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We introduce a generalized rumor spreading model and analytically investigate the spreading of rumors on
scale-free (SF) networks. In the standard rumor spreading model, each node has an infectivity equal to its degree,
and connectivity is uniform across all links. To generalize this model, we introduce an infectivity function that
determines the number of simultaneous contacts that a given node (individual) may establish with its connected
neighbors and a connectivity strength function (CSF) for the direct link between two connected nodes. These
lead to a degree-biased propagation of rumors. For nonlinear functions, this generalization is reflected in the
infectivity’s exponent α and the CSF’s exponent β. We show that, by adjusting exponents α and β, the epidemic
threshold can be controlled. This feature is absent in the standard rumor spreading model. In addition, we obtain a
critical threshold. We show that the critical threshold for our generalized model is greater than that of the standard
model on a finite SF network. Theoretically, we show that β = −1 leads to a maximum spreading of rumors, and
computation results on different networks verify our theoretical prediction. Also, we show that a smaller α leads
to a larger spreading of rumors. Our results are interesting since we obtain these results regardless of the network
topology and configuration.
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I. INTRODUCTION

During recent years, network modeling was the favorite
tool used by researchers for representing many social, biolog-
ical, and physical systems [1,2]. In general terms, complex
networks are connected graphs with, at most, a single edge
between nodes where nodes stand for individuals and an
edge denotes the interaction between individuals [3,4]. The
connectivity pattern in these networks encodes information
about the structure of the system [5]. An important and
much studied characteristic of these networks is their degree
distribution p(k), defined as the probability that a randomly
selected node is connected to k other nodes. It was found that
many networks of interest in various disciplines, such as the
Internet [6] and the World Wide Web [7] (in communication
technology), sexual contact networks [8], friendship networks
[9], scientific collaboration networks [10] (social sciences),
metabolic networks [11], and food webs [12] (biological
systems) are very heterogeneous with scale-free (SF) degree
distribution p(k) ∼ k−2−γ (power-law distribution) where γ is
a characteristic degree exponent, usually in the range of 0 <

γ � 1. The study of epidemics in heterogeneous networks,
therefore, is of practical importance for the control of the
spread of viruses, diseases, and biological epidemics.

The modeling of infectious diseases has been used to
study the mechanisms by which diseases spread, to predict
the future course of an outbreak, and to evaluate strategies
to control an epidemic [13]. Among the numerous possi-
ble models, the most investigated classical models are the
susceptible-infected-susceptible (SIS) model [14–17] and the
susceptible-infected-removed (SIR) model [18–20], which can
describe the spreading of diseases in social networks or that of
computer viruses and trash mail in communication networks.
One of the remarkable results for SIS and SIR models in

an infinite-size SF network is that the infection becomes an
epidemic regardless of its spreading rate (i.e., the critical
threshold of transmission rate is zero).

Rumors, as old basic elements of human interaction [21],
spreading rapidly, are difficult to control, are invisible, yet
nearly are impossible to ignore, and can have damaging and
perhaps even deadly consequences.

Despite its obvious negative connotations, a rumor has the
capacity to satisfy certain fundamental personal and social
needs and, in this sense, can be beneficial to those who
participate in its transmission [22–24]. Rumors help people
make sense of what is going on around them. Also, rumor
mongering is a way of trying to explain what is happening and
why—be it a crime in the neighborhood, a political crisis, or a
change in a company’s management.

A rumor can be interpreted as an infection of the mind.
The original model of rumor spreading was introduced by
Daley and Kendall (DK) [25] and Daley and Gani [26]. An
important variant model of DK is the Maki-Thompson (MK)
model [27]. In the past, these models were used extensively
to study rumor spreading [28–30]. In the DK model, a closed
and homogeneously mixed population is subdivided into three
groups: the ignorant, those who have not heard the rumor
yet; the spreader, those who have heard the rumor and are
willing to transmit it; the stifler, those who have heard the
rumor but have lost interest in the rumor and do not transmit it.
The rumor is propagated through the population by pairwise
contacts between spreaders and others in the society. Any
spreader involved in a pairwise meeting attempts to infect the
other individual with the rumor. If this other individual is an
ignorant, it becomes a spreader; otherwise, the spreader meets
another spreader or stifler, so they understand that the rumor
is known and do not propagate the rumor anymore, therefore,
turning into stiflers. In the MK model, the rumor is spread by
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directed contacts of the spreaders with others. Furthermore,
when a spreader contacts another spreader, only the initiating
spreader becomes a stifler.

