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Topological effects on dynamics in complex pulse-coupled networks of integrate-and-fire type
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For a class of integrate-and-fire, pulse-coupled networks with complex topology, we study the dependence of
the pulse rate on the underlying architectural connectivity statistics. We derive the distribution of the pulse rate
from this dependence and determine when the underlying scale-free architectural connectivity gives rise to a
scale-free pulse-rate distribution. We identify the scaling of the pairwise coupling between the dynamical units in
this network class that keeps their pulse rates bounded in the infinite-network limit. In the process, we determine
the connectivity statistics for a specific scale-free network grown by preferential attachment.
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I. INTRODUCTION

Pulse-coupled network models have found applications
in fields ranging from engineering to biology [1–9]. The
topology of the couplings between the interacting dynamical
units of such networks is typically highly complex and can
only be captured statistically. These networks are described
as directed graphs, with the dynamical units as the nodes or
vertices and their couplings as the edges. The basic statistical
quantities of the graph topology, which is also known as the
network’s architectural connectivity, are given in terms of the
distributions of the node degrees and edge types. Each node
in a directed graph has an incoming and an outgoing degree,
which are the numbers of directed edges that terminate at and
originate from this node, respectively. The total degree of a
node is the sum of its incoming and outgoing degrees. The
edge type of a specific edge refers to the degrees (incoming,
outgoing, or total, depending on the desired description) of the
nodes it connects.

In many networks of scientific or practical importance,
the node-degree distributions are believed to satisfy simple
asymptotic laws, such as power laws. For example, if the
exponent γ in a negative power law stays in the interval 2 <

γ � 3, the network satisfying this distribution is called scale-
free [10–13]. Scale-free network architecture is particularly
appealing in that it describes networks with many low-degree
nodes but also a few large-degree hubs, each of which is
connected to a substantial portion of the network.

Pulse-coupled models of integrate-and-fire (IF) type [5,6]
have been used successfully as dynamical units designed
to capture a number of robust network effects in large-
scale neuronal assemblies, for example in the primary visual
cortex [14–19]. While the bulk geometric features of the
architectural connectivity in such assemblies are quite well
known experimentally [20–28], the statistics of the neuronal
connectivity degrees are typically unknown and are largely
guessed from an indicator of functional connectivity [29–36].
Such an indicator is any measurable quantity, for example, the
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firing rate or subthreshold membrane-potential correlations in
neuronal networks, which is believed to depend on the under-
lying node-connectivity degrees in a monotonically increasing
manner. The relationship between networks’ architectural
and functional connectivities is not yet well understood and
deserves a closer look. Therefore, it is important to understand
how an indicator of functional connectivity, such as the pulse
rates of its dynamical units, depends on the architectural
connectivity of a given complex IF network.

The description of large pulse-coupled networks frequently
simplifies in the infinite-network limit. However, crucial
dynamical properties of such networks, for example, their
units’ pulse rates, may only remain within a physically
relevant regime and therefore yield a meaningful theoretical
description in this limit if the strengths of the couplings
among the dynamical units in the network obey an appropriate
scaling law, which decays with increasing network size. For
all-to-all coupled IF networks, this scaling law is inversely
proportional to the network size [37,38]. For IF networks with
complex topologies, the question of its precise form should be
systematically addressed.

In this paper, we address both the question of the de-
pendence of an IF network’s pulse rate on its architectural
connectivity and the scaling of the network coupling that
yields a meaningful description of this dependence in the
large-network limit. We use the conductance-based IF model
[5,6] to describe the pulse-coupled dynamics of the dynamical
units located at the network nodes. Comparing with numerical
simulations of this model, we find that an explicitly solvable
coarse-grained, mean-field limiting description [37–40] of the
model network renders asymptotic scaling laws connecting
the external input, node degree, and the pulse rates of the
dynamical units with high incoming degrees. Instrumental in
this analysis is the observation that these units operate in the
regime in which they receive strong combined driving from
the external input and other units in the network. We also, in
this paper, derive a generalization of the mean-field IF network
description of [37–40] to the case of networks with complex
connectivity topology, which we use in our investigation.

Throughout this paper, we use several terms from neuro-
science, because these terms are standard and well suited for
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pulse-coupled networks of IF type and also because our study
was motivated by complex neuronal networks. In particular, for
simplicity, we call the directed couplings between dynamical
units synapses or synaptic connections, with the presynaptic
node originating and the postsynaptic node receiving pulses
along their connection.

The main results of this paper address the question of
how the pulse rate of the dynamical units depends on the
underlying connectivity statistics in three example complex IF
networks of increasingly complex topology, which include an
uncorrelated network [11] and two scale-free networks grown
through preferential attachment [41–43]. While these networks
are sufficiently idealized to allow for explicit solution, they also
progressively incorporate features conjectured to be present in
realistic neuronal networks, including scale-free distribution
of incoming node degrees and clustering [32–34,36,44–47].
We contrast the dependence of the units’ pulse rate on the
underlying connectivity statistics in these three networks
with the corresponding dependence in the all-to-all connected
IF network. In the process, we also derive the edge-type
distribution function for the scale-free network of [41].

For the nodes with high incoming degree in both the
uncorrelated network [11] and the network of [41], we find
that their pulse rates depend linearly on their incoming degree.
We also find that the slope of this dependence is controlled
by the average incoming degree of the nodes presynaptic to
the nodes with a given incoming degree in the uncorrelated
network, and the effective version of this average degree in the
scale-free network of [41]. This effective degree is induced
dynamically by the topological correlations in the network.
In both cases, this degree also governs the scaling of the
coupling coefficient that preserves finite pulse rates in the
large-network limit. Moreover, for the network of [41], we
observe that the mean-field model describes averages over
ensembles of such networks rather than individual network
realizations, and discuss how this model can be modified
to apply to each individual realization. For the asymmetric,
treelike, unidirectionally scale-free network of [42,43], we find
a superlinear power-law dependence of the pulse rate on the
incoming node degree, and the absence of any need for scaling
the coupling coefficient in the large-network limit. Finally, for
both scale-free networks, we derive that their pulse rates are
also distributed according to a power law.

In general, for pulse-coupled networks of IF type, we derive
that the growth of the pulse rates as a function of the growing
node degree can only be linear or superlinear in the asymptotic
limit of large node degrees. We then identify a large class
of IF networks with properties plausibly mimicking realistic
neuronal networks, which we term boundedly correlated and
statistically symmetric (terms defined in Sec. V) and for which
we can derive an upper bound on the network coupling strength
that guarantees bounded pulse rates of all the dynamical
units and another upper bound that is necessary for the pulse
rate averaged over the network to remain bounded in the
large-network limit. Using the uncorrelated network [11] and
the scale-free network of [41], we find that these bounds
are the sharpest possible. As mentioned above, we use the
asymmetric, unidirectionally scale-free network that we had
studied in Ref. [43] to demonstrate superlinear asymptotic
pulse-rate dependence on the underlying node degrees, and to

illustrate that the coupling-strength scaling does not have to
decrease toward zero as the network size approaches infinity
in a network that is not statistically symmetric.

The remainder of the paper is organized as follows. In
Sec. II, we introduce the two main statistical quantities we
use in the network connectivity description. In Sec. III, we
describe IF networks with complex topology, the mean-field
model used to describe their pulse rate, the linearization of
this model for large input values, and the formal solution of
the resulting linear model by a Liouville-Neumann series.
In Sec. IV, we apply this general theory to three specific
networks—all-to-all coupled in Sec. IV A, uncorrelated in
Sec. IV B, and scale-free in Sec. IV C—and also find the
scalings for their coupling coefficients that keep the pulse rates
of their nodes bounded. We describe an additional scale-free
network whose properties contrast those of the first three
networks in Sec. IV D. In Sec. V, we derive a linear lower
bound on the pulse rate as a function of the node degree
and generalize the coupling-coefficient scalings found in the
previous section to two broad classes of networks. In Sec. VI,
we briefly discuss the pulse-rate distributions in our example
networks. In Sec. VII, we conclude the paper with a discussion
of the results. Technical derivations are relegated to the
appendixes. In particular, in Appendix A, we derive the
mean-field model for computing the network pulse rate. In
Appendix B, we derive the edge-type distribution function for
the scale-free network describe in Sec. IV C. In Appendix C,
we derive the leading-order pulse-rate behavior for the scale-
free network of Sec. IV D. Finally, in Appendix D, we derive
the scaling bounds for the network coupling needed to ensure
that the individual nodes’ and network pulse rate remain
bounded, as presented in Sec. V.

