
PHYSICAL REVIEW E 85, 036110 (2012)

Complexity of spatiotemporal traffic phenomena in flow of identical drivers:
Explanation based on fundamental hypothesis of three-phase theory
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Based on numerical simulations of a stochastic three-phase traffic flow model, we reveal the physics of the
fundamental hypothesis of three-phase theory that, in contrast with a fundamental diagram of classical traffic
flow theories, postulates the existence of a two-dimensional (2D) region of steady states of synchronized flow
where a driver makes an arbitrary choice of a space gap (time headway) to the preceding vehicle. We find that
macroscopic and microscopic spatiotemporal effects of the entire complexity of traffic congestion observed up to
now in real measured traffic data can be explained by simulations of traffic flow consisting of identical drivers and
vehicles, if a microscopic model used in these simulations incorporates the fundamental hypothesis of three-phase
theory. It is shown that the driver’s choice of space gaps within the 2D region of synchronized flow associated
with the fundamental hypothesis of three-phase theory can qualitatively change types of congested patterns that
can emerge at a highway bottleneck. In particular, if drivers choose long enough spaces gaps associated with the
fundamental hypothesis, then general patterns, which consist of synchronized flow and wide moving jams, do
not emerge independent of the flow rates and bottleneck characteristics: Even at a heavy bottleneck leading to a
very low speed within congested patterns, only synchronized flow patterns occur in which no wide moving jams
emerge spontaneously.
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I. INTRODUCTION: FUNDAMENTAL HYPOTHESIS
OF THREE-PHASE THEORY

In hypothetical car following with nondisturbed and noise-
less vehicle motion with a constant speed, classical traffic flow
theories and models (see books and reviews in Ref. [1]) assume
the existence of a space-gap–speed relationship associated
with a fundamental diagram for traffic flow. The space-
gap–speed relationship determines a single (called sometimes
optimal or safe) space gap (time headway) for each given
speed [1]: When the gap is greater than the optimal one, the
vehicle accelerates; when the gap is smaller than the optimal
one, the vehicle decelerates. The space-gap–speed relationship
is a driver model characteristic [2].

In empirical observations, spontaneous traffic breakdown
at a highway bottleneck leading to congested traffic is a
local phase transition from free flow (F) to synchronized
flow (S) (F → S transition) [3–6]. Rather than an F → S
transition, in traffic flow models with a fundamental diagram
explaining traffic breakdown through free-flow instability [1]
traffic breakdown is a local phase transition from free flow
to a wide moving jam (J) (F → J transition) (see Sec. 10.3 of
Ref. [6]); these models are often called two-phase traffic flow
models.

Because the two-phase models cannot explain traffic break-
down as observed in real measured traffic data, the author
introduced three-phase traffic theory [3,5] in which there are
(1) the free flow, (2) synchronized flow, and (3) wide moving
jam phases. The synchronized flow and wide moving jam
phases associated with congested traffic are defined via the
empirical definitions [S] and [J], respectively. A wide moving
jam is a moving traffic jam, i.e., a localized structure of great
vehicle density and low speed, spatially limited by two jam
fronts, which exhibits the characteristic jam feature [J] to
propagate through bottlenecks while maintaining the mean
velocity of the downstream jam front. Synchronized flow [S] is

defined as congested traffic that does not exhibit the jam feature
[J]; in particular, the downstream front of synchronized flow
is often fixed at the bottleneck. First, three-phase microscopic
traffic flow models were introduced in Refs. [7,8]. Over time
there have been developed a number of three-phase traffic
models (e.g., Refs. [9–49]).

In contrast with two-phase models with a fundamental
diagram that assume the existence of a space-gap–speed rela-
tionship [1], the fundamental hypothesis of three-phase traffic
theory [3–6] assumes the existence of a two-dimensional (2D)
region of hypothetical homogeneous synchronized flow [50]
in the space-gap–speed plane restricted by a synchronization
space gap G and safe gap gsafe, where G > gsafe at any
synchronized flow speed [Fig. 1(a)]. When the space gap
g between the vehicle and the preceding vehicle g > G,
the vehicle accelerates [“acceleration” in Fig. 1(a)]. When
g < gsafe, the vehicle decelerates (“deceleration”). When a
driver approaches a slower-moving preceding vehicle and he
or she cannot overtake it, then the driver begins to decelerate,
adapting its speed to the speed of the preceding vehicle, when
the gap g to the preceding vehicle becomes smaller than the
synchronization gap G. This driver’s speed adaptation occurs
under condition (“speed adaptation” in Fig. 1)

gsafe � g � G. (1)

Therefore, the fundamental hypothesis of three-phase theory
states that a driver makes an arbitrary choice in the space gap
(time headway) within the gap range (1) [3–6].

In numerical simulations with three-phase models, a syn-
chronized flow pattern (SP) that consists of the synchronized
flow phase only [Fig. 2(a)] transforms into a general pattern
(GP) that consists of both synchronized flow and wide moving
jam phases [Fig. 2(b)]. This occurs when the bottleneck
strength that characterizes the effect of the bottleneck on
traffic flow increases, and, respectively, the speed decreases
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FIG. 1. Fundamental hypothesis and associated driver’s speed
adaptation effect within 2D region of homogeneous synchronized
flow [5,6]: Qualitative explanation of synchronization G and safe
gaps gsafe in the space-gap–speed plane (a) and of driver’s speed
adaptation under condition (1) (b).

and density increases within the SP [Fig. 2(c)] [51]. However,
in some traffic observations of synchronized flow no wide
moving jams emerge independent of the speed and density of
the synchronized flow [5]. In addition, there can be a complex
transformation between SPs and GPs over time at an almost
time-independent bottleneck strength and the flow rate in free
flow upstream of a bottleneck qin (see Chap. 13 of Ref. [5]).
This complexity of spatiotemporal traffic congestion found in
measured traffic data has not been explained up to now.

It must be noted that three-phase traffic flow models in the
framework of the fundamental diagram approach (when an
infinite number of 2D steady states of synchronized flow are

FIG. 2. Simulations of the transformation of an SP (a) into an
GP (b) at on-ramp bottleneck with a three-phase model under an
increase in on-ramp inflow qon (increase in bottleneck strength) [5,6].
(c) Simplified diagram of congested patterns in the flow-flow plane:
At the boundary F

(B)
S of this diagram an SP occurs spontaneously (a);

when qon increases, then at the diagram boundary S
(B)
J wide moving

jams emerge spontaneously within synchronized flow of the SP, i.e.,
the SP transforms into an GP (b). In (a), (b) speeds in space and time
in the left road lane are shown. qin is the flow rate (per lane) in free
flow on main road upstream of the congested pattern.

averaged to one synchronized flow speed for each density) can
also be developed that can show an F → S transition as well as
the transformation of an SP into an GP similar to that shown in
Fig. 2 [13,52]. Thus a question arises [53]: What is the physical
sense of the fundamental hypothesis of three-phase theory?
This critical question about three-phase theory addressed in
the literature as well as the above-mentioned complexity of
pattern transformation observed in measured data that has not
been fully explained hinder the further understanding of the
physics of vehicular traffic.

In this article we will try to show that the entire complexity
of empirical spatiotemporal traffic congestion observed up to
now in real highway traffic [4,5,54,55] can be simulated with a
three-phase model of traffic flow consisting of identical drivers
and vehicles [56], if the model incorporates the fundamental
hypothesis of three-phase theory. This will also explain the
physics behind the fundamental hypothesis of three-phase
theory.

The article is organized as follows. In Sec. II we show that
under application of the fundamental hypothesis of three-phase
theory, simulations of traffic flow of identical drivers made at
the same given flow rates, the same bottlenecks and other traffic
parameters can explain the complexity of spatiotemporal
traffic congestion observed in real measured data. The physics
of the effect of the fundamental hypothesis on simulations of
these traffic phenomena is the subject of Sec. III. In discussion,
Sec. IV, we consider random jam emergence in synchronized
flow associated with the fundamental hypothesis as well as
explain why the fundamental hypothesis is the result of the
empirical phase definitions [S] and [J].

