiltonian matrix in
Fig. 4. It is impressive that the latter procedure, which does
not require the diagonalization of the Hamiltonian, can give
such a satisfactory result.

B. Eigenstates

In this section we explore the features of the eigenstates

|α〉 =
∑

n

Cα
n |n〉

written in the MF basis |n〉 for both integrable and chaotic
regimes. As will soon become clear, more information about
the system may be found in the structures of the EFs than in
the eigenvalues.

Standard perturbation theory applies when the perturbation
is weak vn/dn 
 1. In this limit, the eigenstates are very
similar to the MF basis states, having a very small number
of very large components Cα

n . As the perturbation increases,
|α〉 spreads in the unperturbed basis and the number of
principal components Npc eventually becomes very large. This
transition is illustrated in Fig. 7. The eigenstates are shown
as a function of the unperturbed energy εn rather than in the
basis representation, following the one-to-one correspondence
between each unperturbed state |n〉 and its energy εn.

FIG. 7. (Color online) Examples of eigenstates from the center
of the spectrum for model 1 (left) and model 2 (right). They become
more extended from top to bottom.
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FIG. 8. Matrix of squared components of the eigenstates for
model 1 (left), μ = 0.5 (top) and μ = 1.5 (bottom), and model 2
(right), λ = 0.5 (top) and λ = 1.0 (bottom). Only even states are
shown, L = 12. Light areas indicate large values.

Notice that even for very large perturbation, not all vectors
|n〉 contribute to the eigenstates. The restricted number of
participating basis states is a consequence of the finite range of
the interactions; only part of the unperturbed states is directly
coupled and therefore able to integrate the eigenstates. The
limited spread of EFs is clearly seen in Fig. 8, where the
squared amplitudes |Cα

n |2 are depicted. In the figure the basis
representation is used. Each horizontal line corresponds to
an eigenstate of energy Eα in the unperturbed basis. Vertical
lines are the unperturbed states with energy εn projected
onto the basis of exact states. Light points represent large
|Cα

n |2. The widths of participating states in the vertical and
horizontal lines are similar; they are broader in the middle of
the spectrum and spread further as the perturbation increases.
As μ and λ increase, the differences in magnitude between
diagonal and off-diagonal elements become less pronounced.
The asymmetry between the edges of the spectrum observed
in Figs. 2 and 4 is seen here again, localization being more
enhanced for low energies in model 1 and for high energies in
model 2 (see bottom panels). Also noticeable is a difference
in sparsity between the EF and SF depending on the system.
For model 2, contrary to what was observed for Wigner band
random matrix models [22], EFs seem to be more sparse than
SFs.

1. Strength function and energy shell

In the energy representation, the strength function corre-
sponds to the dependence of |Cα

n |2 on the exact energies Eα for
each fixed unperturbed energy εn. It is given by the expression

Pn(E) =
∑

α

∣∣Cα
n

∣∣2
δ(E − Eα), (4)

where the sum is performed over a small energy window
centered at E.

For an initial state |n0〉, Pn0 identifies the energies Eα

that become available to the state when the perturbation is
turned on. The width of the SF is therefore associated with the
lifetime of |n0〉. This is clearly seen by the relation between
the probability Wn0 (t) for the system to remain in the state and
the SF, as given by

Wn0 (t) = |〈n0|e−iH t |n0〉|2 =
∣∣∣∣∣
∑

α

∣∣Cα
n0

∣∣2
e−iEαt

∣∣∣∣∣
2

≈
∣∣∣∣
∫

dE Pn0 (E)e−iEt

∣∣∣∣
2

, (5)

where

Pn0 (E) = ∣∣Cα
n0

∣∣2
ρ(E) (6)

is the SF after replacing the sum over a large number of
eigenstates by an integral, the bar stands for an average in
a small energy window, and ρ(E) is the density of exact
eigenstates.

An important aspect of the SF is the possibility of measuring
it experimentally. In nuclear physics this is done by exciting an
unperturbed state and studying its decay. In solid state physics,
the SF corresponds to the local density of states since it gives
the density of states for an electron in position |n〉.

Strength functions, just like EFs, become more spread out
as the perturbation increases, as illustrated in Fig. 9. We show
with filled curves the average shape of the SF for five even
unperturbed states in the middle of the spectrum. The SF
starts as a δ function. As the interparticle interactions increase,
it acquires first a Breit-Wigner (Lorentzian) shape (middle
panels) and eventually becomes Gaussian (bottom panels).
This agrees with previous studies of quantum many-body
systems [2,3,5,63].