In the above-mentioned models of rumor spreading, the
authors have assumed that the rumors spread across homo-
geneous networks (with degree distribution peaked around
the average value), on the other hand, these calculations
were made in the limit of highly simplified models of the
topology [28,29]. While in the real world, the topology of
such large social networks shows highly complex connectivity
patterns in which the degree distribution is skewed and may
present heavy tails or, more generally, large fluctuations around
the average value [30–32]. Recently, in Ref. [33], the authors
introduced a model of rumor spreading on complex networks,
which, in comparison with previous models, provides a more
realistic description of this process. Their model unifies the
MK model of rumor spreading with SIR models of epidemics
and has both of these models as limiting cases. They have
used approximate analytical and exact numerical solutions of
a mean-field equation to examine both the steady-state and
the time-dependent behaviors of the model on several models
of social networks (homogeneous networks, Erdős-Rény (ER)
random graphs and uncorrelated SF networks). They found
that their model shows a different critical behavior on networks
with bounded degree fluctuations, such as random graphs and
that this behavior is absent in SF networks with unbounded
fluctuations in node degree distribution.

We know that, in the rumor spreading models studied so
far, the transmission rate of a rumor is a constant, but in the
real world, it should be different among individuals depending
on their intimacy. Thus, in order to make the transmission rate
more realistic, we introduce a connectivity strength function
(CSF) between connected nodes. For epidemic spreading,
for two connected nodes, a larger CSF represents a higher
probability of communication between the two nodes.

Also, in the classical epidemic models, each spreader can
establish contacts with all his (her) neighbors within one
time step, that is to say, each node’s infectivity (a rumor as
an infection of the mind) equals its degree. But in the real
case, an individual cannot make contact with all acquaintances
(connected neighbors) simultaneously. In the case of SIS and
SIR models, recently in Ref. [34], the authors have dropped this
assumption and have assumed that the infectivity is identical (a
constant A) for all nodes regardless of their different degrees.
Also, in Ref. [35], the authors have proposed a piecewise linear
infectivity, which means: If the degree k of a node is relatively
small, its infectivity is αk; if k is large, i.e., surpasses a constant
A/α, then its infectivity is A. In terms of these assumptions,
the heterogeneous infectivity of nodes with different degrees
cannot be considered as adequately as possible in SF networks
because it means that there may be some nodes with different
degrees but with the same infectivity and there is a large
number of such nodes independent from the selected constant
A or from the fact that the size of the underlying networks is
infinite. In order to tackle this problem, in Ref. [36], the authors
introduced the nonlinear infectivity function that controls the
number of contacts that a node generates within one time
step. We follow this approach and use the nonlinear function
for the infectivity of nodes that spread the rumor to their
neighbors.

The rest of this paper is organized as follows: In Sec. II,
we introduce the standard model of rumor spreading and
shortly review epidemic dynamics of this model. In Sec. III,
we introduce the generalized rumor spreading model and
analytically study the dynamics of this model on infinite SF
networks in detail. In Sec. IV, we compare the epidemic
behavior of the standard and generalized models on finite SF
networks. Finally, our conclusions are presented in the last
section.

II. STANDARD RUMOR SPREADING MODEL

The rumor model is defined as follows. Each of the
individuals (the nodes in the network) can be in three different
categories with respect to the rumor. In this way, individuals
are classified as I , the ignorant (those who are ignorant of
the rumor), S, the spreader (those who have heard the rumor
and actively spread it), and R, the stifler (those who know the
rumor but have ceased to spread it). According to Maki and
Thompson [27], the spreading process evolves by directed
contact of the spreaders with the rest of the population.
However, these contacts only can occur along the links of
an undirected social interaction network G = (V,E), where
V and E denote the nodes and the edges of the network,
respectively. The model that we call the standard model has
been studied in Ref. [33]. By following Ref. [33], the possible
events that can occur between the spreaders and the rest of the
population are

(1) SI −→ SS whenever a spreader meets an ignorant, the
ignorant becomes a spreader at a rate λ.

(2) SS −→ RS when a spreader contacts another spreader,
the initiating spreader becomes a stifler at a rate σ .

(3) S −→ R there also is a rate δ for a spreader to cease
spreading a rumor spontaneously (i.e., without any contact).