II. NETWORK DESCRIPTION

To investigate the pulse rates of the nodes in the network,
we must use information about their incoming degrees. This is
because the total network pulse train received by a node is the
sum of the pulse trains originating at all its presynaptic nodes,
and that is one of the most important factors in determining the
node’s pulse rate. The most fundamental quantity describing
the network statistics that is used in determining the nodes’
pulse rates is therefore the distribution of the network nodes’
incoming degree, k, denoted by Pin(k). In what follows,
we frequently refer to Pin(k) simply as the node-degree
distribution, and to nodes with incoming degree k as k nodes.
In addition to the node-degree distribution, in order to compute
the nodes’ pulse rates, we also need to know the distribution
of the types of edges present in the network. This distribution
is usually given by the function that describes the probability,
T (n,k), of finding an edge that originates at an n node and
terminates at a k node [48]. The distribution T (n,k) is also
known as the degree-correlation function [11].

For a network of size N + 1, evaluating the probability
of an edge terminating at a k node allows us to relate the
node-degree and edge-type distributions, Pin(k) and T (n,k),
respectively, by the equation∫ N

0
T (n,k)dn = kPin(k)

μ
, (1)
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where

μ ≡
∫ N

0
kPin(k)dk (2)

is the mean node degree in the network. In particular, Eq. (1)
states that the probability of finding an edge that terminates at
a k node is proportional to the probability of a k node existing
in the network, times k, the number of edges that terminate at
a k node. Moreover, this interpretation of the right-hand side
of Eq. (1) and an application of the Bayes formula imply that
the conditional probability, P (n | k), of an edge to originate at
an n node given that it terminates at a k node equals

P (n | k) = μT (n,k)

kPin(k)
, (3)

provided that k �= 0. Clearly, P (n | 0) = 0, since a 0 node
receives no synaptic input from other nodes in the network. In
what follows, we therefore consistently interpret the right-hand
side of formula (3) as vanishing for k = 0.

III. PULSE RATE OF k NODES

In a network of N + 1 coupled nodes, described by
the conductance-based, all-excitatory IF point-neuron model
[5,6], the activity vi(t) of the ith node is governed by the
equation

τ
dvi

dt
= −(vi − Vr ) − Gi(t)(vi − VE), (4)

until it reaches the threshold value, VT , when it is instanta-
neously reset to the reset value, Vr . At that moment, the ith
node sends a pulse to every other node in the network, as
described below. The remaining parameters in Eq. (4) include
VE , the reversal activity value, τ , the activity time constant,
and Gi(t), the pulse train

Gi(t) ≡ f
∑

j

G(t − tij ) + S
∑
κi

∑
j

G
(
t − t

κi

j

)
, (5)

in which the sums extend over all the pulses that the ith node
receives. Here the pulse shape G(t) is given by an α-type
function, described further below and in Appendix A.

The first sum in the pulse train Gi(t) in Eq. (5) corresponds
to pulses generated by the external drive at times tij , which
we assume to form a Poisson train with rate ν. We assume the
Poisson pulse trains generated by the external drive arriving
at different nodes to be statistically independent. The second
sum in the pulse train Gi(t) in Eq. (5) corresponds to pulses
arriving at the ith node from its presynaptic network nodes
along the directed edges determined by the specific network
topology. The time t

κi

j corresponds to the j th time the κi th
presynaptic node of the ith node emitted a pulse. Since the
nodes in a complex network differ from each other in the
number of incoming connections, k, if the ith node is a k node,
the index κi in the second sum of Eq. (4) will run over its
k presynaptic nodes. The coupling strengths are set to f for
the pulses arriving through the external drive and S for those
arriving from the network nodes.

In our numerical simulations, we solve Eq. (4) using the
modified second-order Runge-Kutta algorithm of [49]. For the
pulse shape G(t), we use the function

G(t) = �(t)
t

τ 2
g

e−t/τg , (6)

where �(·) is the Heaviside function and τg is the pulse
decay rate. For the network parameters, we use the following
dimensionless values:

Vr = 0, VT = 1, VE = 14/3, (7a)

τ = 0.02, τg = 0.003. (7b)

The activity constants are taken to be shifted and nondimen-
sionalized versions of the typical neuronal reset, threshold,
and excitatory reversal potentials of −70, −55, and 0 mV,
respectively, rounded to a close rational number. The time
scales are taken to be the typical neuronal leakage-conductance
time scale of 20 ms and the AMPA[2-amino-3-(5-methyl-3-
oxo-1,2-oxazol-4-yl)propanoic acid]-conductance decay rate
of 3 ms.

For a time-independent Poisson rate, ν, of the external drive,
when the input fluctuations induced by both the external-drive
and the network pulses are small, one can describe the network
dynamics by the nodes’ pulse rates alone using a mean-field
model. In a complex network, the average pulse rate per node,
mk , of the k nodes has to be considered separately for every
incoming degree k. A kinetic-theoretic derivation, described
in Appendix A, yields for the pulse rate mk the mean-field
equation

τmk = 1 + gk

ln
(

gk (VE−Vr )
gk(VE−VT )−VT +Vr

) , (8a)

with

gk ≡ f ν + Skμk (8b)
and

μk ≡
∫ N

0
P (n | k)mndn. (8c)

Here gk is the average input to a k node, μk is the average
input that a k node is expected to receive from any other type
of a node, and P (n | k) is the conditional probability of an edge
to originate at an n node given that it terminates at a k node,
described in Eq. (3). Note that here we approximate n and k

as continuous variables.
We are interested in the influence of the network topology

statistics on the distribution of the pulse rates mk corresponding
to the nodes with different connectivity degrees, k. The
properties of this distribution can be brought out most simply
in the high-gk limit, that is, when the average inputs gk to
the nodes are strong, gk � 1. We can then Taylor expand the
right-hand side of Eq. (8a) in 1/gk , and keep only the O(1)
terms, to obtain the following linear asymptotic approximation
of the original system (8a):

mkτ ln A = 1 + 1 − A

ln A
+ gk, (9)

where

A ≡ VE − Vr

VE − VT

. (10)
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Note that in the numerical simulations, we use

A = 14
11 = 1.2727, (11)

and the parameter values in Eqs. (7a) and (7b).
For a feedforward node, that is, one whose input consists

only of its external drive, we have gk = f ν, and so its pulse
rate equals

ψ ≡ 1 + (1 − A)/ ln A + f ν

τ ln A
. (12a)

Using this feedforward-node pulse rate and the rescaled
coupling constant

λ ≡ S

τ ln A
, (12b)

we rewrite Eq. (9) as

mk = ψ + λ

∫ N

0
K(k,n)mndn, (13)

where the kernel,

K(k,n) ≡ kP (n | k) = μ
T (n,k)

Pin(k)
, (14)

gives the average number of edges that a k node receives from
n nodes, that is, the average number of n nodes presynaptic to
a k node.

Equation (13) is a Fredholm integral equation of the second
kind. Formally, its solution can be obtained using the Liouville-
Neumann series [50]

mk =
∞∑
i=0

λiφi(k), (15)

in which φ0 = ψ and all the subsequent terms are given by the
recursively defined integrals

φi(k) ≡
∫ N

0
Ki(k,n)ψdn,

(16a)
with the first iterated kernel defined as

K1(k,n) = K(k,n) (16b)
and the rest as

Ki(k,n) ≡
∫ N

0

∫ N

0
· · ·

∫ N

0
K(k,y1)

×K(y1,y2) . . . K(yi−1,n)dy1 . . . dyi−1. (16c)

Trivially, φ1(k) = ψk.
Note that, analogously to the kernel K(k,n), the ith

iterated kernel Ki(k,n) represents the average number of
n nodes from which pulses reach a k node via precisely
i synaptic connections. Thus, the terms of the series in
Eq. (15) possess a clear physi(ologi)cal meaning: The ith term
represents the contribution to the pulse rate mk of the external
drive transmitted through precisely i synaptic connections. In
particular, as expected, ψ is the portion of the pulse rate due
to the external drive alone, and thus also the pulse rate of the
0 nodes, that is, those that do not receive any input from other
nodes. Therefore, m0 = ψ .

In what follows, we use the series (15) to analyze the linear
asymptotes of the pulse rates mk in three different networks, of
which the third has a nontrivial topology. Therefore, this last
network also has nontrivial distributions Pin(k) of node degrees
and T (n,k) of edge types, the latter of which we evaluate
in Appendix B. In addition, we see how the convergence
properties of the series (15) imply important bounds on the
scaling of the network coupling constant, S, in order for the
nodes’ pulse rates to remain bounded in the large-network
limit.

Finally, we mention that one way of quantifying the network
activity is the gain function of the entire network, that is,
the functional dependence of the mean pulse rate across the
network,

m̄ ≡
∫ N

0
mkPin(k)dk, (17)

on the external input strength f ν. We investigate the properties
of this quantity for the networks studied below as well.

IV. SPECIFIC NETWORKS

In this section, we apply the general approach developed
in the previous section to analyzing the dependence of the
pulse rates mk on the node and edge statistics in four different
networks of increasing complexity. In the next section, we then
generalize the properties of the first three networks to obtain
bounds on the scaling of the network coupling, λ or S, such
that the individual pulse rates, mk , and the average pulse rate
in the network, m̄, remain bounded in the large-network limit,
N � 1.