II. COMPLEXITY OF SPATIOTEMPORAL
TRAFFIC CONGESTION

Complex spatiotemporal transformations between GPs and
SPs are usual traffic phenomena observed in macroscopic
traffic data measured by road detectors [5]. In many cases,
there are no considerable changes in flow rates and other traffic
macroscopic parameters that could explain these diverse com-
plex transformations between qualitatively different congested
traffic patterns (see chaps. 13 and 14 of [5]). As we will see
below, complex microscopic spatiotemporal jam dynamics in
synchronized flow, in particular, the interruption of jam growth
and random moving jam dissolution in synchronized flow, are
also observed in empirical single-vehicle data. We show in
this section that macroscopic and microscopic spatiotemporal
effects of the entire complexity of traffic congestion observed
up to now in real measured traffic data can be explained by
simulations of traffic flow consisting of identical drivers and
vehicles, if a microscopic model used in these simulations
incorporates the fundamental hypothesis of three-phase theory.
This is a physical effect of the application of the fundamental
hypothesis of three-phase theory on simulated spatiotemporal
traffic phenomena [53].

In the article all simulations have been made with a discrete
version of the Kerner-Klenov stochastic microscopic three-
phase model [7,57–59]. Because this model has been discussed
in detail in Refs. [58,59], we have presented the model and
model parameters in Appendix A.
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To simulate the driver’s choice of a space gap within the 2D
region of synchronized flow [Fig. 1(a)], we use a stochastic
description of driver’s speed adaptation within this 2D region
made in the Kerner-Klenov model [7,57–59]. The physical
meaning of the stochastic description of the driver’s speed
adaptation within the synchronization gap, explained in more
detail in Appendix B, is as follows: The driver behavior to
adapt its speed to the speed of the preceding vehicle moving
within the 2D region of synchronized flow is described by
probability p2 for continuous deceleration to the speed of the
preceding vehicle as well as by probability p1 for the beginning
of this deceleration. The greater the probabilities p2 and/or p1,
the stronger on average the adaptation of the vehicle speed to
the speed of the preceding vehicle and, therefore, the larger on
average the space gap within the 2D region of synchronized
flow that the driver chooses.

A. Random spatiotemporal transformations between diverse
congested patterns in empirical single-vehicle data and

microscopic simulations

Random spatiotemporal transformations between diverse
congested patterns is the phenomenon that is often observed
in real empirical congested patterns measured on highways
with many adjacent bottlenecks (see examples of empirical
macroscopic data in chap. 19 of Ref. [5]). Such pattern
transformations can also be found in empirical NGSIM data
[54] as shown in Fig. 3.

As mentioned in Ref. [58], the significance of NGSIM
data [54] is that this is single-vehicle data that allow us
to study microscopic spatiotemporal empirical features of
synchronized flow. Because of very expensive measurements,
the data are measured at a very short road section only in a
vicinity of on- and off-ramp bottlenecks on the road US 101
[Fig. 3(a)]. As explained in Ref. [58], we can assume that the
NGSIM data can be associated with a (probably small) part
of an expanded congested pattern (EP) measured by video
cameras installed on a 640 m section of the road. In the data
example (Fig. 3), there are time intervals in which moving jams
exist in synchronized flow (bold vehicle trajectories 1, 4, and
5). These time intervals are intermediate with time intervals
in which synchronized flow of low speed exists, in which no
moving jams emerge (bold trajectories 2 and 3).

In numerical simulations we have found that at a given set of
the flow rates on the main road, on-ramp inflows, and off-ramp
outflows as well as at other given traffic parameters arbitrary
spatiotemporal transformations between diverse congested
patterns are possible to simulate in traffic flow of identical
drivers [56] when the drivers choose different space gaps
within the 2D region of synchronized flow states.

To demonstrate this conclusion of many simulations made
in this work, we discuss in more detail one simulation scenario
for a road section with five on ramp and five off ramps (Fig. 4).
In the scenario there are two 20-minute-long time intervals 1
and 2. During time interval 1, all drivers entering the main
road and on ramps choose space gaps in accordance with
probabilities p2 and p1 from Table VII (see Appendix A)
associated with “usual” (weak) speed adaptation. During time
interval 2, all drivers entering the main road and on ramps

FIG. 3. Empirical spatiotemporal transformations between syn-
chronized flow regions in which moving jams exist and synchronized
flow regions without moving jams, which are reconstructed from
single-vehicle data measured through video cameras installed on the
road US 101 within 640 m section of the road US 101 shown in
(a): Fragments of empirical vehicle trajectories (b), (d) and micro-
scopic speeds along vehicle trajectories 1, 2 (c), and 3–5 (e) related
to (b) and (d), respectively. Moving jams in (b), (d) are marked off
by dashed curves. In (b), (d), each third vehicle trajectory is shown.
NGSIM-single vehicle data measured on 15 June 2005 on 640 m
section of the road US 101 [54].

choose space gaps in accordance with

p2 = 1, p1 = 0.7 (2)

associated with strong speed adaptation. At the beginning of
the road and for each of the on ramps, the alternation of time
intervals 1 and 2 is generated randomly with probability 0.5
for each of the intervals.

We find a very complex congested pattern within which
two qualitatively different spatiotemporal regions can be
distinguished, which are randomly distributed within the
pattern (Fig. 4): regions in which moving jams propagate in
synchronized flow [regions labeled as GP in Fig. 4(a), left]
and regions of synchronized flow without the jams (labeled as
SP). Spatiotemporal transformations from a GP region to SP
region and back from a SP region to GP region occurring
over time are shown in pattern fragments for microscopic
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FIG. 4. Simulated random spatiotemporal transformations be-
tween SP regions and GP regions within a complex congested pattern:
(a) Overview. (b), (c) Fragments within (a). Single-vehicle speed data
presented by regions with variable shades of gray in space and time (in
white regions the speed is higher than 25 km/h, in black regions the
speed is zero). Simulation scenario is described in text. Beginning of
merging regions of the on ramps and off ramps are at locations xon, i =
7, 9, 11, 13, 15 km and xoff, j = 8, 10, 12, 14, 16 km, respectively.
Flow rates to on ramps qon i, i = 1, . . . ,5 and percentage of vehicles
leaving the main road to off ramps ηj , j = 1, . . . ,5 are qon i = 500,
400, 600, 720, 600 vehicles/h for i = 1,2,3,4,5, respectively; ηj =
3%, 15%, 10%, 2%, 70% for j = 1,2,3,4,5, respectively. qin =
1500 (vehicles/h)/lane.

speeds in Figs. 4(b) and 4(c), respectively. For more clarity, the
same transformations are shown through vehicle trajectories
in Figs. 5(a) and 5(c), respectively.

At a boundary separating GP and SP regions, the jam width
(in the longitudinal direction) decreases, and all jams dissolve
[Fig. 5(b)]. In contrast, at a boundary separating SP and GP
regions, jams emerge spontaneously in synchronized flow, and
their widths increase over time [Fig. 5(d)].

To prove that the moving jams in a GP region are wide
moving jams and, therefore, the region is indeed associated
with an GP, we presented single-vehicle speeds and time
headways at time functions measured within the congested
pattern via virtual detectors at two road locations, 9.5 and
7.5 km (Fig. 6). To distinguish wide moving jams and

10.2

FIG. 5. Fragments of vehicle trajectories within the complex
congested pattern shown in Fig. 4. Moving jams in (b), (d) are marked
off by dashed curves.

synchronized flow, we use the microscopic criterion for the
wide moving jam phase [60,61]:

Is = τmax

τ
(a)
del, jam

� 1, (3)

where τmax is the maximum time headway that characterizes
a so-called flow interruption interval within a wide moving
jam; τ

(a)
del, jam is the mean driver time delay in acceleration

at the downstream front of the jam; in the model τ
(a)
del, jam ≈

1.74 s. If in single-vehicle data related to congested traffic
a flow-interruption interval is observed for a very low (or
zero) speed that satisfies (3), then the related flow-interruption
interval corresponds to the wide moving jam phase. After all
wide moving jams have been found through this criterion in
congested traffic, all remaining congested states are related to
the synchronized flow phase.