A. Dynamics of the standard model

Let Ik(t), Sk(t), and Rk(t) denote the densities of the igno-
rant, spreader, and stifler nodes (individuals) with connectivity
(degree) k at time t , respectively. These quantities satisfy the
normalization condition Ik(t) + Sk(t) + Rk(t) = 1 for all k

classes. We shortly review some classical results from Ref. [33]
where Nekovee et al. described a formulation of this model
on networks in terms of interacting Markov chains and used
this framework to derive, from first principles, mean-field
equations for the dynamics of rumor spreading on complex
networks with arbitrary degree correlations as follows:

dIk(t)

dt
= −kλIk(t)

∑
l

Sl(t)P (l|k), (1)

dSk(t)

dt
= kλIk(t)

∑
l

Sl(t)P (l|k) − kσSk(t)

×
∑

l

[Sl(t) + Rl(t)]P (l|k) − δSk(t), (2)

dRk(t)

dt
= kσSk(t)

∑
l

[Sl(t) + Rl(t)]P (l|k) + δSk(t), (3)

where the conditional probability P (l|k) means that a ran-
domly chosen link emanating from a node of degree k is
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connected to a node of degree l. Moreover, we suppose that the
degrees of nodes in the whole network are uncorrelated, i.e.,
P (l|k) = lp(l)/〈k〉 where p(k) is the degree distribution and
〈k〉 is the average degree. In this case, Nekovee et al. showed
that, for leading order in σ , the critical threshold is independent
of the stifling mechanism, i.e., λ

δ
� 〈k〉

〈k2〉 , so in particular, for

δ = 1, the critical threshold is given by λc = 〈k〉/〈k2〉, and it
is the same as for the SIR model [18,20]. This result implies
the absence of the epidemic threshold in a wide range of
SF networks (〈k2〉 → ∞, λc → 0). This is a bad message
for epidemic control since an epidemic occurs in many real
networks with any nonzero value of transmission rate λ.

III. GENERALIZED RUMOR SPREADING MODEL

In order to make transmission rates fit realistic cases more
closely, we take the effect of connectivity strength between
individuals into account. For example, in social networks,
it can re-represent the intimacy, confidence, kinship, etc.,
between individuals. So, unlike previous studies (in which each
individual can spread the rumor with a constant transmission
rate λ), in this paper, we mainly focus on the rumor spreading
model in which the transmission rate between two connected
nodes is a function of their degrees. Based on this assumption,
we define g(k,l) as a CSF for link (k,l). Let Gk denote the
total strength of connectivity for a node with degree k, which
can be obtained by summing the CSFs of the links that are
connected to it, i.e., Gk = k

∑
l P (l|k)g(k,l).

Here, for each node with degree k, we keep the total
rumor transmission rate and the total stifling process rate
constant, which are given by λk and σk, respectively. The
rumor transmission rate from the k-degree node to the l-degree
node, are determined by the ratio of g(k,l) to Gk , therefore,
λkl can be written as follows:

λkl = λk
g(k,l)

Gk

, (4)

from which it is clear that a higher g(k,l)/Gk leads to a
greater probability of the transmission of the rumor through
the edge. Similarly, the stifling process rate is σkl = σk

g(k,l)
Gk

. In
this paper, for simplicity, we focus on uncorrelated networks
where the conditional probability satisfies P (l|k) = lp(l)/〈k〉,
and we assume g(k,l) is a symmetric multiplicative function of
the degrees at the edge’s end points, namely, g(k,l) = η(k)η(l).
Later, we show that this assumption leads to introducing the
biased spreading of the rumors. So, one can obtain Gk =
kη(k)〈kη(k)〉

〈k〉 , and λkl and σkl are reduced to

λkl = λ
〈k〉η(l)

〈kη(k)〉 , σkl = σ
〈k〉η(l)

〈kη(k)〉 . (5)

Another inappropriate assumption in the details of the standard
rumor spreading model is that each spreader can establish
contacts with all his (or her) neighbors within one time step,
that is to say, each node’s infectivity equals its degree. But in
the real case, an individual cannot contact all his (or her)
friends simultaneously. So, we drop this assumption, and
we introduce the infectivity function ϕ(k) to take control of the
number of contacts that a spreading node generates within one
time step. To rewrite Eqs. (1)–(3) for the generalized model, we

should replace the λ, σ , and P (l|k) by λkl, σkl , and ϕ(l)P (l|k)
l

,
respectively. So, we have

dIk(t)

dt
= − λkη(k)

〈kη(k)〉Ik(t)
∑

l

Sl(t)p(l)ϕ(l), (6)

dSk(t)

dt
= λkη(k)

〈kη(k)〉Ik(t)
∑

l

Sl(t)p(l)ϕ(l) − σkη(k)

〈kη(k)〉Sk(t)

×
∑

l

[Sl(t) + Rl(t)]p(l)ϕ(l) − δSk(t), (7)

dRk(t)

dt
= σkη(k)

〈kη(k)〉Sk(t)
∑

l

[Sl(t) + Rl(t)]p(l)ϕ(l) + δSk(t).