A. All-to-all coupled network

For an all-to-all coupled network of IF nodes, N + 1 in total,
with each pair of nodes connected by a pair of directed edges,
the system in Eqs. (8) simplifies considerably. In particular,
all the nodes in the network have the same degree, k = N ,
which is thus the only degree we need to consider in Eqs. (8).
As a consequence, the only nonzero pulse rate and average
input are mN and gN , respectively. We also have P (n | N ) =
δ(n − N ) (and P (n | k) = 0 for all other degrees k), signifying
the fact that the only possible presynaptic nodes are N nodes.
Therefore, Eqs. (8) simplify to [38]

τmN = 1 + gN

ln
(

gN (VE−Vr )
gN (VE−VT )−VT +Vr

) , (18a)

with
gN = f ν + SNmN. (18b)

While the system (18) cannot be solved explicitly for the
average pulse rate mN of the nodes in terms of the external
driving strength f ν, the gain curve depicting the relationship
of these two quantities can be parametrized exactly by using
the input gN as a parameter [51]. The pulse rate mN is
parametrized via Eq. (18a), and the driving strength f ν using
the parametrization of mN and Eq. (18b), with gN > A − 1.
The resulting gain curves for different values of the coupling
strength S are shown in Fig. 1. They rise from the point
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FIG. 1. Gain curves depicting the pulse rate mN as a function of
the driving strength f ν in the mean-driven limit of the all-to-all
coupled network. The parameter values are (7) and (11). The
coupling strengths SN along the gain curves are (left to right)
0.096, 0.08, 0.064, τ ln A = 0.048 23, 0.032, 0.016, and 0. The gain
curves approach straight-line asymptotes; their equations are given
by Eq. (19). The asymptote of the gain curve corresponding to the
coupling strength SN = τ ln A is vertical. Numerical simulations in
Ref. [51] indicate that backward-sloping segments of the gain curves
are unstable.

(f ν,mN ) = (A − 1,0), at least at first slope backward, and
eventually tend toward the straight-line asymptotes

mN = f ν + 1 − (A − 1)/ ln A

τ ln A − SN
. (19)

Note that the backward-sloping segments of the gain curves are
unstable and are not observed in simulations. Instead, when a
gain curve has both backward- and forward-sloping segments,
simulations exhibit hysteretic, bistable behavior [37,38,51].
The coupling value

S = τ ln A

N
(20)

corresponds to a critical case with a vertical asymptote in the
gain curve. For larger values of S there is no nontrivial stable
equilibrium solution of Eqs. (18).

The kernel K(k,n) in Eq. (14) for the all-to-all coupled
network is only nonzero for k = N , in which case it equals
K(N,n) = Nδ(n − N ), again signifying the fact that all
presynaptic nodes are N nodes. The asymptotic integral
equation (13) in this case becomes

mN = ψ + λNmN, (21)

with the parameters ψ and λ as in Eqs. (12a) and (12b),
respectively, and the solution

mN = ψ

1 − λN
, (22)

which is easily seen to be the same as the straight-line
asymptote (19). This solution becomes singular when λ =
1/N , which is the same as Eq. (20) and is consistent with the
commonly used scaling in the mean-field analysis of all-to-all
coupled networks. The factor N in the denominator of Eq. (22)
can be interpreted in several different ways; the most fruitful

is as the number of presynaptic nodes to any given node, as
can be seen from the discussion following Eq. (15).

The above discussion of the linearized equation (21) again
shows that in the limit of large network size, N � 1, the
network coupling coefficient, S, must scale as O(1/N) so that
a nontrivial interval of S values will exist in which the network
has a stable, nonzero steady state for sufficiently large values
of the external driving strength, f ν. As shown in Ref. [51], the
network is stable in this state in the sense that the pulse rate
remains steady and does not grow in time without a bound.

B. Uncorrelated network

In this section, we use the Liouville-Neumann series (15) to
obtain the exact solution of Eq. (13) for uncorrelated networks
[11,52–55], that is, those in which

T (n,k) = kPin(k)nPin(n)

μ2
. (23)

For uncorrelated networks, Eq. (3) immediately implies that
the conditional probability P (n | k) for an edge to originate
from an n node given that it terminates at a k node equals
P (n | k) = nPin(n)/μ and thus is independent of the degree
k. This, in turn, implies that the kernel in Eq. (14) equals
K(k,n) = knPin(n)/μ, that is, k times the probability of an
edge terminating at an n node. Therefore, for the ith coefficient
φi(k) in the Liouville-Neumann series (15), we find from
Eqs. (16) the expression

φi(k) = kψ

( 〈n2〉N
μ

)i−1

, (24)

where

〈n2〉N =
∫ N

0
n2Pin(n)dn (25)

is the second moment of the incoming-degree distribution,
Pin(n). From Eqs. (3) and (23), we note that, in an uncorrelated
network, the ratio 〈n2〉N/μ in Eq. (24) equals the average
incoming degree of the nodes presynaptic to a k node,∫ N

0
nP (n | k)dn = 〈n2〉N

μ
. (26)

Clearly, this expression is independent of the postsynaptic
node’s incoming degree k and thus is the same for all nodes in
the uncorrelated network. (The exceptions, of course, are the
0 nodes, which have no presynaptic nodes.)

From Eq. (24), it follows that the average pulse rate mk of
a k node satisfies the asymptotic relation

mk = ψ

(
1 + λk

1 − λ〈n2〉N/μ

)
. (27)

From Eq. (12a), we immediately note that the asymptotic pulse
rate mk in Eq. (27) depends on both the driving strength
f ν and the incoming node degree k in a linear fashion. In
particular, the slope of the linear asymptote approached by the
m-versus-f ν gain curve for the average pulse rate mk of a k

node is proportional to its degree k, with the k-independent
proportionality constant equaling λ/[τ ln A (1 − λ〈n2〉N/μ)].
All these slopes become infinite at the same value of the
coupling parameter λ, namely, λ = μ/〈n2〉N , the reciprocal
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of the average incoming node degree of the nodes presynaptic
to any node in the network.

In the large-N limit, we have to rescale the coupling
coeffcient λ (or, equivalently, S) by the reciprocal average
presynaptic node degree, μ/〈n2〉N , in order for a bounded,
nonzero, steady pulse-rate solution to exist for nonvanishing
coupling values. Clearly, this scaling also follows directly from
the convergence criterion for the Liouville-Neumann series
leading to the pulse-rate solution (27).

Averaging the pulse rates mk in Eq. (27) over the incoming
node-degree distribution, Pin(k), yields the expression

m̄ = ψ

(
1 + λμ

1 − λ〈n2〉N/μ

)
(28)

for the average pulse rate of the nodes in the network. We
see that, under the scaling of the coupling parameter λ by
the reciprocal average presynaptic node degree μ/〈n2〉N , this
pulse rate remains bounded for N � 1 due to the inequality
〈n2〉N > μ2.

Finally, the average per-node input rate, μk , to a node with
incoming degree k can be computed using Eqs. (23), (8c), and
(3) as

μk = ψ

1 − λ〈n2〉N/μ
. (29)

Since this rate is independent of the node degree k, one can
see that the average input to a k node, gk in Eq. (8b), is a linear
function of k. This implies that, for moderate external drive
strength, f ν, the drive of the nodes with low incoming degrees
has a substantial feedforward component, that is, a substantial
direct contribution from the external drive. On the other hand,
the drive of the nodes with high incoming degrees is largely
feedback in that they are predominantly driven by the pulses
arriving from their presynaptic nodes.

For scale-free uncorrelated networks [11,55], the second
moment 〈n2〉N of the node-degree distribution Pin(n) diverges
logarithmically in the large-network limit, N � 1, while the
average node degree μ remains bounded. In this limit and
under the O(μ/〈n2〉N ) scaling of the coupling parameter λ,
the pulse rates mk in Eq. (27) approach the pulse rate ψ of
a feedforward node for any fixed node degree k in such a
network. The influence of the network pulses is only felt by
nodes with degrees k � O(〈n2〉N/μ), that is, comparable to or
larger than the average presynaptic node degree. Additionally,
the O(μ/〈n2〉N ) scaling of λ implies that the average pulse rate
m̄ of the nodes in the network approaches that of feedforward
nodes for N � 1. In other words, in a scale-free, uncorrelated
network, any node with a fixed incoming degree k only feels
the input of the feedforward external drive in the large-network
limit, and only nodes with incoming degrees comparable to
or larger than the average presynaptic node-degree feel the
influence of the network.

C. Scale-free network

We now calculate the asymptotic pulse rates for a pulse-
coupled network with a scale-free architecture. We recall that
scale-free networks are defined as those with a power-law
asymptotic behavior of the incoming degree distribution,
Pin(n) ∼ n−γ , where 2 < γ � 3. In such networks, the mean,

μ, of the distribution Pin(n) remains finite, while its second
moment, 〈n2〉N , diverges as the size of the network increases,
that is, for N � 1.

