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Supersharp resonances in chaotic wave scattering
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Wave scattering in chaotic systems can be characterized by its spectrum of resonances, zn = En − i �n

2 , where
En is related to the energy and �n is the decay rate or width of the resonance. If the corresponding ray dynamics
is chaotic, a gap is believed to develop in the large-energy limit: almost all �n become larger than some γ .
However, rare cases with � < γ may be present and actually dominate scattering events. We consider the
statistical properties of these supersharp resonances. We find that their number does not follow the fractal Weyl
law conjectured for the bulk of the spectrum. We also test, for a simple model, the universal predictions of random
matrix theory for density of states inside the gap and the hereby derived probability distribution of gap size.
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I. INTRODUCTION

Scattering of waves in complex media is a vast area
of research, from oceanography and seismology through
acoustics and optics, all the way to the probability amplitude
waves of quantum mechanics [1–3]. We focus our attention
on the important class of systems for which the complexity
is not due to the presence of randomness or impurities, but
rather because the corresponding ray dynamics is chaotic. The
presence of multiple scattering leads to very complicated cross
sections, with strongly overlapping resonances that, although
deterministic, have apparently random positions and widths.
It is not uncommon that, in a given situation only the sharpest
resonances are relevant, with the others providing an approx-
imately uniform background. Recent experiments include the
areas of lasers [4,5], microwaves [6], nanostructures [7], and
graphene nanoribbons [8].

For concreteness of terminology, we consider quantum
mechanical systems, but our results are general. We denote
resonances by E − i �

2 and call � the width or the decay
rate. In the large-energy limit a gap develops in the resonance
spectrum: most resonances have their widths larger than γ ,
which is the average decay rate of the corresponding classical
(ray) dynamics. This was noticed long ago [9], and more
recently there have been attempts to prove it rigorously [10].
We are interested in the rare case of states inside the gap (i.e.,
with � < γ ), which we call supersharp resonances.

The distribution of typical resonances in chaotic systems
is conjectured to follow the so-called fractal Weyl law [11]:
their number grows with E as a power law whose exponent
is related to the fractal dimension d of the classical repeller,
the set of rays which remain trapped in the scattering region
for infinite times, both in the future and in the past [12]. In a
numerical experiment with a simple model, we find that the
number of supersharp resonances, denote it by NSSR , does not
follow this law. It does grow with E according to a power law,
but the exponent seems to be insensitive to γ or the dimension
of the repeller.

We also investigate the dependence on energy of the width
of the sharpest (and usually most important) resonance. Let
this be denoted �0. As E grows, it is expected to converge
to γ . We use their exponentials as alternative variables more
suited to our modeling. We find that the distance e−�0 − e−γ

decreases with E according to a power law, whose exponent
is well approximated by d − α.

A very fruitful approach to chaotic scattering of waves
is random matrix theory (RMT) [13], in which the system’s
propagator (the Green’s function of the wave equation) is
replaced by a random matrix whose spectral properties are
studied statistically. The RMT prediction for the density of
resonance states inside the gap was derived in [14]. In this work
we derive the RMT prediction for the probability distribution
of e−�0 − e−γ and compare both these predictions to numerical
results in a specific system.

II. WEYL LAWS

Waves in chaotic systems can be modeled by the so-called
“quantum maps.” These are N × N unitary matrices where
N ∼ 1/h̄, and the large-energy limit E → ∞ is replaced by
the limit of large dimension, N → ∞. This approach has
been used to study transport properties of semiconductor
quantum dots [15], entanglement production [16], the fractal
Weyl law [17], fractal wave functions [18,19], and proximity
effects due to superconductors [20], among other phenomena.
Scattering can be introduced by means of projectors. The
propagator becomes a subunitary matrix of dimension M < N ,
and its spectrum comprises N − M zero eigenvalues and M

resonances of the form zn = e−i(En−i�n/2).
As our dynamical model we use the kicked rotator. Its

classical dynamics is determined by canonical equations of
motion in discrete time,

qt+1 = qt + pt + K

4π
sin(2πqt ) (mod 1), (1)

pt+1 = pt + K

4π
[sin(2πqt ) + sin(2πqt+1)] (mod 1). (2)

This system is known to be fully chaotic for K > 7, with
Lyapunov exponent λ ≈ ln(K/2). Its quantization [20,21]
yields an N -dimensional unitary matrix U . We set equal to
zero a fraction of 1 − μ of its columns, corresponding to a
“hole” in phase space. Here μ corresponds to the fraction
of rays which escape the scattering region per unit time, so
μ = e−γ . We do not consider very small values of μ, which
would correspond to widely open systems.
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FIG. 1. Scaling exponents as functions of μ for open kicked
rotator. d , α, and β are related to the fractal Weyl law, the number of
supersharp resonances and the width of the gap, respectively. We see
that α is approximately independent of the size of the opening. The
solid line is a best linear fit to d , while the dashed line is d − 〈α〉,
where 〈α〉 ≈ 0.66 is the average value of α.