(8)

Equation (6) can be integrated exactly to yield

Ik(t) = Ik(0) exp

[
− λkη(k)

〈kη(k)〉φ(t)

]
, (9)

where Ik(0) is the initial density of ignorant nodes with
connectivity k and we have used the auxiliary function,

φ(t) =
∑

k

p(k)ϕ(k)
∫ t

0
Sk(t ′)dt ′ ≡

∫ t

0
〈ϕ(k)Sk(t ′)〉dt ′. (10)

In order to get a closed relation for the final size of rumor R, it
is more useful to focus on the time evolution of φ(t). Assuming
a homogeneous initial distribution of ignorant nodes, i.e.,
Ik(0) = I0 (without loss of generality, we can set I0 ≈ 1), we
can obtain a differential expression for φ(t) by multiplying
Eq. (7) with p(k)ϕ(k) and summing over all k’s. After some
elementary manipulations, one finds

dφ

dt
= 〈ϕ(k)〉 −

〈
ϕ(k) exp

[
− λkη(k)

〈kη(k)〉φ(t)

]〉
− δφ − σ

〈kη(k)〉
×

∫ t

0

{
〈ϕ(k)〉 −

〈
ϕ(k) exp

[
− λkη(k)

〈kη(k)〉φ(t ′)
]〉}

×〈kη(k)ϕ(k)Sk(t ′)〉dt ′, (11)

On infinite time scales, i.e., at the end of the epidemic, we
have Sk(∞) = 0 and, consequently, limt→∞ dφ(t)/dt = 0, so
Eq. (11) becomes

0 = 〈ϕ(k)〉 −
〈
ϕ(k) exp

[
− λkη(k)

〈kη(k)〉φ∞

]〉
− δφ∞

− σ

〈kη(k)〉
∫ ∞

0

{
〈ϕ(k)〉 −

〈
ϕ(k) exp

[
− λkη(k)

〈kη(k)〉φ(t ′)
]〉}

×〈kη(k)ϕ(k)Sk(t ′)〉dt ′, (12)

For σ = 0, one can solve Eq. (12) explicitly to find a closed
relation for φ∞. For σ 
= 0, we solve Eq. (12) for leading
order in σ . For this purpose, it is sufficient to obtain Sk(t)
for zeroth order in σ . Sk(t) of Eq. (7), for zeroth order in σ ,
is a first order linear differential equation that has the form
dy

dt
+ p(t)y = q(t), and it can easily be solved to obtain

Sk(t) = 1 − exp

[
− λkη(k)

〈kη(k)〉φ(t)

]
− δ

∫ ∞

0
eδ(t−t ′)

×
{

1 − exp

[
− λkη(k)

〈kη(k)〉φ(t ′)
]}

dt ′ + O(σ ). (13)
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Close to the critical threshold, both φ(t) and φ∞ are small by
writing φ(t) = φ∞f (t) where f (t) is a finite function. Thus,
if we only keep the leading order of φ∞, we obtain

Sk(t) � −δ
λkη(k)

〈kη(k〉)φ∞I + O
(
φ2

∞
) + O(σ ), (14)

where I is a finite and positive integral that has the form
I = ∫ t

0 eδ(t−t ′)f (t ′)dt ′. Setting this in Eq. (12) and expanding
the exponential to the relevant order in φ∞, we obtain

0 =
[
λ

〈kη(k)ϕ(k)〉
〈kη(k)〉 − δ

]
φ∞ − λ2〈k2η2(k)ϕ(k)〉

〈kη(k)〉2

×
[

1

2
+ σδ

〈kη(k)ϕ(k)〉
〈kη(k)〉

]
φ2

∞ + O(σ 2) + O
(
φ3

∞
)
. (15)

The nonzero solution of the equation above is given by

φ∞ =
λ

〈kη(k)ϕ(k)〉
〈kη(k)〉 − δ

λ2 〈k2η2(k)ϕ(k)〉
〈kη(k)〉2

(
1/2 + σδ

〈kη(k)ϕ(k)〉
〈kη(k)〉 I

) . (16)

In order to have a positive value for φ∞, the condition

λ

δ
� 〈kη(k)〉

〈kη(k)ϕ(k)〉 (17)

must be fulfilled. Thus, for leading order in σ , the critical
threshold is independent of the stifling mechanism, and for
δ = 1, the critical threshold is given by

λc = 〈kη(k)〉
〈kη(k)ϕ(k)〉 . (18)

If λ is below λc, the rumor dies out, whereas, if λ is above
λc, the rumor spreads on the network. For different rumor
spreading models in the real world, different ϕ(k) and η(k)
should be adopted. But in this paper, we only take the nonlinear
(power-law) function form into account in the next section.