Since pulse-coupled networks are directed, we must con-
struct this scale-free network in two steps: We first construct
the corresponding undirected network following a modified
version of the algorithm described in Ref. [41] and then
randomly assign a direction to each of its undirected edges.
The undirected network of [41] grows in stages: Its first stage
is an all-to-all connected network consisting of � nodes, which
are said to be active. At each subsequent stage of the network
growth, a new active node is first attached to every active node
via an undirected edge, and then an active node is deactivated
with the probability ∼1/n, where n is its current total degree,
that is, the number of all undirected edges emanating from
it. A direction is assigned randomly to every edge, with
probability 1/2.

For the resulting directed network, as we show in Ap-
pendix B, if the initial number of active nodes, �, is large,
� � 1, the incoming-degree distribution is well approximated
by a scale-free form,

Pin(k) = �2

2k3
, (30)

for the incoming-degree values �/2 � k � N/2 and can be
taken to vanish for k < �/2 and k > N/2. Note that, up to
terms that decay with N � 1, for this network

μ = �, 〈n2〉N = �2

2
ln

N

�
, (31)

so that its mean node degree is indeed bounded and its second
moment diverges logarithmically with increasing network size.

The derivation of the edge-distribution function T (n,k) for
this network is also given in Appendix B, where for � � 1 we
find that it is well approximated by the expression

T (n,k) = Pin(k)Pin(n)

μ
(n + k − μ), (32)

when �/2 = μ/2 � n,k � N/2, and can be taken to vanish
otherwise.

We again construct the solution for the average pulse
rate, mk , of a k node using the Liouville-Neumann series
in Eq. (15). First, Eqs. (30), (32), and (3) imply that the
conditional probability P (n | k) for an edge to originate from
an n node given that it terminates at a k node equals P (n | k) =
Pin(n)(n + k − μ)/k. Therefore, the kernel K(k,n) in Eq. (14)
becomes K(k,n) = Pin(n)(n + k − μ). After recalling from
Sec. III that the first two coefficients in this series equal φ0(k) =
ψ and φ1(k) = ψk, we show by induction using Eq. (16c) that
the ith coefficient has the form φi(k) = ψ[Aik + Bi]:

φi+1(k) = ψ

∫ N/2

�/2
Pin(n)(n + k − μ)(Ain + Bi)dn

= ψ[(μAi + Bi)k + σ 2Ai] = ψ [Ai+1k + Bi+1] ,

(33)

where σ 2 ≡ 〈n2〉N − μ2 is the variance of the incoming degree
distribution Pin(n). Equation (33) immediately implies the
recursion relation

Ai+1 = μAi + σ 2Ai−1, (34)
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whose solution, together with the equation Bi+1 = σ 2Ai ,
yields the coefficients φi(k).

From the form of the coefficients φ0(k) = ψ and φ1(k) =
ψk, we find the initial conditions A0 = 0, A1 = 1, B0 = 1,
and B1 = 0. Assuming the solution to the recursion relation
in Eq. (34) as Ai = ri , we find that r satisfies the quadratic
equation r2 − μr − σ 2 = 0 and that Ai and Bi satisfying this
recursion relation and the initial conditions are given by the
expressions

Ai = 1

r+ − r−
(ri

+ − ri
−), i = 0,1, . . . , (35a)

B0 = 1, Bi = σ 2

r+ − r−
(ri−1

+ − ri−1
− ),

i = 1,2, . . . , (35b)

r± = (μ ±
√

μ2 + 4σ 2)/2. (35c)

Finally, the pulse rate mk is given by

mk =
∞∑
i=0

λiψ(Aik + Bi)

= ψ

r+ − r−

[
k

( ∞∑
i=0

λiri
+ −

∑
λiri

−

)

+1 + σ 2λ

( ∞∑
i=0

λiri
+ −

∞∑
i=0

λiri
−

)]

= ψ

r+ − r−

[
(k + σ 2λ)

(
1

1 − λr+
− 1

1 − λr−

)
+ 1

]

= ψ

(
1 + λk + λ2σ 2

1 − λμ − λ2σ 2

)
. (36)

Just as for the uncorrelated network, the asymptotic slopes
of the individual gain curves connecting the pulse rate mk to the
external driving strength f ν are linear in both f ν and the node
degree k. All their slopes become infinite simultaneously at
the coupling value λ = r+. (Note that the Liouville-Neumann
series in Eq. (36) ceases to converge at the lower value λ =
−r−.) Again, in order to retain a nonzero stable steady state in
the large-network limit, N � 1, one must rescale the coupling
parameter λ in Eq. (12b), and therefore the coupling strength S,
but now by an O(1/〈n2〉1/2

N ) quantity, since r+ = O(〈n2〉1/2
N ).

It is instructive to compare the expression for the pulse
rate mk of this scale-free network, given in Eq. (36), to the
corresponding expression for the uncorrelated network, given
in Eq. (27). In particular, we see that the incoming node
degree k in Eq. (27) is replaced with the effective node degree,
keff = k + λσ 2, in Eq. (36). Likewise, in the denominator,
from Eq. (27), we would expect the coupling constant λ to
be multiplied by the average incoming degree of a k node’s
presynaptic nodes,∫ N/2

�/2
nP (n | k)dn = μ + σ 2

k
(37)

[as computed from Eqs. (30), (32), and (3)]. However, this is
not the case. For this correlated network, an effective average
presynaptic node degree appears as the factor instead, which
equals k

pre
eff = μ + λσ 2, and is independent of the node degree

k. Note that, in fact, k
pre
eff equals the average of the effective

node degree keff over the network, k
pre
eff = 〈keff〉N . In addition,

on account of the scaling of λ, the effective node degree k
pre
eff is

only of size O(〈n2〉1/2
N ), which is a much smaller quantity than

its O(〈n2〉N/μ) counterpart in Eq. (27) for an uncorrelated
network. The effective node and average presynaptic node
degrees, keff and k

pre
eff , depend on the coupling strength, λ, for

this correlated network and are a consequence of the dynamical
effects induced by the topological correlations, that is, the fact
that the edge-distribution function T (n,k) in Eq. (32) is not of
the form (23).

We find the network gain curve by averaging Eq. (36) over k:

m̄ = ψ

1 − λμ − λ2σ 2
. (38)

Under the above scaling of the coupling parameter λ, this
formula shows that the network-averaged pulse rate of the
nodes remains bounded in the large-network limit, N � 1.

The average per-node input rate to a k node, μk , is calculated
using Eqs. (36), (8c), and (3) as

μk = ψ

1 − λμ − λ2σ 2

(
1 + λσ 2

k

)
, (39)

and the average input to a k node, gk in Eq. (8b), therefore
equals

gk = f ν + ψλτ ln A (k + λσ 2)

1 − λμ − λ2σ 2
, (40)

with the constant A as in Eq. (10). Note that the effective node
degree, keff, also enters gk as a factor. Therefore, unlike in the
uncorrelated network, while gk is still a linear function of the
node degree k in this correlated network, even the input to the
nodes with low incoming degrees has a substantial feedback
component arising from network interactions. As mentioned
above, this feedback component is also reflected in the pulse
rates mk in Eq. (36), as well as the effective degrees keff

and k
pre
eff .

Note that the average input rate that a k node receives
from any of its presynaptic nodes, as given in Eq. (39), is a
decreasing function of k. This may be a consequence of this
network’s disassortative nature [13], that is, the property that
the average incoming degree of a k node’s presynaptic nodes,
given in Eq. (37), decreases with the degree k.

To determine how well our theoretical findings, valid in
the large-network limit, can describe pulse-coupled dynamics
of finite-size networks, we compare them with the results of
direct numerical Monte Carlo simulations of Eq. (4). The top
panel in Fig. 2 reveals that the mean-pulse-rate formula in
Eq. (38) is highly accurate on average, that is, not for any given
network, but for a large ensemble of networks. In particular, m̄
in Eq. (38) describes the gain curve expressing the dependence
of the average pulse rate of the nodes in such an ensemble on
the external driving strength f ν with great precision.

The bottom panel of Fig. 2 reveals that Eq. (38) also
describes the gain curves of the individual network realizations
very well, provided the node-degree variance σ 2, as given in
Eq. (31), is replaced by the value of the node-degree variance,
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FIG. 2. (Color online) Gain curves for the network discussed in
Sec. IV C, size N = 104, initial size � = 50. Top: The dots (red online)
represent the dependence of the mean network pulse rates, m̄, on
the external driving strength, f ν, for an ensemble of 100 network
realizations. The network size was 104. The solid curve (black online)
represents the average m̄-versus-f ν gain curve over the ensemble.
The dashed curve (green online) represents the linear gain-curve
asymptote predicted by Eq. (38). Bottom: Gain curves depicting the
average pulse rate m̄ as a function of the external driving strength
f ν for three individual realizations of a network with 104 nodes are
represented by dots (red online). The dashed lines (green online)
represent the linear gain-curve asymptote predicted by Eq. (38) with
the variance σ 2 in Eq. (31) replaced by the realization variance σ 2

r

in Eq. (41). The parameter values are those in Eqs. (7) and (11),
S = 4 · 10−5, f = 5 · 10−5.