According to those studies, the Breit-Wigner function is
given by

Pn(E) = 1

2π


n

(εn + δn − E)2 + [
n/2]2
, (7)

where the width 
n is given by the Fermi golden rule


n ≈ 2π |Hnm|2ρm, (8)

δn is a correction to the unperturbed energy εn due to
the residual interaction, |Hnm|2 is the mean-square value of
nonzero off-diagonal elements of the Hamiltonian, and ρm is
the density of basis states |m〉 directly coupled to the initial
state |n〉 via Hnm. The Gaussian form is

Pn(E) = 1√
2πσ 2

n

exp

(−(E − εn)2

2σ 2
n

)
, (9)

where

σn =
√∑

m�=n

|Hnm|2. (10)

In the following we will assume that in the center of the band
where maximal chaos is realized, 
n = 
 and σn = σ .
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FIG. 9. (Color online) Strength functions for model 1 (left) and
model 2 (right) obtained by averaging over five even unperturbed
states in the middle of the spectrum. The average is performed after
shifting the center of SFs to zero. Circles give the fitting curves. The
middle panels show the Breit-Wigner function with ε + δ = −0.015,

 = 0.302 (left) and ε + δ = 0.072, 
 = 0.345 (right). The bottom
panels show the Gaussian function with 〈E〉 = −0.072, σ = 1.322
(left) and 〈E〉 = −0.022, σ = 0.936 (right). Solid curves correspond
to the Gaussian form of the energy shells with σ = 0.090 for μ =
0.1, σ = 0.359 for μ = 0.4, σ = 1.345 for μ = 1.5, σ = 0.103 for
λ = 0.1, σ = 0.412 for λ = 0.4, and σ = 1.029 for λ = 1.0.

The transition from one shape to the other is determined by
the relation between 
 and σ [25]. Equation (7) holds when
the perturbation is small but nonperturbative 
 
 σ , while
for 
 � σ , the SF becomes close to a Gaussian shape, as in
Eq. (9).

The maximal shape of the SF, as given by Eq. (9), is reached
when the diagonal elements of the Hamiltonian matrix become
negligible. In this case, the SF coincides with the energy shell.
The latter corresponds to the density of states obtained from
a matrix filled only with the off-diagonal elements of the
perturbation [21,22]. It measures the maximum number of
basis states coupled by the perturbation.

We computed the energy shells numerically and verified
that they agree very well with the Gaussian functions (9)
with dispersion (10). The solid lines in Fig. 9 represent
these functions. As follows from Eq. (10), σ 2 is obtained
without any diagonalization. That expression is derived from
the distribution of exact eigenvalues Eα for each unperturbed
state |n〉, according to [5]

σ 2 = 〈
E2

α

〉 − 〈Eα〉2 =
∑

α

|Cα
n |2E2

α −
(∑

α

∣∣Cα
n

∣∣2
Eα

)2

=
∑
m

〈n|H |m〉〈m|H |n〉 − ε2
n =

∑
m�=n

|Hnm|2.

As seen in Fig. 9, it is only at large perturbation that the
SF acquires a Gaussian form and approaches the energy shell.
When the SF becomes Gaussian with the same width of the
energy shell, maximal ergodic filling of the energy shell is
realized and a statistical description becomes possible. The

agreement between the SF and the energy shell is another way
to find the critical values μcr and λcr. We fitted our numerical
data with both functions (circles in Fig. 9) and verified that
the transition from Breit-Wigner to Gaussian happens for the
same critical values μcr,λcr ≈ 0.5 obtained before from vn/dn

in Fig. 4 and from the transition to a Wigner-Dyson distribution
in the case of model 2. At large perturbation we then have
excellent agreement between the Gaussian fit and the Gaussian
function describing the energy shell, which depends only on
the off-diagonal elements of the Hamiltonian matrices. As
seen in the bottom panels, these two curves become practically
indistinguishable.

Notice that even at very large perturbation, the width of the
energy shell, and thus of the maximal SF, is narrower than the
width of the density of states (cf. Figs. 9 and 5), especially
for model 2. This contradicts the equality between Pn(E) and
ρ(E) found in previous works [64] and may be due to the fact
that here the perturbation acts also along the diagonal (such an
effect is typically removed by considering a renormalized MF
Hamiltonian that takes into account the diagonal contributions
of the perturbation).