Finally, R is given by

R =
∑

k

p(k)

{
1 − exp

[
− λkη(k)

〈kη(k)〉φ∞

]}
. (19)

The solution to the above equation depends on the form
of p(k).

A. The epidemic threshold for the generalized model of a rumor
with nonlinear infectivity and nonlinear CSF on SF networks

In this model, we assume that ϕ(k) = kα where 0 < α � 1;
it means that each spreader can establish contacts with kα

neighbors within one time step. The exponent α will control
the infectivity among nodes with different degrees. Since 0 <

α � 1, it can be balanced to make the contacts fall into a more
realistic range. Also, the node infectivity will grow nonlinearly
by increasing degree k.

Furthermore, we suppose that η(k) = akβ , where a is a
positive quantity and β is a real exponent. So, according to
Eq. (5), the spreading rate is λkl = λ

〈k〉lβ
〈k1+β 〉 . The exponent β

allows the tuning of the dependence of the transmission process
on the node’s degree. When β 
= 0, in the random transmission
of the rumor, we introduce a bias toward high-degree (β > 0)
or low-degree (when β < 0) neighbors. Also, when β = 0, the
standard (unbiased) spreading process is recovered. By setting

the above-mentioned ϕ(k) and η(k) in Eq. (18), we get λc,
the epidemic threshold, of degree-biased transmission of the
rumor on the network,

λc = 〈kβ+1〉
〈kα+β+1〉 . (20)

Now, we consider the epidemic threshold in the case
of general SF networks in which the degree distribution
is p(k) = ck−2−γ , 0 < γ � 1, where c is the normalization
constant. For this purpose, we obtain 〈kβ+1〉 = c(kβ−γ

c −
mβ−γ )/(β − γ ) and 〈kα+β+1〉 = c(kα+β−γ

c − mα+β−γ )/(α +
β − γ ), where kc(m) denotes the largest (smallest) degree in
the underlying network. By substituting these into Eq. (20),
one can rewrite the epidemic threshold as follows:

λc = α + β − γ

β − γ

k
β−γ
c − mβ−γ

k
α+β−γ
c − mα+β−γ

. (21)

From Eq. (21), one can see that, if the largest degree present
in the network tends to infinity (kc → ∞, or equally, N → ∞
since kc ∝ N1/(γ+1) [37]), the epidemic threshold λc tends
toward zero if γ < α + β; on the other hand, if γ > α + β,
the epidemic threshold λc takes a finite value, given by

λc = m(−α) α + β − γ

β − γ
. (22)

Thus, the critical border is γ = α + β. One can adjust the
infectivity’s exponent α and the CSF’s exponent β to obtain a
nonzero threshold for a given network (i.e., a fixed value of γ ).

Let us concentrate on the quantity β. For β > 0, if one
chooses exponents α and β such that 0 < α � 1, β > 0, and
γ > α + β, one obtains the model of rumor spreading in which
λc is a finite value above which a rumor spreads. As mentioned
before, when β > 0, we have the model that exhibits the biased
spreading of the rumor from low-degree nodes to high-degree
nodes. We call this model a down-up epidemic model. On
the other hand, for β < 0 together with an allowable α that
satisfies the constraint γ > α + β (for β � −α the constraint
γ > α + β always is satisfied since 0 < γ � 1), the model has
a finite critical threshold for the spreading rate above which a
rumor can propagate in the system. In this case, we have the
model in which a rumor is biased to spread from high-degree
nodes toward low-degree nodes. We call this model an up-
down epidemic model. We believe that these models are more
remarkable than the models studied previously [29,30,33].