σ 2
r , of the particular realization in question. This value is given

by the formula

σ 2
r = 1

N

N∑
j=1

n2
j − μ2, (41)

where the sum runs over all the nodes in the network and nj

denotes the j th node’s incoming degree. Since σ 2 diverges
with large network size N + 1, the value of its counterpart
σ 2

r over different network realizations varies greatly, as Fig. 2
shows. The mean node degree, on the other hand, converges
to μ in the large-network limit, and therefore can readily be
replaced by μ in each sufficiently large network realization. It
can thus be kept in Eq. (38) when evaluating the gain curve for
an individual network realization.
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FIG. 3. (Color online) Pulse rate mk as a function of the incoming
node-degree k for the network discussed in Sec. IV C, size N = 104,
initial size � = 50. Top: Gray solid line (green online) represents mk

averaged over all k-nodes in 500 network realizations. Dashed line
(red online) represents mk as computed numerically from Eq. (8a),
truncated at N = 104, with T (n,k) given by Eq. (B31), using the
approximation described at the end of Appendix B. Black solid line
represents the exact solution (36) of Eq. (9), with k � �/2. Bottom:
Gray solid line (green online) represents mk averaged over all k-nodes
in a single network realization of size N = 104. Black solid line
represents the solution (36) with k � �/2 and the variance σ 2 in
Eq. (31) replaced by the realization variance σ 2

r in Eq. (41). On both
panels, the oscillations exhibited by the simulation results at large
values of k are a consequence of the poor statistics due to the scarcity
of large-degree nodes in a finite network. The parameter values are
those in Eqs. (7) and (11), S = 4 · 10−5, f = 1.8 · 10−5, ν = 2 · 104

(f ν = 0.36).

The dependence of the individual pulse rate mk on the
incoming node degree k is described by Eq. (36) in a similar
manner. In particular, Eq. (36) provides an accurate description
for the average pulse rate of k nodes in a large ensemble of
networks, as shown in the top panel of Fig. 3. In addition
to the comparison of Eq. (36) to direct numerical Monte
Carlo simulations of Eq. (4), we also compare it to a finite
truncation of the mean-field system (8), with the average input
μk in Eq. (8c) evaluated using the more precise formulas
(B26) and (B31), as described at the end of Appendix B,
rather than using Eqs. (30) and (32). (The truncation size
is taken equal to one half of the size of the network
realizations.) Equation (36) and this last procedure give results
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that are virtually indistinguishable. For an individual network
realization, Eq. (36) also provides an accurate description
of the relationship between the average pulse rate mk over
all k nodes in the network and the node degree k, provided
the variance σ 2, given in Eq. (31), is again replaced by the
realization variance σ 2

r , given in Eq. (41).

D. Asymmetric scale-free network

The final network that we present has asymmetric
incoming- and outgoing-degree distributions. Just as the
network in the previous section, this network is again grown in
stages, beginning with two nodes and one synaptic connection
[42]. At every subsequent stage, one new presynaptic node
is connected to one existing network node, which becomes
postsynaptic to the new node. The probability that this new
node is connected to any given existing node is proportional
to this latter node’s total connectivity degree. We investigated
this network previously in Ref. [43].

As a result of this construction, every node in the network
has the outgoing degree 1. On the other hand, as derived in
Ref. [42], the nodes’ incoming-degree distribution is given by

Pin(k) = 4

(k + 1)(k + 2)(k + 3)
, (42)

and their edge-type distribution is given by

T (n,k)= 4k

(n + 1)(p + 2)(p + 3)(p + 4)

[
1

n + 2
+ 3

p + 1

]
,

(43)

with p = n + k. The distribution (42) is asymptotically scale-
free for large values of the incoming node degree k. Note that
the mean node degree equals

μ = 4
∞∑

k=0

k

(k + 1)(k + 2)(k + 3)
= 1 (44)

as a consequence of the network’s treelike topology resulting
in many nodes with incoming degree 0. [Equation (44) can
be shown by decomposing the terms in the sum into partial
fractions.] Note also that the second node-degree moment
〈n2〉N diverges logarithmically with the network size N � 1.

For this network, due to the complicated nature of the
distribution functions (42) and (43), using the Liouville-
Neumann series (15) for analyzing the steady state of the
network is impractical. Instead, in the asymptotic limit of high
incoming node degree, k, and large network size, N � 1,
we find a power-law dependence of the pulse rate mk on k.
This dependence is induced dynamically by the underlying
asymptotic power-law incoming-degree distribution in the net-
work architecture. In particular, as we describe in Appendix C,
inserting into Eq. (13) the ansatz

mk ∼ Bkγ , γ > 1, k � 1, (45)

an application of residue calculus and a large-k expansion yield
the following relation between the exponent γ and the network
coupling coefficient λ:

λ = − 2 sin(πγ )

πγ (γ − 2)(γ − 3)
. (46)

0 0.5 1
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λ

γ

 

 

simulation
mean−field
asymptotic

FIG. 4. (Color online) The power γ in the asymptotic relationship
(45) as computed from Eq. (46) (dashed line, black online), and
extracted from the results of the numerical solution of Eq. (8),
truncated at N = 104 (solid line, green online), and direct numerical
simulations of one network realization of size N = 7 × 105 (dots, red
online). The ansatz mk = m0 + Bkγ was used as a fit. Note that both
the solutions of Eq. (8) and the results of the numerical simulations
extend beyond γ = 2 (λ = 1). The rest of the parameter values are
those in Eqs. (7) and (11), ν = 2 × 104, f = 1.8 × 10−5 (f ν = 0.36).

We must require that γ < 4 so that the pulse rate mk ,
as computed via Eq. (13), remains finite, and γ > 1 so
that the network coupling is non-negative, λ > 0. These
two requirements single out two possible branches of the
dependence of the exponent γ on the coupling parameter λ in
Eq. (46), as shown in Fig. 4. The lower of these two branches is
stable, which we have observed in direct numerical simulations
of the IF network (4). Note that numerical solutions of the fully
nonlinear mean-field model in Eq. (8), as well as the direct
numerical simulations of the IF system (4), indicate the exis-
tence of these stable gain curves mk versus f ν at every point
along this branch, which extends above γ = 2, as can be seen
from Fig. 4.

The asymptotic power-law behavior (45) of the pulse rate
mk for large node-degree values k is shown in Fig. 5, which
also indicates that this behavior is independent of either the
network size in the direct numerical simulations of Eqs. (4)
or the numerical truncation size of the mean-field model (8).
Numerical solution of the fully nonlinear mean-field model
(8) further indicates that the dependence of the leading-order
coefficient, B, in the power-law solution (45) is asymptotically
linear in both the parameters, ψ (i.e., in the external-drive
strength f ν) and λ (i.e., the network coupling S), as depicted
in Fig. 6. The linear dependence of B on ψ and λ can be
deduced form the linear relation exhibited in the each panel
of Fig. 6 and also the fact that all the curves in the opposite
panel with sufficiently large values of ψ or λ overlap with
one-another; the curves that do not correspond to values of ψ

or λ sufficiently small that nonlinear effects take over (cf. the
gain curves in Fig. 1).

The independence of the exponent γ from the coefficient
ψ (i.e., the driving strength f ν), as predicted by Eq. (46), is
confirmed in Fig. 7 both using the numerical solution of Eq. (8)
and network simulations. In particular, for different values of
f ν but the same value of the network coupling constant S,
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FIG. 5. (Color online) Pulse rate mk as a function of the incoming
node degree k for the network discussed in Sec. IV D. Dark gray solid
line (red online) represents the results of direct numerical simulations
averaged over 500 realizations of the network of size N = 104; light
gray solid line (green online) represents averages over 50 realizations
of the network of size N = 105. Dashed line (black online) represents
mk as computed numerically from a finite truncation of Eq. (8a), with
T (n,k) given by Eq. (43). (Inset) The pulse rate mk on the incoming
node-degree k, as computed from a finite truncation of Eq. (8a),
does not depend on the truncation size. The truncation sizes used
in the computations were N = 104 (dashes, red online), N = 105

(solid gray line, green online), N = 106 (dashes, black online). The
parameter values are those in Eqs. (7) and (11), S = 10−3, f = 1.8 ×
10−5, ν = 2 × 104 (f ν = 0.36).

on the logarithmic scale, the dependence of the pulse rate mk

on the node degree k asymptotes toward parallel straight lines
for large k, signifying the same γ . On the other hand, for the
same value of f ν but different values of S, the asymptotic
slope of the two asymptotes differs, signifying two different
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ψ