At time t � 82 min, there are wide moving jams at location
9.5 km [Fig. 6(a)]: for some time headways at very low speeds
the criterion (3) is satisfied [see Fig. 6(a), e.g., τmax ≈ 14 s
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FIG. 6. Simulated single-vehicle speeds and time headways as
time functions measured by two virtual detectors located at 7.5 and
9.5 km within the complex congested pattern shown in Fig. 4. Left
and right figures are related to the left and right lanes, respectively.

and 28 s for two different wide moving jams in the left and
right lanes, respectively]. In contrast, at time t > 85 min
none of the time headways for low speeds satisfies (3); i.e.,
congested traffic is associated with synchronized flow only.
In other words, at location 9.5 km a GP region transforms
over time into a SP region at time t ≈ 82 min. Because the
mean synchronized flow speed between the jams within the GP
region is higher than the one within the SP region, in Fig. 6(a)
microscopic speed oscillations decrease in their amplitude at
time t ≈ 82 min.

In contrast, at location 7.5 km at time t ≈ 110 min a SP
region transforms over time into a GP region [Fig. 6(b)].
Indeed, at time t � 110 min there are no wide moving
jams within synchronized flow, whereas at time t > 112 min
many wide moving jams appear. This can be seen from time
headways for low synchronized flow speeds: at t � 110 min for
none of time headways criterion (3) is satisfied, whereas at t >

112 min there are many time headways for which criterion (3)
is satisfied. Due to the transformation of the SP region into
a GP one, speed oscillations increase over time considerably
[Fig. 6(b)].

To prove the above application of criterion (3), in Figs. 6(c)
and 6(d) we present two different time intervals in a consid-
erably larger scale for two road locations, 7.5 and 9.5 km: we
can see that low speeds satisfy criterion (3); i.e., within these
time intervals wide moving jams have indeed been registered
by virtual detectors at the locations.

The physics of arbitrary spatiotemporal transformations
between GP and SP regions within congested patterns is the
subject of Sec. III.

B. Interruption of jam growth in synchronized flow

In addition to random spatiotemporal transformations be-
tween complex GP and SP regions within traffic congestion
(Sec. II A), a driver’s arbitrary choice of a space gap within the
2D region of synchronized flow can explain the interruption
of the jam growth leading to subsequent jam dissolution
in synchronized flow occurring without any influence of
lane changing [62]. Such interruption-nucleation effects in
synchronized flow are observed in NGSIM-single-vehicle data
(Sec. II B 1) and simulations (Sec. II B 2).

1. Jam growth interruption in microscopic empirical data

Empirical examples of the interruption of the jam growth
leading to the subsequent jam dissolution in synchronized
flow, which occur without lane changing, are shown in
Figs. 7(a)–7(e).

In Fig. 7(a) can be seen two moving jams. Both jams
have emerged within synchronized flow of low speed (Fig. 8).
The space gap between vehicles labeled by numbers 1 and
2 (marked by bold trajectories) increases when vehicle 2
approaches the downstream jam, resulting in the decreasing
in the jam width (in the longitudinal direction); that is, the
jam growth is interrupted. However, the space gaps between
vehicles 2 and 3 as well as 3 and 4 are considerably larger than
between vehicles 1 and 2. This results in the subsequent full
dissolution of both jams.

A qualitatively similar example is shown in Fig. 7(b).
The jam growth interruption with subsequent jam dissolution
correlates with a large space gap between two vehicles 5 and
6; these effects for another moving jam propagating later also
correlate with the increase in space gaps between vehicles
7–10. The interruption of the jam growth with the subsequent
jam dissolution in synchronized flow can also be seen in
the microscopic speed distributions along vehicle trajectories
shown in Fig. 8.

More complex empirical effects of the interruption of the
jam growth are shown in Figs. 7(c)–7(e). In these cases, there
are some time intervals between the interruption of the jam
growth and subsequent jam dissolution. The time intervals
can be explained through a complex distribution in space
gaps between several vehicles (marked by bold trajectories)
reaching the associated moving jams.

2. Simulations of jam growth interruption in traffic flow
of identical drivers

Even for a given set of probabilities p1 and p2 for driver’s
speed adaptation, there can be a considerable difference in
space gaps between vehicles. This is due to a stochastic
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FIG. 7. Fragments of empirical vehicle trajectories reconstructed
from single-vehicle data measured by video cameras installed on
the road US 101 within a 640 m section of US 101 shown in
Fig. 3(a). Moving jams are marked off by dashed curves. NGSIM-
single-vehicle data measured on 15 June 2005 [54].

description of the driver’s speed adaptation within the 2D
region of synchronized flow made in the model (Appendix B).
This explains simulation results of the interruption of the jam
growth with subsequent jam dissolution associated with a
random increase in a space gap between two vehicles reaching
the jam (Fig. 9) calculated for p1 and p2 in Table VII.
This interruption of the jam growth is responsible for jam
dissolution in the left lane [labeled “jam” in Fig. 9(a)] as seen
in vehicle trajectories [Fig. 9(b)].

In traffic flow of identical drivers in which drivers choose
very different space gaps within the 2D region of synchronized
flow, we have found a very complex jam dynamics with
many nucleation-interruption effects that occur without lane
changing. A simulation example presented in Figs. 10(b)–
10(d) is made for a simulation scenario in which a complex
EP occurs on a road section with five on-ramp and five
off-ramp bottlenecks [Fig. 10(a)]. In the scenario 80% of
drivers choose randomly space gaps associated with p1 and
p2 in Table VII associated with weak speed adaptation, and
20% of drivers choose randomly greater space gaps within
the 2D region of synchronized flow states associated with
strong speed adaptation under conditions (2). The interruption
of the jam growth with subsequent jam dissolution occurring
in fragments of vehicle trajectories [Figs. 10(b)–10(d)] is due
to the large difference in space gaps between drivers reaching
the jam each after another.

FIG. 8. Empirical microscopic vehicle speeds (in km/h) along
vehicle trajectories 1–10 marked in bold in Figs. 7(a) and 7(b).

It must be noted that real traffic does not usually consist
of identical drivers and vehicles; that is, in real traffic flow
there can be a mixture of trucks and cars driven by different
drivers. In other words, we cannot state that in empirical data
of complex traffic flow presented in Figs. 3, 7, and 8, vehicles

FIG. 9. Simulated speed within GP at on-ramp bottleneck (a) and
a fragment of vehicle trajectories (b) within the GP. Left and right
figures are related to the left and right lanes, respectively. All drivers
choose space gaps associated with with p1 and p2 in Table VII.
Moving jam is marked by dashed curves. (qin,qon) = (2000,900)
[(vehicles/h)/lane, vehicles/h].
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FIG. 10. Simulated speed within EP (a) and fragments of vehicle
trajectories (b)–(d) within the EP in the left (left) and right (right)
lanes. Drivers associated with p1 and p2 in Table VII (80%) and with
Eq. (2) (20%) are distributed randomly in traffic flow. Moving jams
in (b)–(d) are marked by dashed curves. Other model parameters are
the same as those in Fig. 4.

are all the same. The main statement made above from a
comparison of the empirical data and numerical simulations is
that the empirical complexity of traffic flow can be simulated
with a three-phase traffic flow model that incorporates the
fundamental hypothesis of three-phase theory, even if in the
simulations drivers and vehicles are all the same.

III. PHYSICS OF THE EFFECT OF FUNDAMENTAL
HYPOTHESIS ON SPATIOTEMPORAL TRAFFIC

PHENOMENA

To understand the physics of the complexity of spatiotem-
poral traffic phenomena in the flow of identical drivers revealed
in Sec. II, we study separately congested patterns that occur at
highway bottlenecks, when only one of the following three sets
of speed adaptation parameters is used: Parameters of speed

FIG. 11. Simulated synchronized flow patterns (SP) at on-ramp
bottleneck under speed adaptation given by Eq. (4): (a) Diagram of
congested patterns at on-ramp bottleneck. (b)–(d) Speed in space
and time in the left lane within moving SP (MSP) (b), widening SP
(WSP) (c), and localized SP (LSP) (d). (qin,qon) = (2118,30) (b),
(2105,1400) (c), (1600,1000) (d) [(vehicles/h)/lane, vehicles/h]. In
(a) line M separates MSPs (left to the line) and WSPs (right); line W

separates WSPs (above the line) and LSPs (below) in the diagram.

adaptation p1 and p2 are taken either from Table VII associated
with “usual” (weak) speed adaptation, or from Eq. (2),
or else from

p2 = 1, p1 = 0.5. (4)

Speed adaptation parameters given by Eq. (2) or by Eq. (4) are
associated with strong speed adaptation. A subsequent com-
parison of features of congested patterns occurring for these
three different sets of speed adaptation parameters p1 and p2

help us to disclose the physics of the fundamental hypothesis of
three-phase theory in the description of spatiotemporal traffic
phenomena.