IV. THE EPIDEMIC THRESHOLD FOR THE
GENERALIZED RUMOR SPREADING MODEL

ON FINITE SF NETWORKS

In the real world, an epidemic always occurs on a finite
network, although the size of the network may be very large.
In Ref. [38], the authors studied the epidemic threshold λc(kc)
for the SIS model on bounded SF networks with the soft and
hard cutoff kc when ϕ(k) = k and η(k) = 1. The term hard
cutoff denotes a network that does not possess any nodes with
connectivity k larger than kc, and the maximum connectivity kc

of any node is related to network age, measured as the number
of nodes N ,

kc = mN1/(1+γ ), (23)
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where m is the minimum connectivity of the network. In this
case, the normalized connectivity distribution has the form [38]

p(k) = (1 + γ )m1+γ

1 − (kc/m)−1−γ
k−2−γ θ (kc − k), (24)

where θ (x) is the heaviside step function. Now, we ap-
ply the same argument for the epidemic threshold of the
standard and generalized model of rumor spreading on a
finite network. First, the standard model: For this model, we
have ϕ(k) = k (α = 1) and η(k) = 1 (a = 1, β = 0), so the
epidemic threshold λ′

c(kc) is given by

λ′
c(kc) = 〈k〉

〈k2〉 =
∫ kc

m
k−1−γ dk∫ kc

m
k−γ dk

� 1 − γ

γm
(kc/m)(γ−1). (25)

From Eqs. (23) and (25), we obtain

λ′
c(N ) � 1 − γ

γm
(N )(γ−1)/(γ+1). (26)

If γ = 1, we find

λ′
c(N ) � 2[mln(N )]−1. (27)

Equations (26) and (27) show that the effective epidemic
threshold approaches zero as the size of the network increases.

Second, the generalized model: We consider the epidemic
threshold λ∗

c (kc) for ϕ(k) = kα, 0 < α < 1, and η(k) = akβ

where a > 0 and β is a real number. After a similar calculation,
one obtains

λ∗
c (kc) =

∫ kc

m
kβ−1−γ dk∫ kc

m
kα+β−1−γ

= m(−α) α + β − γ

β − γ

[(kc/m)β−γ − 1]

[(kc/m)α+β−γ − 1]
. (28)

Note that, as the size of the network increases, the ratio (kc/m)
becomes sufficiently large [see Eq. (23)] such that, when α +
β < γ , we have (kc/m)β−γ = (kc/m)α+β−γ = 0 and λ∗

c has a
positive value, otherwise, λ∗

c is going to approach zero. Let
us focus on the up-down epidemic model (β < 0). Thus, the
above equality can be rewritten as follows:

λ∗
c (kc) =

⎧⎪⎪⎨
⎪⎪⎩

m(−α) α+β−γ

γ−β
(kc/m)γ−α−β, α + β > γ

m(−α) γ−α−β

γ−β
, α + β < γ.

m(−α) 1
αln(kc/m) , α + β = γ

(29)

Combining Eqs. (23) and (29), we have

λ∗
c (N ) =

⎧⎪⎪⎨
⎪⎪⎩

m(−α) α+β−γ

γ−β
(N )(γ−α−β)/(γ+1), α + β > γ

m(−α) γ−α−β

γ−β
, α + β < γ.

m(−α) γ+1
αln(N) , α + β = γ

(30)

It is obvious, from the equations above, that the positivity of
the critical value λ∗

c (N ) is unrelated to size N of the network
when α + β < γ [second term in Eq. (30)], and it is the same
as the critical threshold λc for the infinite SF network [see
Eq. (22)].

To compare models under condition α + β > γ , we take
the ratio of Eq. (26) and the first term in Eq. (30),

λ′
c(N )

λ∗
c (N )

= (1 − γ )(γ − β)

γm(1−α)(α + β − γ )N (1−α−β)/(γ+1)
. (31)

It is straightforward that λ′
c(N)

λ∗
c (N) < 1 when the size of network

N > N0, where N0 is a positive integer, means that the
epidemic threshold λ∗

c (N ) is greater than λ′
c(N ) on finite

SF networks with the same size N > N0, so an epidemic
rumor has more difficulty in propagation for the case {ϕ(k) =
kα, η(k) = akβ, β < 0, α + β > γ } than for the case {ϕ(k) =
1, η(k) = 1} on finite SF networks with the same size.

Our method to study the generalized model of rumor
spreading can be used for studying the SIR [18,19], SIRS [39],
and similar epidemic processes.

V. MAXIMUM SPREADING

Regardless of the network topology and configuration, for
any form of p(k), Eq. (19) can be simplified by expanding the
exponential for the first order in φ∞, and one obtains

R � λφ∞. (32)

Throughout the rest of the paper, we set λ = 1 without loss
of generality and vary the value of other parameters. Since R

will then be equal to the function φ∞, in the following, we
will concentrate on this function and will present some of its
analytical properties. Later on, we will check our analytical
results by simulating the rumor model on different networks.