2. Emergence of chaotic eigenstates

The energy shell determines the maximum fraction of un-
perturbed states that are accessible to EFs. Therefore, notions
of localized (Npc ∼ 1) or delocalized (Npc � 1) eigenstates
make sense only with respect to the energy shell. When the
perturbation is not very strong, large values of Npc may already
be found, but in this case the EFs are sparse and the components
fluctuate significantly. It is only at strong perturbation that the
eigenstates can fill the energy shell ergodically, becoming in
this way chaotic states [21,22] and allowing for a statistical
description of the system. In this limit, the coefficients Cα

n

become random variables from a Gaussian distribution and
|Cα

n |2 fluctuate around the envelope defined by the energy
shell.
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FIG. 10. (Color online) Eigenstates for model 1 (left) and model
2 (right) obtained by averaging over five even perturbed states in the
middle of the spectrum. The average is performed after shifting the
center of the EFs to zero. They are shown with filled curves. Solid
curves correspond to the Gaussian form of the energy shells.
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The top panels of Fig. 10 show strongly localized states. For
model 2, the EFs are also sparse. The transition to extended
states in the energy shell occurs again at the same critical
parameters μcr,λcr ≈ 0.5, confirming the predictions based on
the estimates obtained from vn/dn and the Gaussian form of
SFs. Notice, however, that the EFs from model 1 never become
completely extended, not even for μ = 1.5, although they do
fill a large part of the energy shell. We may argue that the
EFs become chaoticlike, but not truly chaotic. This lack of
ergodicity has its roots in the integrability of the system. For
model 2, in contrast, the EFs fill the shell ergodically when the
perturbation is strong, being therefore truly chaotic.

Distinctions between integrable and chaotic regimes are
thus not captured by SFs, which are ergodic for both models
when μ and λ are large. Therefore, ergodicity in SFs implies
extended but not necessarily chaotic eigenstates. By comparing
EFs and SFs, it becomes evident that even though their
structures should be related, since both are derived from |Cα

n |2,
differences do exist.

3. Delocalization measures

Measures quantifying the level of delocalization of indi-
vidual EFs reveal further differences between integrable and
nonintegrable models. Overall larger fluctuations appear for
the integrable case, which agrees with recent results obtained
for bosonic and fermionic systems [10,11].

Delocalization measures [3,65], such as the inverse par-
ticipation ratio R or the Shannon (information) entropy S,
determine the degree of complexity of individual states. For
eigenstates in the MF basis, they are respectively defined as

Rα ≡ 1∑
n

∣∣Cα
n

∣∣4 (11)

and

Sα ≡ −
∑

n

∣∣Cα
n

∣∣2
ln

∣∣Cα
n

∣∣2
. (12)

These quantities measure how spread out the eigenstates are in
the unperturbed basis. To quantify the level of delocalization
of the MF basis vectors with respect to the compound states,
we may simply compute the analogous quantities Rn and Sn,
where the sums over n in Eqs. (11) and (12) are replaced by
sums over α.

Complete delocalization occurs for GOEs, where the
amplitudes Cα

n are independent random variables from a
Gaussian distribution and the weights |Cα

n |2 fluctuate around
1/D, with D being the dimension of the random matrix.
The average over the ensemble leads to RGOE ∼ D/3 and
SGOE ∼ ln(0.48D) [3,65]. For the realistic systems considered
here, since their eigenstates are confined to energy shells, the
values of R and S cannot reach those of GOEs [66].

Figure 11 shows S for the eigenstates of model 1 (left
panels) and model 2 (right panels). As expected from the shape
of the density of states (see Fig. 5), strong mixing occurs in
the middle of the spectrum, with S being smaller at the edges.
Interestingly, however, large values of S are still found at the
borders when the perturbation is very strong. This happens
at high energies for model 1 and at low energies for model

FIG. 11. (Color online) Shannon entropy for all eigenstates
written in the MF basis for model 1 (left) and model 2 (right).

2, following the same asymmetry verified before (cf. Figs. 2
and 4).