We find numerically that NSSR ∼ Nα , while e−�0 − e−γ ∼
N−β . The exponents are plotted as functions of μ in Fig. 1,
together with d, the numerically determined exponent in
the Weyl law. We see that, somewhat surprisingly, in this
range α is approximately constant, (i.e., insensitive to the
dimension of the repeller). The supersharp resonances do
not follow the fractal Weyl law. On the other hand, the
exponent β has approximately the same slope as d. We find
the relation d − β = α to be approximately fulfilled, which is
to be expected since it says that the number of supersharp
resonances, ∼Nα , is proportional to the total number of
resonances, ∼Nd , times the width of the gap, ∼N−β .

III. RANDOM MATRIX THEORY APPROACH

A. Average density of supersharp resonances

We now turn to a RMT treatment of the problem. RMT
for quantum maps amounts to taking matrices uniformly dis-
tributed in the unitary group. In [22], an ensemble of truncated
unitary matrices was introduced as a model for scattering, and
it was shown that, as N,M → ∞ with μ = M/N held fixed,
the probability density of r = e−�/2 converges to

P∞(r) = 1 − μ

μ

2r

(1 − r2)2
, (3)

if r2 < μ, and to 0 otherwise. The expression (3) was tested
numerically for a chaotic quantum map in [21] and found to be
an accurate description of the bulk of the spectrum, provided
a rescaling was performed to incorporate the fractal Weyl law.

Let us start with the density of supersharp resonances.
This calculation can be found in [14]; we sketch it here for
completeness. The probability density for r is known exactly
[22], and when M = μN and N � 1 it can be approximated
to

P (r) ≈ P∞(r)

2

[
1 + erf

(
η
√

μ
(μ − r2)

r

)]
, (4)
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FIG. 2. (Top panel) P1 is the probability that there are eigenvalues
inside the gap whose modulus squared is smaller than μ + x. (Lower
panel) P2 is the probability that there are eigenvalues inside the gap
whose modulus squared is smaller than μ + x/η̃, where η̃ is defined in
the text. Results are for the open kicked rotator, at several dimensions,
for μ = 0.8. Solid line is a rescaled RMT prediction.

where erf is the error function and

η =
√

N

2μ(1 − μ)
(5)

is now the large number. Clearly, (4) will be different from
P∞(r) only if μ − r2 is of the order of 1/η. After setting
r2 = μ + ε/η, the probability distribution for the variable ε

becomes

P̃ (ε) = √
π [1 − erf(ε)]. (6)

This is the density of states inside the gap. It is only nonzero
in a small region that shrinks as N−1/2 in the asymptotic limit.
Its integral provides the probability that r2 − μ be less than
some value x. This we denote by Pr(r2 − μ < x).

In Fig. 2(a) we see Pr(r2 − μ < x) for the open kicked
rotator, at various dimensions for μ = 0.8. We see that, as N

grows, the values of r become more localized around μ. In
Fig. 2(b) we introduce a scaled variable η̃(r2 − μ), but with
η̃ different from η in that it involves the actual exponent β

instead of the RMT prediction 1/2:

η̃ =
(

N

2μ(1 − μ)

)β

. (7)
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All curves fall on top of each other, indicating that this is
the correct scaling. Moreover, the shape of the curve agrees
with (6).

B. Distribution of sharpest resonance

Let us now consider the probability distribution of the
largest eigenvalue of the propagator, which corresponds to
the sharpest resonance and whose modulus we denote by
R. Largest eigenvalue distributions are important in different
areas of mathematics [23] and physics [24], and have even
been measured [4]. A similar calculation to the one below
can be found in [25]. Let P({z}) denote the joint probability
density function for all eigenvalues. When integrated over all
variables from 0 to x, it gives the probability that the modulus
of all eigenvalues is smaller than x. Therefore, the probability
that the modulus of the largest eigenvalue be smaller than x is

Pr(R < x) =
∫

P({z})
M∏
i=1


(|zi | − x)d2zi . (8)

The joint probability distribution function of the eigenval-
ues is [22]

P({z}) ∝
1...M∏
i<j

|zi − zj |2
M∏
i=1

(1 − |zi |2)N−M−1. (9)

It is a usual trick to write
∏

i<j |zi − zj |2 in terms of the

Vandermonde determinant |detA|2, where Aij = zi−1
j . This

can be shown to be equal to M!detB, where Bij = z
j−1
i (z∗

i )i−1.
Each element of the matrix B depends on a single variable,
and the integration decouples. The angular part of the integrals
diagonalizes the matrix and, if M = μN and N � 1, the result
becomes

Pr(R < x) ∝
M∏

j=0

∫ x

0
(1 − y)N(1−μ)yjdy. (10)

This result is exact, but a bit cumbersome. Approximating
the integrand by a Gaussian function we arrive at Pr(R <

x) ∝ ∏M
�=0{ 1

2 + 1
2 erf[η(x2 − μ + �(1−μ)

N
)]}. This result can be

further simplified by exponentiating the product into a sum,
setting the scale as � = 2μηξ , and approximating the sum by
an integral. We get

Pr(R2 − μ < x) ∝ exp

{
2μη

∫ ∞

0
dξL(ηx2 + ξ )

}
, (11)

where we have defined the function

L(z) = ln

(
1 + erf(z)

2

)
. (12)

One interesting question that can be answered at this point
is, how likely is it that a true gap will exist at μ for a finite
value of N? The probability that all eigenvalues are smaller
than μ is simply given by the exponential in (11) with x = 0.
It is thus proportional to e−c

√
N for some constant c.