One important question is that, under which conditions will
exponents α and β lead to maximum spreading of a rumor?
This maximum simply is given by the final density of stiflers
and is called reliability of the rumor process. For long enough
times, Eq. (32) determines the percent of people that have
heard the rumor. So the value of β that maximizes φ∞ results
in maximum spreading of a rumor. We denote �(k) = kξ (k) =
kβ+1, so Eq. (16) reduces to

φ∞ = 〈�(k)〉2〈�(k)ϕ(k)〉 − δ〈�(k)〉3

〈�2(k)ϕ(k)〉 [
1
2 〈�(k)〉 + σ δI 〈�(k)ϕ(k)〉] . (33)

We need to find the derivative ∂φ∞/∂β for finding the
maximum. By the chain rule, we have

∂φ∞
∂β

= ∂φ∞
∂�

∂�

∂β
. (34)

The function φ∞ can be maximized if ∂φ∞/∂� = 0. It can be
shown that a possible solution is ∂k� = 0 (namely, � should
not depend on variable k). More accurately, when ∂k� = 0,
Eq. (21) reduces to

φ∞ = 〈ϕ(k)〉 − δ

〈ϕ(k)〉 [
1
2 + σ δI 〈ϕ(k)〉] . (35)

It is obvious that the function above does not depend on the
function �, so the functional equation ∂φ∞/∂� = 0 always
is satisfied. For the case where �(k) = kβ+1, the condition
∂k� = 0 leads to β = −1. So, the maximum amount of rumor
spreading occurs when β = −1. This result indicates that
nodes with smaller degrees play a significant role in rumor
spreading. More precisely, it says a spreader node has a number
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FIG. 1. (Color online) Time evolution of the density of spreaders
for different values of σ for both the standard rumor model (solid-blue
curves) and the generalized rumor model with β = −1 (dashed-red
curves). Standard SF network of size N = 2000 with 〈k〉 = 8. The
values of σ from below go from 1.0 to 0.2 at fixed increments of 0.2.
The other parameters are {α = 1, λ = 1, δ = 0.5}.

of connected neighbors with different degrees, and for a given
time step, a neighboring node with the smaller degree will
be chosen with higher probability (λkl = λ

〈k〉lβ
〈k1+β 〉 ), so as to

maximize the final stifler density.
In a similar way, we investigate the variation in φ∞ with

respect to α (0 < α � 1) for a fixed value of β. We take
the functional derivative ∂φ∞/∂ϕ. It can easily be shown
that, in the range of 0 < α � 1, φ∞ has a negative slope,
∂φ∞/∂ϕ(k) < 0, so, in this range, the function φ∞ is a
decreasing function. In other words, by decreasing α, the final
population that has heard the rumor increases.

VI. SIMULATION RESULTS AND DISCUSSION

We consider a standard SF network. The network has
been generated according to p(k) ∼ k−3, the number of nodes
is N = 2000, and the average degree is 〈k〉 = 8. In the
following and throughout the paper, all calculations reported
are performed by starting the rumor from a randomly chosen

0 2 4 6 8
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0.4

0.6

0.8

1

Time

R
(t

)

 

 

FIG. 2. (Color online) Time evolution of the density of stiflers
for different values of σ . The dashed-red (solid-blue) curves are the
stifler density for the generalized model (standard model). At the end
of the epidemic in the generalized model, society reaches a higher
level of rumor spreading than in the standard model.

initial spreader. One of the most important practical aspects of
any rumor-mongering process is whether or not it reaches a
large number of individuals who have heard the rumor.

Figures 1 and 2 show the time evolution of the density of
spreaders and stiflers, respectively, for different values of the
stifling process rate σ when the forgetting process rate is δ =
0.5. Figure 1 shows that, as expected, the number of individuals
who spread the rumor increases as the stifling process rate σ

decreases. Also, in the generalized model, a larger population
spreads the rumor than the standard model. Interestingly, Fig. 2
shows that the final densities of the population who have heard
the rumor (or stiflers) in the generalized model (red-dashed
curves) are larger than that of the standard model (blue-solid
curves).