As the perturbation increases from the top to the bottom
panels in Fig. 11, the values of S increase and the fluctuations
decrease for both models. However, this reduction is much
more significant for model 2. The smooth behavior of S in the
chaotic limit (bottom right panel) indicates that the structure of
eigenstates close in energy becomes statistically very similar.
This fact has suggested a close relationship between chaos and
the viability of thermalization [67,68], as numerically explored
in Refs. [10,11].

Differences between integrable and chaotic regimes, as
verified in the behavior of S and in the spreading of EFs in
the energy shell (see Fig. 10), appear to have their origins in
the results for the connectivity shown in Fig. 3. The separated
values of Mn seen in the integrable system must lead to EFs
with different levels of delocalization, even when close in
energy. This causes larger fluctuations in the values of S. For
model 2, Mn’s are similar for nearby states leading to the
smooth behavior of S in the bottom right panel of Fig. 11.

The level of delocalization of SFs for the basis states written
in terms of the eigenstates also increases with the perturbation,
while the fluctuations decrease, as shown in Fig. 12. Here,
however, the widths of the fluctuations are very similar for
both models. This reinforces our previous statement that the SF
cannot capture differences between the two models, showing
comparable behavior for both integrable and nonintegrable
systems.

4. Overlap between neighboring eigenstates

We define a different signature of chaos referred to as the
overlap between the probability distributions of neighboring
eigenstates |α〉 and |α′〉,

�α,α′ ≡
∑

n

∣∣Cα
n

∣∣2∣∣Cα′
n

∣∣2
. (13)
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FIG. 12. (Color online) Shannon entropy for the strength func-
tions written in the basis of the eigenstates for model 1 (left) and
model 2 (right).

It corresponds to an alternative way to capture the transition
to chaos by measuring how similar the components of
neighboring states are.

For GOEs, since all eigenstates are simply normalized
pseudorandom vectors, one has � ∼ 1/D. These states are
completely delocalized and statistically very similar. For the
models studied here, the results are presented in Fig. 13 and
are described below.

In the limit of localized eigenstates, large fluctuations are
seen. Since there are few contributing components, we find
neighboring states where the probabilities |Cα

n |2 are nonzero
and approximately the same for the same basis vectors |n〉,
but we have also pairs where the effective basis vectors do
not match. There are very correlated states leading to large
overlaps and there are also uncorrelated states leading to values

FIG. 13. (Color online) Overlaps of neighboring eigenstates for
model 1 (left panels) and model 2 (right panels). Dark (Black) and
light (red) points indicate eigenstates of even or odd parity. Horizontal
(green) lines indicate the GOE prediction � = 1/D.

of � below the threshold from GOEs, the values reached by
model 1 being significantly lower than for model 2.

As the perturbation increases and the number of princi-
pal components becomes large, the maximum values of �

decrease for both regimes, especially in the middle of the
spectrum where the mixing is stronger. The fluctuations in the
values of the overlaps also decrease, especially for model 2.
For the latter, a smooth behavior with energy, similar to that
obtained for the Shannon entropy for EFs, is achieved.

Notice that in the limit of strong perturbation, only model
2 does not cross the GOE threshold. In the integrable model,
since EFs do not fill the energy shell completely, we may still
find neighboring states that are statistically very different. At
the edges of the spectrum the overlaps tend to be larger since
there are more correlations due to finite effects.

IV. TIME EVOLUTION OF THE SHANNON ENTROPY:
STATISTICAL RELAXATION

We now study the quench dynamics of the system by
focusing on the time evolution of the Shannon entropy for
initial states corresponding to unperturbed vectors selected
from the middle of the spectrum. For an initial state |n0〉, the
entropy in the MF basis is given by

Sn0 (t) = −
DP∑
n=1

Wn(t)ln[Wn(t)], (14)

where

Wn(t) = 〈n|e−iH t |n0〉 =
∣∣∣∣∣
∑

α

Cα
n Cα∗

n0
e−iEαt

∣∣∣∣∣
2

is the probability for the initial state |n0〉 to be found in the
state |n〉.

Numerical data are shown in Fig. 14. To reduce fluctuations,
an average is performed over five initial even basis states
excited in a narrow energy window in the middle of the
spectrum. In the limit of strong interaction, the results for
both the chaotic and the integrable models agree very well
with analytical expressions previously found in the context
of two-body random ensembles [28]. These expressions can
be derived when the shape of the SF is known, being either
Breit-Wigner or Gaussian.