A. Suppressing of emergence of wide moving jams
in synchronized flow

The main effect of strong driver’s speed adaptation within
the 2D region of synchronized flow states is the suppression
of the emergence of wide moving jams in synchronized flow.
This can be seen when we compare the diagram of congested
patterns at an on-ramp bottleneck for a driver’s choice of space
gap associated with parameters p1 and p2 in Table VII used in
Fig. 2(c) [5,6] with the diagram found here [Fig. 11(a)] for a
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driver’s choice of space gap associated with speed adaptation
parameters (4).

We have found that after an SP emerges at the flow rates qon

and qin associated with the diagram boundary F
(B)
S and then

the on-ramp inflow rate qon increases subsequently no wide
moving jams emerge spontaneously in synchronized flow of
the SP. This means that GPs do not appear even at low speeds
and great vehicle densities within synchronized flow of the SP
[Fig. 11(c)].

It must be mentioned that the degree of driver’s speed
adaptation associated with stochastic model parameters p1

and p2 is not a driver characteristic that describes a particular
driver: The fundamental hypothesis states that the arbitrary
space gap choice within the 2D region of synchronized flow
can be made by any driver [63]. In other words, within the
2D region of synchronized flow, a driver can freely choose
the degree of driver’s speed adaptation (stronger or weaker
adaptation) and change freely this speed adaptation degree over
time. Thus the suppression of wide moving jam emergence
in synchronized flow under strong speed adaptation (4)
(Fig. 11) occurs under the condition that all driver behavioral
characteristics, which characterize different drivers in relation
to their reaction times and other safety driver abilities, remain
the same as those used in Fig. 2(c) [5,6] (Table VII). In
particular, all drivers exhibit the same reaction time, safe
speed, and slow-to-start rule [56,64] that is responsible for
wide moving jam propagation [65] (see Sec. III E).

B. Drivers’ choice of space gap and line J

If under condition (B1) of Appendix B drivers choose
the space gap in accordance with p1 and p2 of Table VII,
synchronized flow states within an WSP [Fig. 12(a)] lie above
the line J in the flow-density plane [circle points in Fig. 12(b)].
These synchronized flow states are metastable with respect
to wide moving jam emergence [66]. This explains why the
WSP [Fig. 12(a)] transforms spontaneously into an GP like
that shown in Fig. 2(b), when the flow rates increase and a
point (qon,qin) lies right to the boundary S

(B)
J in Fig. 2(c).

In contrast, for strong driver’s speed adaptation (4), syn-
chronized flow states within an WSP [Fig. 12(c)] lie on and
below the line J in the flow-density plane [circle points in
Fig. 12(d)]. Because synchronized flow states below the line
J are stable with respect to the jam emergence [66] and
in synchronized flow states lying on the line J only a very
great disturbance (like a long stop of one of the vehicles) in
synchronized flow can lead to the jam emergence [5], no wide
moving jams emerge spontaneously under condition (4). Under
more stronger speed adaptation (2), synchronized flow points
in the flow-density plane move below the line J [circle points
in Fig. 12(f)]; i.e., all synchronized flow states within an WSP
[Fig. 12(e)] are stable with respect to the jam emergence [66].

Driver’s choice of strong speed adaptation [conditions (2)
or (4)] leads to a quicker vehicle deceleration to the speed of
the preceding vehicle, that is, to a larger space gap (longer
time headway) at which the vehicle follows the preceding
vehicle [67]. However, at a given speed the larger the gap,
the more stable the synchronized flow with respect to wide
moving jam emergence [3,5,66].

FIG. 12. Explanation of the physics of the effect of the funda-
mental hypothesis of three-phase theory on congested patterns: (a),
(b) Speed in space and time in the left road lane within WSP at
on-ramp bottleneck (a) and related points (circles associated with
1-min average data) for synchronized flow within the WSP at location
15.8 km in the flow-density plane (b) for speed adaptation used in
Refs. [58,59] and given in Table VII. (c)–(f) Speed in space and
time in the left lane within WSPs at on-ramp bottleneck (c), (e)
and related points (circles) for synchronized flow within the WSPs
(d), (f) under stronger speed adaptation given by (4) (c), (d) and
by (2) (e), (f). (qin,qon) = (2250,240) (a),(b) and (2100,1400) (c)–(f)
[(vehicles/h)/lane, vehicles/h]. (g) Explanation of 2D region of
synchronized flow and line J .

C. Traffic breakdown and infinite number of highway capacities

Although under strong speed adaptation (4) no wide
moving jams emerge spontaneously in synchronized flow,
traffic breakdown remains a first-order F → S transition. This
conclusion can be drawn from results presented in Fig. 13.

We have found that traffic breakdown at the bottleneck
can be either spontaneous [Fig. 13(a)–13(c)] or induced
[Fig. 13(d)]. After the on-ramp inflow has been switched
on, the spontaneous traffic breakdown occurs with a random
time delay T

(B)
FS [Fig. 13(a)–13(c)]. The time delay of traffic

breakdown T
(B)

FS is a random value: In different simulation
realizations (runs), which have been made at the same flow
rates and other model parameters but at different initial
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FIG. 13. Features of traffic breakdown under driver’s strong speed
adaptation (4): (a)–(c) Speed in the right lane during spontaneous
traffic breakdown at on-ramp bottleneck in three simulation realiza-
tions (runs) at (qin,qon) = (1715,900) (vehicles/h)/lane, vehicles/h;
T

(B)
FS = 20 (a), 38 (b), and 14 min (c). (d) Induced traffic breakdown:

SP at downstream on ramp 1 located at 21 km is induced through a
time-limited increase in qon1 from 60 to 1000 vehicles/h between t =
5 and 15 min; while reaching the upstream on ramp 2 at 15 km, the
SP induces WSP at this on-ramp bottleneck; (qin,qon2) = (1715,900)
[(vehicles/h)/lane, vehicles/h]. (e), (f) Z characteristic for traffic
breakdown (F, free flow; S, synchronized flow) (e) and the probability
of traffic breakdown as a function of the flow rate downstream of the
bottleneck qsum (where qsum = qin + 0.5qon) (f) for Tob = 30 min at
qin = 1715 (vehicles/h)/lane. (g) Full diagram of congested patterns
at the on-ramp bottleneck with the threshold boundary for traffic
breakdown F

(B)
th . (h) Comparison of diagram boundaries F

(B)
S , F

(B)
th

under speed adaptation parameters of (4) [solid curves taken from
(g)] and of Table VII (dashed curves).

conditions for model fluctuations, we have found different
T

(B)
FS [Figs. 13(a)–13(c)].

In accordance with three-phase theory [5], there are the
infinite number of highway capacities. Recall that a highway
capacity qC of free flow at a bottleneck is defined as the flow
rate at the bottleneck qsum at which traffic breakdown can
occur at the bottleneck with probability P

(B)
FS > 0. Each of the

capacities exhibits two attributes: the breakdown probability
P

(B)
FS and the observation time for traffic variables Tob. The

infinite number of highway capacities qsum = qC are within
the flow rate range [Figs. 13(e) and 13(f)] [5,68,69]

q
(B)
th � qsum � q(free B)

max , (5)

where q
(B)
th is a threshold flow rate that determines the minimum

capacity: at qsum < q
(B)
th during the interval Tob the breakdown

probability P
(B)
FS = 0; q(free B)

max is the maximum flow rate that
determines the maximum capacity; at qsum = q(free B)

max the
breakdown probability P

(B)
FS = 1.

The infinite number of highway capacities are explained by
the metastability of free flow with respect to traffic breakdown
(F → S transition). The free flow metastability to the break-
down is clearly seen on a Z characteristic for traffic breakdown
calculated for a given qin and varying qon in Fig. 13(e).