To verify the maximization issue, in the active phase, we
compute, for a number of different network topologies and
configurations, the stifler density R vs β at the end of the
epidemic. The results are summarized in Figs. 3(a)–3(c). De-
spite different network topologies [SF networks, small-world
(SW) networks, and ER random graphs] and wide variations
in network parameters, such as the size, the average degree,
and the degree exponent, we observe that R is maximized

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1

β

R

(a)

−2 −1 0 1 2
0.5

0.6

0.7

0.8

0.9

β

R

(b)

−2 −1 0 1 2
0.65

0.7

0.75

0.8

0.85

0.9

β

R

(c)

FIG. 3. (Color online) Density of stiflers R as a function of β at the end of the epidemic. (a) Standard SF networks of size N = 2000
(triangles) with average degree 〈k〉 = 10 and N = 5000 (circles) with 〈k〉 = 12. The other rates for these two networks are {δ = 0.3, σ = 0.4}
and {δ = 0.4, σ = 0.6}, respectively. (b) The ER random graphs of size N = 2000 with 〈k〉 = 5 and N = 3000 with 〈k〉 = 6. (c) The SW
networks with different degrees of randomness as determined by the rewiring probability p = 0.4 (squares) and 0.8 (triangles). In (c), the
network size and the average degree are fixed as N = 2000 and 〈k〉 = 6. The other reaction rates for all models in (b) and (c) are the same
{δ = 0.3,σ = 0.4}. Consistent with theoretical prediction, regardless of the network topology and configuration, the maximum value of stifler
density, i.e., the number of individuals who have heard the rumor, evidently occurs for β = −1.
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FIG. 4. (Color online) Density of stiflers R as a function of α at the
end of the epidemic. The SF network with size N = 2000, 〈k〉 = 10,
and kmax = 192 (triangles) and the ER network with size N =
2000, 〈k〉 = 5, and kmax = 14 (circles). In both networks, the other
parameters are {β = −1, δ = 1, σ = 0.7}. The squares represent
the SF network with size N = 2000, 〈k〉 = 10, and kmax = 152 by
choosing {β = −0.5, δ = 1, σ = 0.5}.

for β = −1. In these computations, we have kept α fixed
at α = 1.

Figure 4 shows the density of stiflers as a function of α

in SF networks and ER random graphs. The curves have a
negative slope as we predicted theoretically. By decreasing
α, the final population who have heard the rumor increases.
This is a notable result and can be interpreted in the following
way. We have three types of interaction in the network: the
spreader-ignorant (SI → SS), the spreader-spreader (SS →
RS), and the spreader-stifler (SR → RR) interactions. When
exponent α decreases, the ignorant is connected to a fewer
number of spreaders simultaneously, and therefore, there is
less probability that an ignorant converts into a spreader. So,
by decreasing α, we expect the number of spreaders that are
created to decrease. But when one considers an SS (SR)
interaction, a decrease in α would mean that a spreader
meets fewer connected spreaders (stiflers) simultaneously, and
therefore, the probability that a spreader becomes a stifler
is smaller. In this case, we infer that the smaller α is, the

longer a spreader spreads a rumor. The longer lifetime of the
spreaders leads to further spreading of rumors in the network,
and therefore, at the end of an epidemic, we have a larger final
population who have heard the rumor. In general then, we
conclude that a smaller α leads to a larger density of stiflers.

VII. CONCLUSION AND REMARKS

In this paper, we have studied the dynamical behavior of
the generalized model of rumor spreading with a degree-biased
transmission rate (the result of nonlinear CSF) and nonlinear
infectivity. We have shown that one can adjust the infectivity’s
exponent α and the CSF’s exponent β to control the epidemic
threshold that is absent for the standard rumor spreading model
in SF networks. In the case of general infinite SF networks,
we analytically showed that β < 0 and β > 0 lead to two
different models, i.e., the up-down epidemic model (the biased
spreading of the rumor toward low-degree neighbors) and
the down-up epidemic model (the biased spreading of the
rumor toward high-degree neighbors), respectively, in which
critical threshold λc takes a positive value. Also, in the case
of finite SF networks, we obtained the epidemic threshold
λ′

c for the standard model and the epidemic threshold λ∗
c for

the generalized model, we concluded that λ∗
c is a positive

value when α + β < γ and is unrelated to size N of the
network. We showed that λ∗

c is greater than λ′
c (when β < 0

and α + β > γ ) on a finite SF network with the same size.
Finally, we showed that β = −1 leads to maximum spreading
of the rumor theoretically, and computation results on different
networks verify our theoretical prediction. Also, we showed
that a smaller α leads to larger spreading of the rumor. Our
results are interesting since we obtain these results regardless
of the network topology and configuration.
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