FIG. 6. The dependence of the coefficient B in Eq. (45) on the
external drive through the feedforward pulse rate ψ in Eq. (12a) and
the network coupling constant λ in Eq. (12b), as computed from the
mean-field model (8a). The ratios B/λ and B/ψ are used to test for
linearity. (Left) The values of λ along the curves from top to bottom
are 0.21, 0.41, 0.62, and 0.83, corresponding to the values of the
network coupling S = 1 × 10−3, 2 × 10−3, 3 × 10−3, and 4 × 10−3.
The bottom two curves lie on top of each other. (Right) The values of
ψ along the curves from top to bottom are 387, 283, 180, 76, and 47,
corresponding to the values of the external driving strength f ν = 2,
1.5, 1, 0.5, and 0.36. The top four curves lie on top of each other. The
truncation size is N = 104. The rest of the parameter values are those
in Eqs. (7) and (11).
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FIG. 7. (Color online) For the same value of the coupling
parameter S and two different values of the external drive f ν, the
logarithmic dependence of the pulse rate mk on the node degree
k approaches a pair of parallel straight lines for large k. This
verifies that the exponent γ in the asymptotic relationship (45) is
independent of f ν. Displayed is the verification for two different
values of S. Gray solid line (green online) represents the results of
direct numerical simulations of one realization of the network of
size N = 7 × 105. Dashed line (black online) represents numerical
solutions of the mean-field equations (8), truncated at N = 104. From
top to bottom, the values of f ν and S along the curves are f ν = 2.0,
S = 2 × 10−3; f ν = 2.0, S = 10−3; f ν = 0.36, S = 2 × 10−3; and
f ν = 0.36 S = 10−3. The rest of the parameter values are those in
Eqs. (7) and (11), and ν = 2 × 104.

values of γ . Figure 7 also confirms the agreement between the
numerical solution of Eq. (8) and network simulations.

In addition to being able to find its asymptotic k dependence
of its pulse rate mk , we can derive this network’s mean pulse
rate, m̄ in Eq. (17), exactly. In particular, even more generally,
let us consider any network in which the outgoing node degree
is a constant number q, while the incoming degree follows a
distribution Pin(k). This is certainly the case for the network
at hand, for which q = 1. For such a network, the probability∫ N

0 T (n,k)dk of finding an edge originating at an n node clearly
equals the probability Pin(n) of finding such a node, regardless
of the outgoing degree q. This observation, together with the
definition of the mean network pulse rate in Eqs. (17), (13),
and (14) imply the equation

m̄ = ψ + λμ

∫ N

0
mndn

∫ N

0
T (n,k) dk

= ψ + λμ

∫ N

0
Pin(n)mn dn

= ψ + λμm̄. (47)

Therefore, we find

m̄ = ψ

1 − μλ
. (48)

As shown above, for the network at hand, μ = 1, so that
the mean pulse rate m̄ becomes singular at λ = 1. Notice,
however, that the individual pulse rates mk are still bounded at
λ = 1, and therefore the origin of the singularity in Eq. (48)
is not a singularity in mk . [Recall that the boundedness of mk

follows from Eqs. (45) and (46) and is confirmed by both the
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numerical solution of Eq. (8) and numerical simulations of
Eqs. (4) with γ > 2, i.e., λ > 1, depicted in Fig. 4.] Instead,
we see from Eq. (46) that γ → 2 as λ → 1, which implies
that then the integral in m̄ = ∫ N

0 mkP (k) dk ∼ ln N diverges
in the limit of large network size. This is in contrast with the
networks of Secs. IV B and IV C, whose mean-pulse-rate gain
curves become singular precisely when those for the individual
pulse rates mk do.

The discussion in the previous paragraph further shows that
no scaling of the coupling constant is needed for this network
in the large-size limit in order to maintain stable pulse rates.
This is again in contrast with the networks discussed in the
preceding sections and is further discussed in the next section.

V. SCALING BOUNDS FOR NETWORK COUPLING

In this section, we show that the network coupling scalings
which we found in Secs. IV B and IV C are not accidental. In
fact, for a large class of pulse-coupled networks, they represent
the strongest coupling that still guarantees the existence of
a stable, nonvanishing, steady state of the network, and the
strongest coupling that may still allow for the mean pulse rate
of the nodes in the network to remain bounded, respectively,
in the large-network limit. In addition, we first derive a linear
lower bound on the dependence of the nodes’ pulse rate on
the node degree, which implies that this dependence cannot
exhibit sublinear asymptotic behavior at large node degrees in
any pulse-coupled network.

A. Lower bound on pulse rates

One iteration of Eq. (13) reveals a lower bound on the
asymptotic pulse rate mk , which is

mk � ψ(1 + λk). (49)

A detailed derivation is presented in Appendix D. The meaning
of the inequality in Eq. (49) is that the pulse rate of any k node
must equal or exceed its part stemming from the external drive
and monosynaptic interactions mediating the external drive
alone. Note that the estimate (49) prevents sublinear growth of
the pulse rate mk with the node degree k.

B. Sufficient estimate for bounded pulse rates

The scaling found for uncorrelated networks in Sec. IV B
guarantees the existence of a stable, nonvanishing, steady
state of the network in a larger class of networks, which
we can characterize as boundedly correlated. [The expression
originates from degree-correlation distribution, which is used
synonymously with edge-type distribution for T (n,k).] In this
network class, the node degree and edge-type distributions,
Pin(n) and T (n,k), must satisfy the condition

μ2T (n,k)

kPin(k)nPin(n)
� η (50)

for some constant η � 1, independent of all incoming degree
values, k and n, and all network sizes, N . The fact that only
the inequality η � 1 is admissible is seen easily if we multiply
the inequality (50) by the denominator of its right-hand side

and integrate over the node degrees k and n. Recall that η = 1
corresponds to an uncorrelated network.

As we derive in Appendix D, condition (50) implies that
the sum of the Liouville-Neumann series (15) for the pulse
rate mk can be bounded by

mk � ψ

{
1 + kλ

[
1 + η

(
1

1 − λη〈n2〉N/μ
− 1

)]}
, (51)

which shows that scaling the coupling coefficient λ by an
O(μ/η〈n2〉N ) quantity will ensure that mk is finite over an
entire λ interval in the N � 1 limit. Moreover, for the network-
averaged pulse rate, m̄, the node degree k is replaced with the
mean node degree μ in the estimate (51), and since 〈n2〉N �
μ2, this rate will also be finite under the above scaling.

Note that the networks in Secs. IV B–IV D are all boundedly
correlated. Nevertheless, only for the uncorrelated network in
Sec. IV B must the coupling parameter λ be scaled by the ratio
μ/〈n2〉N in order to ensure finite pulse rates along an interval
of λ in the infinite-network limit. For the scale-free network
in Sec. IV C, λ only has to be scaled by a much larger quantity
of O(1/〈n2〉1/2

N ), and for the unidirectional scale-free network
in Sec. IV D, it need not be scaled at all. This shows that
scaling λ by a factor of size O(μ/〈n2〉N ) is sufficient to ensure
finite pulse rates in the N � 1 limit along an interval of λ for
boundedly correlated networks, but not necessary. In addition,
the uncorrelated network in Sec. IV B shows that this scaling
must be used and thus is necessary for at least one network.

We now combine the estimates in Eqs. (49) and (51) and
use the rescaling

� = λ〈n2〉N
μ

, κ = kμ

〈n2〉N , (52)

to parametrize the gain curves. From this parametrization, in
a boundedly correlated network, we see that for fixed external
drive ψ the curves representing the dependence of the pulse
rate m on the rescaled degree κ reside in the wedge between
the lines

m = ψ(1 + κ�)

and

m = ψ

{
1 + κ�

[
1 + η2�

1 − η�

]}

that is contained in the first quadrant, provided � < 1/η,
regardless of the network size. This geometric consideration
shows that the (average) growth of the pulse rate mk with
the node degree k can only be linear in this case. If mk is
monotonically increasing in a boundedly correlated network,
this growth must, in fact, be asymptotically linear in k,
with the slope bounded by the corresponding coefficients in
the inequalities (49) and (51) with the scaled coupling �

replacing λ.
Note that the estimate (51) only holds for coupling values

λ < μ/η〈n2〉N . At λ = μ/η〈n2〉N the right-hand side of
Eq. (51) becomes infinite. For λ > μ/η〈n2〉N , the argument
leading to Eq. (51) is invalid, and so (51) ceases to provide
a valid estimate. Nevertheless, for some boundedly correlated
networks, the firing rates mk may still remain bounded even for
such large coupling values, and in fact superlinear growth of
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mk may be permitted in this case. An example is the network
discussed in Sec. IV D.