Notice that (11) has some similarity with the Tracy-
Widom distribution [26] of the largest eigenvalue of Gaussian
ensembles of RMT, in the sense that it involves the exponential
of the integral of a function that satisfies a nonlinear differential

equation, L′′(z) = −2zL′(z) − (L′(z))2. It is not a Painlevé
transcendent, however.

Returning to the calculation, let us change variable to δ =
ηx2 and obtain exp{2μη

∫ ∞
δ

L(z)dz}. Clearly, this function
does not converge as η → ∞. Assuming δ to be large,
we use L(z) ≈ −e−z2

/(2
√

πz) and integrate by parts to get
exp{−2μηe−δ2

/(4
√

πδ2)}. In order to have a finite limit, we
must have ηe−δ2

/δ2 = O(1). This implies that δ2 = y + W (η),
where W is the Lambert function, which for large η can be
approximated as W (η) ≈ ln η − ln ln η. Therefore, if instead
of R we consider the variable

ρ = η2(R2 − μ)2 − ln η + ln ln η, (13)

then

Pr(ρ < y) = exp

{
− μ

2
√

π
e−y

}
, (14)

which is a modified Gumbel function. Therefore, the distribu-
tion of the slightly awkward variable ρ (see also [25]) has a
limit as η → ∞, but this limit is approached very slowly and
finite-η calculations may present significant deviations.

In Fig. 3(a) we see Q1 = Pr(R2 − μ < x) for the open
kicked rotator, at various dimensions for μ = 0.8. In Fig. 3(b)

0.000 0.025 0.050 0.075 0.100 0.125

0.0

0.2

0.4

0.6

0.8

1.0

Q
1

 N=1000
 N=2500
 N=5000
 N=7500
 N=10000

x

(a)

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.2

0.4

0.6

0.8

1.0

Q
2

 N=1000
 N=2500
 N=5000
 N=7500
 N=10000

x

(b)

FIG. 3. (Top panel) Q1 is the probability that R, the modulus of
the largest eigenvalue, satisfies R2 − μ < x. (Lower panel) Q2 is the
probability that η̃2(R2 − μ)2 < x. Results are for the open kicked
rotator at several dimensions, for μ = 0.8. Solid line is a rescaled
RMT prediction.
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we introduce the scaled variable η̃2(R2 − μ)2, where η̃ is
given by (7). As a result, all curves fall on top of each other,
indicating that this is the correct scaling. The results agree
very well with the function exp{−e−ax+b}, with fit values of
a and b. Notice, however, that η̃2(R2 − μ)2 is always positive
while exp{−e−ax+b} is finite for negative arguments, so the
agreement cannot be too good near the origin. Interestingly, we
must not introduce the ln η̃ or ln ln η̃ factors that appear in (13),
as they would spoil the scaling. Why these factors are present
in RMT but not in our dynamical model is not clear at present.

IV. CONCLUSIONS AND PERSPECTIVES

We close with some remarks on resonance eigenfunctions.
These may be depicted in phase space by means of their Husimi
function, Hψ (q,p) = |〈q,p|ψ〉|2, where |q,p〉 is a coherent
state. It was shown in [18] that these Husimi functions are
supported on the backward trapped set, the unstable manifold
of the repeller. How they are distributed on this support
depends on their decay rate: states with larger � concentrate
on the dynamical pre-images of the opening, while states with
small � concentrate on the repeller. Semiclassically,∫

Rm

Hψn
(q,p)dqdp ≈ |zn|2m(1 − |zn|2), (15)

where Rm is the mth pre-image of the opening. In principle,
this relation would allow a state whose decay rate equals

the classical decay rate to be uniformly distributed, because
the area of Rm decays like e−mγ . Therefore, supersharp
resonances must show an increased degree of localization
above uniformity. Indeed, since they can also be seen as
superlong-lived states, one would expect them to be associated
with periodic orbits (see for example [27–30]). This topic
deserves further investigations.

In summary, we have introduced the concept of supersharp
resonances in chaotic wave scattering as those with decay
rates smaller than the classical escape rate. We have presented
numerical evidence that these resonances do not follow
the usual fractal Weyl law. We have numerically tested on
a dynamical model a RMT prediction for the density of
supersharp resonances. Finally, we have derived and tested on a
dynamical model a RMT prediction of probability distribution
of the sharpest resonance. The generality of the results mean
that they may be experimentally addressed in a variety of
settings. One important open question is the phase space
morphology of the associated wave functions. Another line
of research to be followed would be to investigate a possible
relation between the exponents α and β to ray dynamics. In
particular, it is not clear whether they depend on the Lyapounov
exponent and whether they are universal or system specific.
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