Analytical expressions

We reproduce here the steps of the cascade model consid-
ered in Ref. [28] to obtain an analytical expression for the time
dependence of the entropy. For very short times, t 
 
/σ 2, it
has been shown that the probability for the system to remain
in the initial state |n0〉 is [64,69]

Wn0 (t) ≈ exp(−σ 2t2). (15)

For very long times the probability becomes

Wn0 (t) ≈ exp(−
t), (16)

which means that the decay rate from the initial state is
determined by

dWn0

dt
= −
Wn0 . (17)
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Given the two-body interaction, |n0〉 spreads first into N1 states
directly coupled to it. This set is referred to as the first class
of states. Subsequently, states from the first class populate
those directly coupled to them, the N2 basis states from the
second class. The process continues successively like this as
in a cascade model [70]. The number of states in the kth class
is then

Nk = Mk, . . . ,M1Mn0 ≈ Mk
n0

, (18)

where Mk is the connectivity associated with the basis states
of the kth class. This implies that the number of states of one
class is larger than the number in the previous class, which
justifies neglecting the probability of return to a previous class
and allows us to write, for k > 1,

dCk

dt
= 
Ck−1 − 
Ck, (19)

where Ck is the probability for the system to be in the kth class
and C0 = Wn0 . The first term on the right-hand side is the flux
from the previous class and the second term is the decay of the
kth class.

The solution of Eq. (19) is

Ck = (
t)k

k!
e−
t . (20)

Since each k class contains several basis states, Ck ≈ NkWn.
Assuming an infinite number of classes, Eq. (14) becomes

Sn0 (t) ≈ −
∞∑

k=0

Ck ln

( Ck

Nk

)

= 
t ln Mn0 + 
t − e−
t

∞∑
k=0

(
t)k

k!
ln

(
t)k

k!
.

The last terms on the right-hand side of this equation are
smaller than the first term, so they may be neglected, leading
to a simple linear time dependence of the Shannon entropy,

Sn0 (t) ≈ 
t lnMn0 . (21)

In the limit of strong perturbation, where 
 � σ and the SF is
described by a Gaussian function, we can write the entropy as

Sn0 (t) ≈ σn0 t lnMn0 . (22)

Note that Eq. (22) depends only on the elements of the
Hamiltonian matrix. Yet, as seen in Fig. 14, it reproduces
very well the linear increase of the entropy for both models
in the regime where the eigenstates become delocalized in the
energy shell.

To find an expression that describes the dynamics of the
system at both short and long times, Eq. (15) needs to be
taken into account. In Ref. [28], the following expression was
proposed:

Sn0 (t) = − Wn0 (t) lnWn0 (t)

− [1 − Wn0 (t)] ln

(
1 − Wn0 (t)

Npc

)
, (23)

where Npc is the total number of states inside the energy shell,
that is, the limiting value of the entropy after relaxation. In the
results shown in Fig. 14, we obtained Npc numerically from
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FIG. 14. (Color online) Shannon entropy vs time for model 1
(left) and model 2 (right). Circles stand for numerical data, dashed
lines show the linear dependence (22), and solid curves correspond
to Eq. (23). The horizontal (orange) solid lines represent the value of
SGOE ∼ 6.58.

Npc = 〈eS〉, where the average 〈·〉 is performed over a long
time interval after the entropy saturates t ∈ [100,200].

Equation (23) is a good approximation when the total
number of classes is small nc ∼ 1. This is indeed the case
for models 1 and 2. The effective number of classes in the
cascade model can be obtained from

Mnc = DP , (24)

which, following Eq. (3), gives nc ∼ 1.2 for model 1 and
nc ∼ 1 for model 2.

In the regime of strong perturbation, Eq. (23) captures
all stages of the evolution: the initial quadratic growth, as
given by perturbation theory; the linear behavior; and the
final saturation. For a small perturbation, the agreement with
Eq. (23) is poor. Notice, however, that the perturbation here
was not sufficiently small to show oscillations as in [71].

The main aspects of the statistical relaxation process are
then the linear growth of S followed by its saturation to a
value close to that of a GOE: SGOE ∼ ln(0.48D). In the limit
of a strong interaction, this is the behavior of the chaotic
system and, to a very good approximation, also the behavior
of the integrable model. This suggests that chaoticity is not
essential for the emergence of statistical relaxation. The fact
that EFs of both models in the limit of a large interaction show
significant filling of the energy shell indicates that the existence
of extended eigenstates is a sufficient condition for relaxation.
However, to reach a final statement, further numerical and
analytical studies of one- and two-body observables are
necessary.