The metastablity of free flow for strong speed adapta-
tion (4) can also be clearly seen in the diagram of congested
patterns if to the diagram shown in Fig. 11(a) a threshold
boundary for traffic breakdown F

(B)
th is added [Fig. 13(g)]:

Free flow is metastable with respect to traffic breakdown
between the boundary F

(B)
S , at which the probability of traffic

breakdown during the time interval Tob reaches 1, and the
threshold boundary F

(B)
th : Left to and below the threshold

boundary the probability of traffic breakdown during this
time interval is zero. For the diagrams of congested patterns
at the on-ramp bottleneck shown in Figs. 13(g) and 13(h),
the flow rate qsum = qin + 0.5qon, and, therefore, a function
q

(B)
th (qon) − 0.5qon gives the boundary F

(B)
th , whereas a function

q(free B)
max (qon) − 0.5qon gives the boundary F

(B)
S .

For small on-ramp inflows qon, diagram boundaries F
(B)
S ,

F
(B)
th under strong speed adaptation (4) [solid curves in

Fig. 13(h)] are below the associated diagram boundaries calcu-
lated under speed adaptation parameters in Table VII [dashed
curves in Fig. 13(h)]. However, when qon increases, the associ-
ated boundaries approach each other. In other words, at small
qon the maximum capacity q(free B)

max under strong speed adapta-
tion (4) is smaller than the one for parameters in Table VII;
the same result is valid for the minimum capacity q

(B)
th . The

larger the on-ramp inflow, the smaller the difference between
maximum capacities and the difference between minimum
capacities for strong and weak speed adaptations [Fig. 13(h)].

A qualitative explanation of this result is as follows: The
stronger the driver’s speed adaptation within the 2D region
of synchronized flow states, the easier the formation of
synchronized flow; therefore, both maximum and minimum
capacities decrease. The increase in on-ramp inflow qon leads
to the increase in the frequency of nucleus occurrence required
for the breakdown that determines mostly the breakdown
probability. This may explain the above result that at larger qon

the maximum and minimum capacities do not almost depend
on the degree of driver’s speed adaptation.

D. Transformation of GP into SP

When a point (qon,qin) in the diagram of congested patterns
is right of the boundary S

(B)
J [Fig. 2(c)], an GP occurs

spontaneously [Fig. 14(a)] at weak speed adaptation (p1 and
p2 of Table VII). However, this GP transforms spontaneously
into an SP [Fig. 14(c)], when drivers increase speed adaptation
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FIG. 14. Simulations of transformation of GP (a), (b) associated
with diagram shown in Fig. 2(c) (model parameters of Table VII) into
WSP (c), (d) associated with diagram shown in Fig. 11(a) through a
driver’s choice of stronger speed adaptation parameters (4) at given
qon = 900 vehicles/h and qin = 1850 (vehicles/h)/lane: (a), (c) Speed
in space and time. (b), (d) Single-vehicle speeds and time headways
as time functions at location 10 km related to (a) and (c), respectively.

within the 2D region of synchronized flow states. This
follows from a comparison of diagrams for congested patterns
shown in Figs. 2(c) and 11(a) made in Sec. III A. Because
upstream fronts of wide moving jams while propagating in
traffic decrease traffic safety considerably, the effect of the
transformation of the GP into SP can be useful for traffic
control [70].

It should be mentioned that the transformation of the SP
into GP shown in Fig. 2 and discussed in Sec. I is due to
the associated increase in qon or/and qin that moves a point
(qon, qin) in the diagram of congested patterns right to the
boundary S

(B)
J . In contrast, in the case under consideration

(Fig. 14) the transformation of the GP into SP occurs at given
flow rates qon, qin through a change in the driver’s choice of
space gaps under condition (B1) of Appendix B. Through this
pattern transformation, microscopic traffic flow characteristics
change considerably: Long flow interruption intervals within
wide moving jams [Fig. 14(b)] that satisfy microscopic jam
criterion (3) are replaced by short time headways [Fig. 14(d)]
that do not satisfy (3) associated with synchronized flow in
which no wide moving jams occur.

A very great bottleneck strength can be reached at a
sequence of closely located adjacent on- and off-ramp bot-
tlenecks leading to a very low speed in synchronized flow. In
particular, at the sequence of five on-ramp and five off-ramp
bottlenecks for flow in which all drivers choose weak speed
adaptation associated with parameters of Table VII a very
complex expanded GP (EGP) can appear [Fig. 15(a)] [58].
The EGP [Fig. 15(a)] transforms into an expanded SP (ESP)
[Fig. 15(d)] if all drivers choose strong speed adaptation (4).
It must be mentioned that both the EGP [Fig. 15(a)] and ESP
[Fig. 15(d)] are simulated at the same flow rates to on and off
ramps and on the main road as well as for the same set of the
bottlenecks. As in the case of the transformation of the GP
into SP at a single bottleneck (Fig. 14), the transformation
of the EGP into ESP causes the dissolution of long flow
interruption intervals associated with wide moving jams of
the EGP [Fig. 15(c)]; the jam dissolution results in short time
headways [Fig. 15(f)] that do not satisfy (3): Synchronized
flow of a very low speed occurs within the ESP [Fig. 15(e)] in
which no wide moving jams emerge spontaneously.

E. Induced emergence of wide moving jam and its propagation

Although wide moving jams do not emerge spontaneously
within synchronized flow under strong driver’s speed adapta-
tion (Secs. III A–III D), a wide moving jam (s) can be induced
in synchronized flow. To study the propagation of a wide
moving jam through synchronized flow at different driver’s
choices of space gaps within the 2D region of synchronized
flow states, a wide moving jam has been induced downstream
of SPs [Figs. 16(a), 16(c), and 16(d)].

While propagating through synchronized flow the wide
moving jam maintains the mean velocity of the jam down-
stream front independent of the degree of speed adaptation
chosen by drivers; i.e., in all cases [Figs. 16(a), 16(c), and
16(d)] the downstream jam front is associated with the line
J in the flow-density plane [Figs. 16(b) and 16(e)]. However,
when drivers choose strong speed adaptation (4) [Figs. 16(a)
and 16(c)], the absolute value of the velocity of the upstream
jam front is smaller than that for the downstream jam front:
respectively, the lines representing the propagation of the
upstream jam fronts [line denoted by up in Fig. 16(b)] are
below the line J . This is explained by the above result
(Sec. III B) that under condition (4) many synchronized flow
states within SPs are below the line J in the flow-density
plane [Fig. 12(d)]. For this reason the absolute value of the
downstream jam front velocity is higher then the one for the
upstream jam front; therefore, in both cases the jam width (in
the longitudinal direction) decreases over time, and the jam
dissolves finally [Figs. 16(a) and 16(c)].

For a comparison with this jam dissolution, in Fig. 16(d)
the well-known result [5] is shown that under “usual” driver’s
speed adaptation (Table VII) the jam width increases over time
while the jam propagates through synchronized flow of the
WSP. This jam growth is associated with the greater absolute
value of the velocity of the upstream jam front [line up in
Fig. 16(e)] than that for the downstream jam front (line J ).
This is explained by the above result (Sec. III B) that in the
case most of synchronized flow states within SPs are above the
line J in the flow-density plane [Fig. 12(b)]. For this reason,
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FIG. 15. Simulations of transformation of EGP (a)–(c) into
expanded SP (ESP) (d)–(f) through the change in driver’s choice
in space gap within the 2D region of synchronized flow (figures left
and right are related to the left and right lanes, respectively): (a), (d)
Single-vehicle speed data for fragments within the EGP (a) and ESP
(d) presented by regions with variable shades of gray in space and
time (in white regions the speed is higher than 30 km/h; in black
regions the speed is zero). (b), (c), (e), (f) Single-vehicle speeds (b),
(e) and time headways (c), (f) measured within the EGP (a)–(c) and
ESP (d)–(f) at location 7 km through the use of virtual detectors.
Other model parameters are the same as those in Fig. 10.

the absolute value of the downstream jam front velocity is
smaller then the one for the upstream jam front; therefore, the
jam width increases over time [Fig. 16(d)].