C. Necessary estimate for bounded mean network pulse rate

The scaling found in Sec. IV C can be generalized to
statistically symmetric networks, that is, those for which the
expected outgoing degree of a node equals its incoming degree.
In particular, if the function Pout|in(l | n) denotes the probability
for the outgoing degree of a given n node in such a network to
be l, then this node’s expected outgoing degree must equal∫ N

0
lPout|in(l | n)dl = n. (53)

For networks with the property (53), the analog of the relation
in Eq. (1) holds when we integrate over the incoming degree of
the postsynaptic node, k, rather than over the incoming degree
of the presynaptic node, n. This relation is the proportionality∫ N

0
T (n,k)dk ∝ Pin(n)

∫ N

0
lPout|in(l | n)dl, (54)

with the integral on the left-hand side corresponding to the
probability of a randomly chosen edge to originate at an n

node and the right-hand side stating that this probability is
given by the probability of finding an n node in the network
multiplied by the expected number of edges originating at an
n node. After taking into account Eq. (53) and normalization,
Eq. (54) becomes∫ N

0
T (n,k)dk = nPin(n)

μ
. (55)

In Appendix D we show that, for such statistically symmet-
ric networks, iterating the integral equation in Eq. (13) twice
and averaging it over the node-degree distribution Pin(n) yields
the estimate

m̄ = ψ + ψλμ + ψλ2〈n2〉N + O(λ3), (56)

where the O(λ3) term is non-negative. Consequently, for the
average pulse rate m̄ to remain bounded as the network size
N increases without a bound, it is necessary that at least the
second and third terms on the right-hand side of Eq. (56)
remain bounded. The third term will remain bounded if the
network coupling parameter λ scales as O(1/〈n2〉1/2

N ). Since
〈n2〉N > μ2, the second term on the right-hand side of Eq. (56)
will also be bounded under this scaling.

For any network that is both boundedly correlated and
statistically symmetric, the above estimates imply that the
scaling of its coupling coefficient λ must fall somewhere in
the range

O(μ/〈n2〉N ) � λ � O
(
1/〈n2〉1/2

N

)
(57)

for there to be a finite-size λ interval on which the network
has a stable, steady regime with finite pulse rates. The scale-
free network in Sec. IV C is both statistically symmetric and
boundedly correlated. We should note that the O(1/〈n2〉1/2

N )-
scaling suffices to keep its pulse rates bounded within a finite
interval of the coupling parameter for this network. Therefore,
this largest possible scaling, in fact, suffices for this particular
network.

Unsurprisingly, for the all-to-all coupled network of size
N + 1, the node-degree average and second moment equal
μ = N and 〈n2〉N = N2, so that both of the above scaling
estimates of the coupling constant S equal the O(1/N)-scaling
derived in Sec. IV A. On the other hand, in scale-free networks,
μ stays finite and 〈n2〉N grows with growing N , so that
the ratio of the two extreme scalings in Eq. (57) becomes
unbounded.

The network in Sec. IV D presents a threefold example
that puts the results in this section in a sharper focus. First,
it shows that the scaling of the coupling coefficient λ by the
ratio μ/〈n2〉N is sufficient but by no means necessary for a
boundedly correlated network to have stable, bounded pulse
rates mk or mean pulse rate m̄ in the large-N limit. Second, the
pulse rates mk exhibit superlinear growth in k for finite λ, that
is, for λ > μ/〈n2〉N , for which the estimate (51) is no longer
valid, as described at the end of Sec. V B. Note, however,
that γ → 1 as λ → 0, so that asymptotically the linear growth
of mk in k, as enforced by the estimate (51), is restored if
λ is scaled to vanish as N → ∞. Third, the example of the
network in Sec. IV D shows that, in the absence of statistical
symmetry, the coupling coefficient λ does not need to be scaled
by 1/〈n2〉1/2

N in order for the mean network pulse rate m̄ to
remain finite with increasing N . In fact, we recall that if λ is
not scaled, there is a range of λ values for which the mean
pulse rate m̄ remains finite. Note that this range is followed by
a λ interval in which all the pulse rates mk are finite but their
mean, m̄, is infinite.

VI. PULSE-RATE DISTRIBUTION

One motivation for the present study is the desire to
understand how the distribution of the nodes’ pulse rates
reflects the underlying network topology. The interpretation
of the probability density function as the derivative of the
cumulative probability distribution function, together with the
chain rule, imply the formula for the distribution of the pulse
rate

P (m) = Pin(k)
dk

dm
(58)

in which the node degree k is obtained from the corresponding
pulse rate by inverting the dependence m = mk .

For the networks in Secs. IV B and IV C, whose pulse rates
mk depend on k linearly in the form mk = ψ(1 + αk), with
α = α(N,λ), Eq. (58) yields the equation

P (m) = 1

αψ
Pin

[
1

α

(
m

ψ
− 1

)]
, (59)

with ψ as in Eq. (12a). For the scale-free network in Sec. IV C,
Eq. (59) implies the asymptotic relation

P (m) ∼ �2λ2ψ2

2(1 − λμ − λ2σ 2)2m3
, m � 1, (60)

with μ = � and σ 2 = 〈n2〉N − μ2 = �2[ln(N/�) − 2]/2 as in
Eq. (31). In other words, the distribution (60) of the pulse
rate m over the network is scale-free, reflecting the underlying
scale-free network topology.
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Similarly, for the asymmetric network in Sec. IV D,
Eqs. (42) and (58) yield the asymptotic relation

P (m) ∝ m−2/γ−1. (61)

This relation implies a scale-free distribution of the pulse rates
as long as λ < 1, that is, γ < 2. However, when λ > 1, that
is, γ > 2, while the pulse-rate distribution P (m) in Eq. (61)
does follow a power law, it is not scale-free under the strict
definition of the term because the exponent of the pulse rate
exceeds −2, and so the mean pulse rate becomes unbounded
in the large-network limit.

VII. DISCUSSION

The question of how network activity reflects the underlying
architectural connectivity of a given pulse-coupled network
is important for the experimental determination of such net-
works’ coupling architecture and ties in with the broader ques-
tion of how to determine a network’s architectural connectivity
from an indicator of its functional connectivity [29–36,47].
Scale-free functional connectivity of brain networks [33,44]
and hippocampal-slice networks [46] was recently observed
using functional magnetic resonance, and a combination of
two-photon imaging and electrophysiological measurements,
respectively. While architectural connectivity of brain net-
works may be measured directly using diffusion magnetic
resonance tractography imaging [34], methods for deducing
architectural connectivity from functional connectivity, such
as the neuron firing rate, are not yet well developed, and as a
first step in that direction, one should at least understand the
easier reverse relationship. Here we have studied it for three
idealized IF networks by deriving the explicit dependence of a
node’s pulse rate on its incoming degree and the external drive.
Interesting numerical examples of the types of IF networks
that give rise to scale-free distributions of firing rates were
presented in Ref. [56].

For the scale-free IF networks we have investigated,
our mean-field approach and simulations show that their
pulse rates reflect the underlying power-law architectural
connectivity distribution. This appears to perhaps be a man-
ifestation of an, as yet unexplored, universal phenomenon
exhibited by a number of pulse-coupled-type networks with
very different dynamical units. For example, for traffic of
particles, such as vehicles or internet data, on networks
[7,57–83], diffusion-type analysis of noninteracting particles
[75,78] and simulations of interacting particles [64,77] both
indicate scale-free distributions of the amount of traffic passing
through the nodes on scale-free networks in the free-flowing
regime. One thus might conjecture the existence of a limiting,
asymptotic, coarse-grained description that would apply to
nodes with high incoming degrees, and therefore high pulse-
rates, independently of the detailed behavior of the underlying
dynamical unit, in a large class of pulse-coupled networks.
While ascertaining the existence of such a description and
determining the class in which it is valid would be important,
it is far outside the scope of this paper and will be relegated to
future work.

As we show in Sec. IV D, in the large-network limit, even
in networks with a finite expected node degree, the mean pulse
rate per node may become unbounded if the network coupling

becomes too strong. Nevertheless, this may not disqualify the
IF network in question from being an adequate model of pulse-
coupled dynamics as long as the individual pulse rates of the
nodes and inputs to them remain bounded.

For both boundedly correlated, statistically symmetric IF
networks of Secs. IV B and IV C, the gain curves depicting
their mean pulse rates become singular at the same coupling
strength as the gain curves of all the k-node pulse rates. An
interesting question that arises is whether this is a universal
phenomenon in this class of IF networks. In other words, in
this IF network class, is it true that the network-averaged pulse
rate can only become singular when at least one of the k-node
pulse rates does? The answer is a trivial yes for finite networks,
but in the infinite-size limit, it is unknown. The network of
Sec. IV D is a counterexample to this claim for more general
IF networks, as that network lacks statistical symmetry.