V. CONCLUSION

We studied static and dynamic properties of two systems
of interacting spins 1/2. Model 1 is integrable for any value
of the perturbation and model 2 shows a transition to chaos.
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The analysis of the Hamiltonian matrices, later combined with
studies of spectrum statistics and structures of eigenstates
and strength functions, suggested that aspects of the intricate
behavior of complex systems can be anticipated even before
diagonalization.

It was shown that strength functions and eigenstates
delocalize as the perturbation increases, always being re-
stricted, however, to the energy shell. In the limit of a strong
perturbation, strength functions of both models in the middle of
the spectrum become Gaussian and coincide with the energy
shell. In the case of eigenstates, the same occurs only for
the chaotic model. For the integrable system, the eigenstates
become spread out, but do not fill the energy shell completely.

We verified that the lack of ergodicity of the eigenstates
for the integrable model is reflected in larger fluctuations of
delocalization measures and the overlaps between neighboring
eigenstates. The degree of overlaps between neighboring
eigenstates may be considered as a different signature of chaos.
The transition to chaos occurs when the values of the overlaps
becomes inversely proportional to the dimension of the Hilbert
space.

We also studied the time evolution of the Shannon
entropy for initial states corresponding to mean-field basis
vectors. Knowledge of the shape of the strength functions
allowed us to describe the quench dynamics with analytical
expressions originally developed and tested for systems
with two-body random interactions. They agreed very well
with our numerics. The linear growth of the entropy was

also well described by an expression involving parameters
obtained from the analysis of the Hamiltonian matrices before
diagonalization.

Our results indicate that the relaxation process is very
similar for integrable and nonintegrable systems provided the
eigenstates are extended in the energy shell. In contrast, we
have seen that after saturation the fluctuations of the entropy
in the integrable domain are slightly larger than for the chaotic
system, as observed also in Refs. [8,72] in the context of
observables.

An issue that deserves further investigation concerns the
fluctuations of static and dynamic properties. A careful
analysis of how they reduce with the number of particles and
how the results compare for both regimes is very important
for further developments of the problem of thermalization in
isolated systems.
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support from Universitá Cattolica Grant No. D.2.2 2010. F.M.I.
acknowledges support from Consejo Nacional de Ciencia y
Tecnolgı́a Grant No. N-161665 and thanks Yeshiva University
for the hospitality during his stay.

[1] J. M. Deutsch, Phys. Rev. A 43, 2046 (1991); M. Srednicki, Phys.
Rev. E 50, 888 (1994); M. Rigol, V. Dunjko, and M. Olshanii,
Nature (London) 452, 854 (2008).

[2] M. Horoi, V. Zelevinsky, and B. A. Brown, Phys. Rev. Lett. 74,
5194 (1995); N. Frazier, B. A. Brown, and V. Zelevinsky, Phys.
Rev. C 54, 1665 (1996).

[3] V. Zelevinsky, B. A. Brown, N. Frazier, and M. Horoi, Phys.
Rep. 276, 85 (1996).

[4] V. V. Flambaum, F. M. Izrailev, and G. Casati, Phys. Rev. E 54,
2136 (1996); V. V. Flambaum and F. M. Izrailev, ibid. 55, R13
(1997).

[5] V. V. Flambaum and F. M. Izrailev, Phys. Rev. E 56, 5144 (1997).
[6] F. Borgonovi, I. Guarneri, F. M. Izrailev, and G. Casati, Phys.

Lett. A 247, 140 (1998); F. Borgonovi and F. M. Izrailev, Phys.
Rev. E 62, 6475 (2000).

[7] F. M. Izrailev, Phys. Scr. T90, 95 (2001).
[8] M. Rigol, Phys. Rev. Lett. 103, 100403 (2009); Phys. Rev. A 80,

053607 (2009).
[9] M. Rigol and M. Fitzpatrick, Phys. Rev. A 84, 033640

(2011).
[10] L. F. Santos and M. Rigol, Phys. Rev. E 81, 036206 (2010).
[11] L. F. Santos and M. Rigol, Phys. Rev. E 82, 031130 (2010);

M. Rigol and L. F. Santos, Phys. Rev. A 82, 011604(R) (2010).
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