IV. DISCUSSION

A. Random moving jam emergence in synchronized flow

Up to now we have considered the effect of the fundamental
hypothesis of three-phase theory on spatiotemporal traffic
phenomena through a comparison of features of synchronized

FIG. 16. Propagation of wide moving jam through three different
SPs associated with synchronized flows in which drivers choose
either strong speed adaptation (4) (a)–(c) or “usual” speed adaptation
(Table VII) (d), (e): (a), (d) Average speed in space and time in the
left lane for WSPs at on-ramp bottleneck located at 15 km. (c) Speed
data presented by regions with variable shades of gray in space and
time; ESP is the same as shown in Fig. 15(d). (b), (e) Steady states
of synchronized flow S, line J for the downstream jam front, and
lines denoted by up related to the upstream jam fronts for the jams
shown in (a), (c), and (d), respectively. Model parameters for (a) and
(c) are the same as those used in Figs. 12(c) and 15(d), respectively.
In (d), (qin,qon) = (2100,650) [(vehicles/h)/lane, vehicles/h]. In (a),
(c), (d), the jams have been induced by local time-limited disturbances
created simultaneously in both lanes through the deceleration of one
of the vehicles in each of the road lanes to the speed vdis = 0; these
vehicles have been in a standstill during a time interval Tdis = 3 min,
and then the vehicles can accelerate freely.

flows of drivers choosing either weak (Table VII) or strong [(2)
and (4)] speed adaptation in the 2D region of synchronized flow
states. When drivers choose an intermediate degree of speed
adaptation

p2(vn) = 0.8 + 0.2�(vn − v21), p1 = 0.42, (6)

we have found that wide moving jams can spontaneously
emerge in synchronized flow; however, the diagram boundary
S

(B)
J [Fig. 2(c)], at which with probability 1 a wide moving

jam(s) emerges spontaneously in synchronized flow during
the observation time interval Tob, SJ = 60 min, moves to
considerably greater values of the on-ramp inflow [Fig. 17(a)].
This allows us to distinguish in the diagram broad subregions
with different probability of wide moving jams [labeled
S

(B)
J (probability 0.5) and S

(B)
J (probability 0.1) in Fig. 17(a)]:

In some of the simulation runs, an SP remains; however, in the
other ones the SP transforms into an GP [71]. This random jam
emergence is illustrated for (qin,qon) related to points A and B

in the diagram [Fig. 17(a)]: In some of the realizations, WSPs
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FIG. 17. Diagram of congested patterns at on-ramp bottleneck
under condition (6) (a) and related SPs: (b)–(e) Speed in space and
time in the left lane for MSP (b), WSP (c), (d), LSP (e) at (qin,qon) =
(2250,90) (b), (2180,360) (c), (1850,900), (d), and (1630,1000)
(e) [(vehicles/h)/lane, vehicles/h]. In (a), line M separates MSPs
(left to the line) and WSPs (right); line W separates WSPs (above the
line) and LSPs (below) in the diagram.

[Figs. 18(a) and 18(c)], however, in other ones, GPs appear
[Figs. 18(b) and 18(d)].

In general, we have found that the stronger the driver’s speed
adaptation, the more the boundary S

(B)
J moves to the right in

the diagram, i.e., the greater the on-ramp inflow (bottleneck
strength) at which wide moving jams emerge spontaneously
in synchronized flow; finally, under strong enough speed
adaptation (4) no wide moving jams emerge spontaneously at
all bottleneck strengths that can be reached in our simulations.

The analysis made above shows that the stronger the
speed adaptation chosen by drivers, the longer the mean time
headway between vehicles within synchronized flow, i.e., the
larger the mean space gap between vehicles. For “usual” speed
adaptation parameters (Table VII) and strong speed adaptation
parameters given by (4) and (2), the mean space gaps (mean
time headways) within the related WSPs are, respectively, 15 m
(1.6 s) [Figs. 12(a) and 12(b)], 25 m (1.78 s) [Figs. 12(c) and
12(d)], and 30 m (1.9 s) [Figs. 12(e) and 12(f)].

When the preceding vehicle decelerates unexpectedly, the
larger mean space gap within synchronized flow is, the longer
the time interval that a driver has on average to adapt the
speed to the speed of the preceding vehicle at the same
driver time delay in deceleration (at the same driver reaction
time). This means that the larger mean space gap within
synchronized flow, the smaller the probability of driver’s
over-deceleration (driver-over-reaction), i.e., the smaller the

FIG. 18. Different realizations of congested patterns at on-
ramp bottleneck under condition (6) related to points A (a),
(b) and B (c), (d) on diagram of congested patterns shown in
Fig. 17. (qin,qon) = (2100,650) (a), (b) and (1900,1000) (c), (d)
[(vehicles/h)/lane, vehicles/h].

probability of driver’s deceleration to a lower speed than the
speed of the preceding vehicle (driver’s over-deceleration).
This explains the above result that the stronger the speed
adaptation chosen by drivers, the smaller the probability of
wide moving jam emergence in synchronized flow.

B. Fundamental hypothesis of three-phase theory as the result
of traffic phase definitions

The fundamental hypothesis of three-phase theory [3] is the
result of the empirical traffic phase definitions [J] and [S], as
explained below.

The line J in the flow-density plane results from the
definition of wide moving jam [J]. Any point on the line J

can be a final steady traffic state for vehicles accelerating at
the downstream front of a wide moving jam. If the speed in
this state is lower than the minimum speed that is possible in
free flow, the state is a synchronized flow steady state that lies
on the line J . Thus there should be infinite synchronized flow
states lying on the line J [Fig. 12(g)].

The definition of synchronized flow [S] means that down-
stream fronts of synchronized flow regions do not exhibit the
jam characteristic feature [J]. For this reason, in addition to
synchronized flow steady states lying on the line J , there
should be synchronized flow steady states that are outside of
the line J in the flow-density plane. Indeed, only in this case
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does the downstream front between two different states of
synchronized flow not exhibit the characteristic jam velocity
given by the slope of the line J . Thus there should be also
steady states of synchronized flow outside of the line J , i.e.,
there is a 2D region of the steady states in the flow-density
plane. This explains the fundamental hypothesis of three-phase
traffic theory about the 2D region of the steady states of
synchronized flow [Fig. 12(g)].

The definition [S] is associated with empirical results for
moving jam behavior within synchronized flow [5]: Depending
on synchronized flow characteristics upstream of a moving
jam, the jam can either grow or dissolve, propagating in the
synchronized flow over time. We have noted that there are an
infinite number of steady states of synchronized flow that lie on
the line J . If these states were to build the upper boundary of
the 2D region of the synchronized flow steady states, i.e., there
were no steady states above the line J , then a wide moving jam
should dissolve, propagating in the states of synchronized flow.
This contradicts a possibility of the jam growth. In contrast, if
the states on the line J were to build the low boundary of the
2D region of the synchronized flow steady states, i.e., there
were no steady states below the line J , then no wide moving
jam can dissolve, propagating in the states of synchronized
flow. This also contradicts mentioned empirical results about
possible jam dissolution. Thus we should assume that there
are synchronized flow steady states above and below the line
J [Fig. 12(g)].

C. Conclusions and outlook

The above study allows us to draw the following
conclusions:

1. Macroscopic and microscopic spatiotemporal effects of
the entire complexity of traffic congestion observed up to now
in real measured traffic data can be explained by simulations
of traffic flow consisting of identical drivers and vehicles, if a
microscopic model used in these simulations incorporates the
fundamental hypothesis of three-phase theory. This is due to
the statement of the fundamental hypothesis about a driver’s
arbitrary choice of a space gap (time headway) within the 2D
region of synchronized flow.

2. When drivers make over time another choice of space
gaps (time headways) within the 2D region of synchronized
flow, then at given flow rates and given other road and traffic
parameters extremely complex pattern transformations can
occur, like a pattern type changes qualitatively to another one or
qualitative spatiotemporal characteristics of traffic congestion
within a complex congested pattern change randomly.

3. The driver’s choice of space gaps within the 2D
region of synchronized flow associated with the fundamental
hypothesis of three-phase theory can qualitatively change
types of congested patterns that can emerge at a highway
bottleneck as well as a diagram of congested patterns at the
bottleneck. Independent of the pattern type at the bottleneck
traffic congestion emerges spontaneously in an initial free flow
at the bottleneck due to a first-order F → S transition.

4. We have found that if drivers choose long enough space
gaps within the 2D region of synchronized flow associated
with the fundamental hypothesis, then GPs do not emerge at
the bottleneck independent of the flow rates and bottleneck

characteristics. In this case we have derived the following
particular results:

In the diagram of congested patterns at the bottleneck, a
usually existing region of GPs can disappear fully; i.e., only
SPs exist at the bottleneck at any flow rates.

At any flow rates at a heavy bottleneck, which leads to a
very low speed within congested patterns at the bottleneck,
only SPs occur in which no wide moving jams emerge
spontaneously.

5. These results of the article emphasize the effect of the
fundamental hypothesis on spatiotemporal traffic phenomena
disclosing the physics of the hypothesis.

Naturally, simulations of a driver’s arbitrary choice of a
space gap with the use of stochastic driver’s speed adaptation
(model parameters p1 and p2 discussed in Appendix B) is a
model simplification. However, this simple solution for the
driver’s gap choice made in the article has allowed us to
disclose the physics behind the fundamental hypothesis of
three-phase theory [53].

In reality, we can expect that sometimes a driver can choose
the space gap within the 2D region of synchronized flow states
in accordance with a particular driving situation as well as due
to some collective effects, for example, while observing space
gaps chosen by neighborhood drivers in synchronized flow.
The development of new three-phase models that incorporate
such individual and collective effects is a challenge for traffic
flow theory.
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APPENDIX A: KERNER-KLENOV THREE-PHASE
TRAFFIC FLOW MODEL AND MODEL PARAMETERS

In this Appendix a discrete version of the Kerner-Klenov
stochastic three-phase traffic flow model [58,59] whose con-
tinuum version has initially been derived in Refs. [7,57]
is presented. In the model a small enough value of the
discretization cell δx is used. Consequently the vehicle speed

TABLE I. Functions model I: Model speed fluctuations.

ξn =
⎧⎨
⎩

ξa if Sn+1 = 1
−ξb if Sn+1 = −1
ξ (0) if Sn+1 = 0,

Sn+1 is the “state of vehicle motion” at time step n + 1:

Sn+1 =
⎧⎨
⎩

−1 if ṽn+1 < vn

1 if ṽn+1 > vn

0 if ṽn+1 = vn,

ξa = a(a)τ�(pa − r), ξb = a(b)τ�(pb − r),

ξ (0) = a(0)τ

⎧⎨
⎩

−1 if r � p(0)

1 if p(0) < r � 2p(0) and vn > 0
0 otherwise,

r = rand(0,1), �(z) = 0 at z < 0 and �(z) = 1 at z � 0;

a(a) = a(a)(vn), a(b) = a(b)(vn);

pa, pb, p(0), a(0) are constants.
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TABLE II. Functions in model II: Stochastic time delay of
acceleration and deceleration.

an = a�(P0 − r1), bn = a�(P1 − r1),

P0 =
{

p0 if Sn �= 1
1 if Sn = 1,

P1 =
{

p1 if Sn �= −1
p2 if Sn = −1,

r1 = rand(0,1), �(z) = 0 at z < 0 and �(z) = 1 at z � 0,
p0 = p0(vn),

p2 = p2(vn), p1 is constant.

and acceleration (deceleration) discretization intervals are
δv = δx/τ and δa = δv/τ , respectively, where time step τ =
1 s. Because in the discrete model version discretized (and
dimensionless) speed and acceleration are used, which are
measured respectively in the discretization values δv and
δa, time step τ in all formulas below is assumed to be the
dimensionless value τ = 1. Explanations of the physics of
vehicle motion rules in this model can be found in Sec. 16.3
of Ref. [5]. The model for a two-lane road reads as follows
[58,59]:

vn+1 = max (0, min(vfree, ṽn+1 + ξn,vn + aτ,vs,n)), (A1)

xn+1 = xn + vn+1τ, (A2)

ṽn+1 = max (0, min(vfree,vs,n,vc,n)), (A3)

vc,n =
{

vn + �n at gn � Gn

vn + anτ at gn > Gn,
(A4)

�n = max ( − bnτ, min(anτ, v�,n − vn)), (A5)

where n = 0,1,2, . . . is number of time steps, xn is the vehicle
coordinate at time step n, vn is the vehicle speed at time
step n, a is the maximum acceleration, vfree is a maximum
speed in free flow, ṽn is the vehicle speed without speed
fluctuations ξn, vs,n is a safe speed at time step n, and vfree, a,
and d are constants; � marks the preceding vehicle, Gn is a
synchronization gap, and a space gap gn is equal to

gn = x�,n − xn − d. (A6)

Functions incorporated in the model can be found in Tables I–
VI. Model parameters [58,59] that include “usual” speed
adaptation parameters are given in Table VII.

APPENDIX B: PHYSICS OF STOCHASTIC DESCRIPTION
OF DIRVER’S SPEED ADAPTATION

To simulate the driver’s choice of a space gap within the 2D
region of synchronized flow [Fig. 1(a)], we use a stochastic

TABLE III. Functions in model III: Synchronization gap Gn.

Gn = G(vn,v�,n),

G(u,w) = max(0, �kτu + a−1φ0u(u − w)�),

k (k > 1) and φ0 are constants,

�z� denotes the integer part of a real number z.

TABLE IV. Functions in model IV: Safe speed vs,n.

vs,n = min
(
v(safe)

n ,gn/τ + v
(a)
�

)
,

v
(a)
� = max

(
0, min

(
v

(safe)
�,n ,v�,n,g�,n/τ

)
− aτ

)
,

v(safe)
n = �v(safe)(gn, v�,n)�

is taken as that in Ref. [72], v(safe) is a solution of

the Gipps’s equation [73]

v(safe)τsafe + Xd(v(safe)) = gn + Xd(v�,n),

where τsafe is a safe time gap,

Xd(u) = bτ 2
(
αβ + α(α−1)

2

)
,

α = �u/bτ� and β = u/bτ − α

are the integer and fractional parts of u/bτ ,

respectively; b is constant.

description of driver’s speed adaptation within this 2D region
made in the model (A1)–(A5) [7,57–59]. For a qualitative
explanation of this stochastic description, we do not take into
account random fluctuations ξn and assume that the space

TABLE V. Lane changing occurring with probability pc from
the right lane to the left lane (R → L) and from the left lane to the
right lane (L → R) and safety conditions for lane changing [57].

Incentive conditions for lane changing:
R → L: v+

n � v�,n + δ1 and vn � v�,n,
L → R: v+

n > v�,n + δ1 or v+
n > vn + δ1.

In conditions R → L and L → R, the value v+
n at g+

n > La

and the value v�,n at gn > La are replaced by ∞, where La is
constant.

Safety conditions for lane changing:

rules (∗): g+
n > min(vnτ, G

+
n ), g−

n > min(v−
n τ, G−

n ), where
G+

n = G(vn,v
+
n ), G−

n = G(v−
n ,vn),

or
rule (∗∗): x+

n − x−
n − d > g

(min)
target with g

(min)
target = �λv+

n + d�,
the vehicle should pass the midpoint point

x(m)
n = �(x+

n + x−
n )/2�

between two neighboring vehicles in the target lane, i.e.,
xn−1 < x

(m)
n−1 and xn � x(m)

n

or
xn−1 � x

(m)
n−1 and xn < x(m)

n .

Speed after lane changing:
vn = v̂n, v̂n = min(v+

n , vn + �v(1)),
in v̂n the speed vn is related to the initial lane before lane changing.

Vehicle coordinate after lane changing:
Vehicle coordinate does not changes under the rules (∗),
and it changes to xn = x(m)

n under the rule (∗∗).
λ, δ1, �v(1) are constants; superscripts + and − in variables,
parameters,
and functions denote the preceding vehicle and the trailing vehicle
in the “target” (neighbouring) lane, respectively;
the target lane is the lane into which the vehicle wants to change.
G(u,w) is given in Table III.
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TABLE VI. Models of vehicle merging at on-ramp bottlenecks
that occurs when a safety rule (∗) or a safety rule (∗∗) is satisfied [57].

Safety rule (∗):
g+

n > min (v̂nτ, G(v̂n,v
+
n )),g−

n > min (v−
n τ, G(v−

n ,v̂n)),
v̂n = min

(
v+

n , vn + �v(1)
r

)
,

in v̂n the speed vn is related to the initial lane before lane changing,
�v(1)

r > 0 is constant.

Safety rule (∗∗):
x+

n − x−
n − d > �λbv

+
n + d�,

xn−1 < x
(m)
n−1 and xn � x(m)

n , or
xn−1 � x

(m)
n−1 and xn < x(m)

n ,

λb is constant.
Parameters after vehicle merging:

vn = v̂n.

Under the rule (∗): xn maintains the same,
under the rule (∗∗): xn = x(m)

n .

Speed adaptation before vehicle merging:

vc,n =
{

vn + �+
n at g+

n � G(vn, v̂
+
n ),

vn + anτ at g+
n > G(vn, v̂

+
n ),

�+
n = max(−bnτ, min (anτ, v̂

+
n − vn)),

v̂+
n = max

(
0, min

(
vfree, v

+
n + �v(2)

r

))
,

�v(2)
r is constant.

gap to the preceding vehicle gn is within this 2D region of
synchronized flow states (Fig. 1) [74]:

gsafe,n < gn < Gn, (B1)

where the safe space gap gsafe,n is found from equation vn =
vs,n; that is, under condition (B1) the speed is lower than
the safe speed: vn < vs,n. The driver’s speed adaptation effect
occurs when a driver moves initially with a higher speed than
the speed of the preceding vehicle:

vn > v�,n > 0, (B2)

and the driver cannot overtake the preceding vehicle. In this
case the driver should decelerate. This vehicle deceleration
adapting the vehicle speed to the speed of the preceding vehicle
is described through the use of stochastic deceleration bn in
Eq. (A5). This stochastic deceleration depends on whether the
vehicle decelerates at time step n or not (see formula defining
bn in Table II of Appendix A).

If the vehicle does not decelerate at time step n, then the
stochastic deceleration bn in Eq. (A5) is equal to

bn = a�(p1 − r1), (B3)

TABLE VII. Model parameters [58,59].

Vehicle motion in road lane:
τsafe = τ = 1, d = 7.5 m/δx, δx = 0.01 m,
vfree = 30 ms−1/δv, b = 1 ms−2/δa, δv = 0.01 ms−1,
δa = 0.01 ms−2, k = 3, p1 = 0.3, φ0 = 1, pb = 0.1,
pa = 0, p(0) = 0.005, p0(vn) = 0.575 + 0.125 min (1,vn/v01),
a(b)(vn) = 0.2a

+0.8a max(0, min(1,(v22 − vn)/�v22),
a(0) = 0.2a, κ = 1.8, a(a) = 0,
v22 = 12.5 ms−1/δv, �v22 = 2.778 ms−1/δv,
v01 = 10 ms−1/δv, v21 = 15 ms−1/δv, a = 0.5 ms−2/δa.
“Usual” (weak) speed adaptation parameters are
p2(vn) = 0.48 + 0.32�(vn − v21), p1 = 0.3.

Lane changing:
δ1 = 1 ms−1/δv, La = 150 m/δx,

pc = 0.2, λ = 0.75, �v(1) = 2 ms−1/δv.
Bottleneck models:

λb = 0.75 for all the bottlenecks,
Lc = 1.0 km/δx for off-ramp bottleneck,
vfree on = 22.2 ms−1/δv, vfree off = 25 ms−1/δv,
�v(2)

r = 5 and −2.5 ms−1/δv

for on- and off-ramp bottlenecks, respectively,
Lr = 1 km/δx, �v(1)

r = 10 ms−1/δv,
Lm = 0.3 and 0.5 km/δx

for on- and off-ramp bottlenecks, respectively.

where r1 = rand(), �(z) = 0 at z < 0, and �(z) = 1 at z � 0.
In this case, with probability p1, the vehicle, which did not
decelerate at time step n, begins to decelerate at time step
n + 1 trying to approach the speed of the preceding vehicle.
However, from (B3) we also see that with probability 1 − p1

the deceleration bn = 0, that is, the vehicle does not begin to
decelerate at time step n + 1 although in accordance with (B2)
the vehicle speed is higher than the speed of the preceding
vehicle.

If the vehicle decelerates at time step n, then bn instead
of (B3) in Eq. (A5):

bn = a�(p2 − r1). (B4)

Thus with probability p2 the vehicle continues its deceleration
at time step n + 1 trying to approach the speed of the preceding
vehicle; however, with probability 1 − p2 the vehicle decel-
eration bn = 0, that is, the vehicle interrupts its deceleration,
although in accordance with (B2) the vehicle speed is higher
than the speed of the preceding vehicle.
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,

where �N is a number of vehicles that have passed a chosen
road location during a time interval �T , the conclusion about
the existence of the infinite number of capacities of free flow at
the bottleneck within the flow rate range (5) might cause some
confusion. To explain this, note that although �N is an integer
value, �T should not necessarily be an integer value, that is,
�T can be a fractional value. Therefore, the flow rate q can
also be a fractional value; this explains why within the flow rate
range (5) there are an infinite number of the flow rates, all of
which are capacities of free flow at the bottleneck. Indeed, a time
interval �T in the above-mentioned formula for the flow rate q

is determined through formula

�T =
�N∑
i=1

τ
(gross)
i ,

where

τ
(gross)
i = ti,b − ti−1,b

is the gross time headway between two vehicles i − 1 and i

following one after another measured at the road location, ti,b is
a time instant at which the beginning of vehicle i (that is, the
vehicle’s bumper) reaches this road location. Therefore, the flow
rate q can be written as

q = �N

�T
=

(
1

�N

�N∑
i=1

τ
(gross)
i

)−1

= 1

τ (gross) ,
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where τ (gross) is the average gross time headway between
vehicles that have passed the road location during the time
interval �T ; obviously, τ (gross) can be an arbitrary value that is
larger than zero: τ (gross) > 0. Instead of formula q = 1/τ (gross), in
traffic engineering an approximation is often used, in which �T

is considered an integer value (a minute, an hour, a day, a month,
or else a year). If one forgets the exact formula q = 1/τ (gross),
an incorrect conclusion might be made that the flow rate should
always be an integer value. To illustrate this, let us assume
that in the time unit of “minutes” the flow rate measured in
accordance with q = 1/τ (gross) is equal to 32.1 vehicles/min.
For a person who assumes incorrectly that the flow rate cannot
be a fractional value, this result is invalid. However, the same
flow rate in the time unit of “hours” is equal to the integer value
1926 vehicles/h; that is, the same flow rate should be considered
by the same person as being valid.
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(see Chap. 23 in Ref. [5] and Chap. 9 in Ref. [6]). In particular, the
increase in space gaps between vehicles can be achieved through
the use of vehicle-to-vehicle and/or vehicle-to-infrastructure
communication (called V2X communication), which can en-
hance traffic efficiently and safety as shown in numerical
simulations of V2X communnication control integrated into
the Kerner-Klenov model [27,28,35] [see, e.g., Figs. 6(c)–6(e)
in Ref. [27] as well as Figs. 9.15 and 9.16 in Ref. [6]]. The
simulation results of Refs. [27,28,35] have been confirmed
in simulations of other microscopic models of synchronized
flow [38,47].

[71] To find the probability of S → J transitions, 40 different simu-
lation realizations (runs) during a time interval for observing
synchronized flow Tob,SJ = 60 min has been performed. All
different realizations (runs) are made at the same flow rates,
however, at different initial conditions for model fluctuations
in the model [different initial values for functions rand() in
Appendix A].
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[74] Recall [5] that the synchronization gap G and safe gap gsafe

in Eq. (1) are related to a given vehicle speed under the
condition that the speed difference between the preceding
vehicle and vehicle �vn = v�,n − vn = 0. In contrast, the
synchronization gap Gn and safe gap gsafe,n in Eq. (B1) are
dynamic variables. For example, when �vn > 0, then at a
given speed vn the value Gn decreases; when �vn < 0, then
at a given speed vn the value gsafe,n increases. In each of
these cases, the dynamic 2D region of synchronized flow
states changes over time. Because Gn and gsafe,n are associated
with some driver’s action points at which driver’s behavior
changes qualitatively [see associated formulas (A1)–(A5) and
formulas in Table IV], the dynamic decrease in Gn and/or
increase in gsafe,n can lead to a “dynamic jump” from vehicle
dynamics associated with dynamic speed adaptation within
the dynamic 2D region of synchronized flow to a qualitative
another dynamic vehicle behavior. This example may explain
a very complex dynamic behavior of vehicles that the model
exhibits [57–59].
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