Finally, we would like to point out that, in this paper, we
have addressed the statistical steady state of pulse-coupled IF
networks in which the network pulse trains are asynchronous
as reflected in the assumption that the total network output
pulse train follows Poisson statistics. A special limit of such
networks, in which the time scale of the α-function describing
the pulse shape becomes infinitely short and the response
amplitude infinitely large, exhibits a strong tendency toward
synchronous oscillations. During those oscillations, different
nodes’ activity variables rise independently in a random
fashion under the external drive, but then all the nodes fire
at once, with this pattern repeating at approximately regular
time intervals. An analytical theory of these oscillations for
all-to-all coupled networks was developed in Refs. [84,85].
We are in the process of developing an analogous theory for
networks with complex architectural connectivity, which will
be described in a companion paper [86].
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APPENDIX A: DERIVATION OF THE
MEAN-FIELD MODEL

In this Appendix, we describe a derivation of the mean-field
approximation to the IF pulse-coupled network model, as given
in Eq. (8), which we have used to describe the pulse rates
of the interacting dynamical units in the body of the paper.
Since this is a well-known mean-field neuronal network model
[37–40,87–90], our derivation proceeds in the framework of,
and uses the standard terminology from, the theory of neuronal
networks. Thus, only in this appendix, we refer to the k nodes
also as k neurons, to the activity variable vi(t) in Eq. (4)
as the neuronal voltage or membrane potential, to the pulse
train Gi(t) in Eq. (5) as the neuronal conductance, and to the k

nodes’ pulse rate mk as the k neurons’ firing rate. Nevertheless,
the derivation, as well as all the findings in this paper, should be

036104-13
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applicable to all pulse-coupled networks that can be described
by the conductance-based IF model.

We begin our derivation by adding to Eq. (4) for the
neuronal membrane-potential dynamics another differential
equation modeling the neuronal conductance dynamics. The
simplest such equation is

τg

dGi

dt
= −Gi + f

∑
j

δ(t − tij ) + S
∑
κi

∑
j

δ
(
t − t

κi

j

)
,

(A1)

where δ(·) denotes the Dirac δ function. We refer to the train
of the δ functions on the right-hand side of this equation as
the spike train arriving at the ith neuron. Equation (A1) yields
the conductance in Eq. (5) with the α-type function G(t) of
the form G(t) = �(t)e−t/τg /τg , where �(·) is the Heaviside
function and τg is the conductance time constant.

In our numerical simulations, we used G(t) as in Eq. (6)
for the conductance time course instead, in order to achieve
second-order accuracy [49]. This choice of the α function
requires a second-order system instead of Eq. (A1); however,
the final mean-field description turns out to be the same
as for the network using Eq. (A1). For clarity of expla-
nation, we therefore use Eq. (A1) to describe the network
conductances.

We derive the mean-field description (8) of the network
(4), (A1) using tools from nonequilibrium statistical me-
chanics, in particular, kinetic theory [37,38,91–107]. In what
follows, we first derive a Fokker-Planck equation that gives
the statistical description of the membrane potentials and
conductances of the k neurons and then derive the mean-field
model (8) from this equation in the limit of vanishing input
fluctuations.

1. Fokker-Planck equation

To investigate the statistical behavior of the network (4)
and (A1), we employ a statistical ensemble composed of
many copies of this network that are identical in every
aspect except their initial voltages Vi(0) and conductances
Gi(0), i = 1, . . . ,N + 1, and their external inputs. Each input
is an independent set of N + 1 independent realizations of
the Poisson spike train with the same rate ν(t), with each
realization driving a different neuron.

We coarse-grain the neurons in the network according to
their incoming degree and study the probability that, at time
t , the membrane potential and conductance of a neuron with
incoming degree k lie in the rectangle with sides (v,v + dv)
and (g,g + dg) in the (v,g) phase space. This probability is
given as ρk(v,g,t)dvdg, where ρk(v,g,t) is the corresponding
probability density function. Within the time interval (t,t +
dt), this probability changes due to (i) the smooth streaming
of phase points through the sides of this rectangle, governed
by the dynamics of Eqs. (4) and (A1) in the absence of
spikes, and (ii) the spike-induced jumps in the neuronal
conductance, governed by the sums of the Dirac δ functions
in Eq. (A1).

Equations (4) and (A1) imply that, to the lowest order in
dv, dg, and dt , the smooth streaming through the sides of the

rectangle adds the change

{[(
v + dv − Vr

τ

)
+ g

(
v + dv − VE

τ

)]
ρk(v + dv,g,t)

−
[(

v − Vr

τ

)
+ g

(
v − VE

τ

)]
ρk(v,g,t)

}
dgdt

+
[
g + dg

τg

ρk(v,g + dg,t) − g

τg

ρk(v,g,t)

]
dvdt. (A2a)

The jumps induced by the external spikes add the change[
ρk

(
v,g − f

τg

,t

)
− ρk (v,g,t)

]
dvdgdt (A2b)

at the time rate ν(t), and those due to the network spikes the
change [

ρk

(
v,g − S

τg

,t

)
− ρk (v,g,t)

]
dvdgdt (A2c)

at the time rate kμk(t), where μk(t) in Eq. (8c) is the average
firing rate of a neuron that is presynaptic to a k neuron.

It is important that the spike trains arriving at a given neuron
obey Poisson statistics, so that the probability of a spike arrival
over the time dt indeed equals the product of the respective
spike rate and dt . This is true for the external-drive train by
assumption, but need not be true for the train arriving from the
network. In particular, the spike train generated by any given
neuron typically does not obey Poisson statistics. Only the
joint output of many network neurons obeys these statistics
asymptotically and provided that each neuron fires at a low
rate and its spike times are mutually statistically independent
[108]. Therefore, only spike trains arriving at k neurons with
high input-degree k can be assumed as approximately Poisson,
and the equations for the densities ρk(v,g,t) with low node
degrees k are less accurate than those for the densities with
high node-degrees under this assumption.

To derive the total change, dρk (v,g,t) dvdg, of the prob-
ability density function ρk (v,g,t) during the time interval
(t,t + dt), we add all the terms in Eq. (A2), with the terms
in Eqs. (A2b) and (A2c) multiplied by their corresponding
time rates. Dividing the resulting equation by the product of
differentials, dvdgdt , in the limit as dv → 0, dg → 0 and
dt → 0, we find that the evolution of the probability density
ρk ≡ ρk (v,g,t), corresponding to k neurons, is governed by
the Boltzmann equation

∂tρk = ∂v

{[(
v − Vr

τ

)
+ g

(
v − VE

τ

)]
ρk

}

+ ∂g

(
g

τg

ρk

)
+ ν(t)

[
ρk

(
v,g − f

τg

,t

)
− ρk (v,g,t)

]

+ kμk(t)

[
ρk

(
v,g − S

τg

,t

)
− ρk (v,g,t)

]
, (A3a)

defined on the semi-infinite strip Vr < v < VT , 0 < g < ∞.
In Eq. (A3), the conductance jumps are accounted for by

the terms on the last two lines of Eq. (A3a). If we assume the
jumps to be small, we can Taylor expand the corresponding
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jump terms to second order and derive the Fokker-Planck-type
equation

∂tρk = ∂v

{[(
v − Vr

τ

)
+ g

(
v − VE

τ

)]
ρk

}

+ ∂g

[
1

τg

(g − gk(t))ρk + σ 2
k (t)

τg

∂gρk

]
, (A4)

where

gk(t) = f ν(t) + Skμk(t) (A5a)

is the mean input to a k neuron, and

σ 2
k (t) = 1

2τg

[f 2ν(t) + S2kμk(t)] (A5b)

represents this neuron’s variance of the input fluctuations. This
equation is again defined on the semi-infinite strip Vr � v <

VT , 0 � g < ∞.
We recast Eq. (A4) in the conservation form

∂tρk(v,g,t) + ∂vJ
V
k (v,g,t) + ∂gJ

G
k (v,g,t) = 0, (A6)

with the membrane-potential and conductance probability
fluxes, JV

k and JG
k , defined in the obvious way, and recall that

when a neuron’s membrane potential crosses the threshold VT ,
it is reset to Vr instantaneously, without changing the value
of the conductance. From these two pieces of information
we deduce the boundary condition connecting the membrane
potential fluxes through the threshold VT and reset Vr ,

JV
k (VT ,g,t) = JV

k (Vr,g,t) , (A7a)

for 0 � g < ∞. Moreover, no negative or infinite neuronal
conductance values can exist. Therefore, ρk(v,g < 0,t) ≡ 0
and

ρk(v,g → ∞,t) ∼ 0, (A7b)

together with all its derivatives. Consequently, the conductance
flux JG

k must vanish at g = 0, and g = ∞, so that

JG
k (v,g = 0,t) = 0, JG

k (v,g → ∞,t) = 0, (A7c)

for Vr � v < VT . Finally, the average firing rate of a k neuron,
mk(t), equals the integral of the probability flux JV

k (VT ,g,t)
across the threshold over all the conductance values; that is,

mk(t) =
∫ ∞

0
JV

k (VT ,g,t) dg = −
∫ ∞

0

[(
VT − Vr

τ

)

+ g

(
VT − VE

τ

)]
ρk (VT ,g,t) dg. (A7d)

Equation (A4), together with the boundary conditions
(A7a)–(A7c) and the nonlinear self-consistency conditions
(A7d), give the complete formulation of a Fokker-Planck-type
kinetic theory for describing the neuronal network (4) and
(A1) as an infinite system of partial differential equations
for the densities ρk(v,g,t). These equations are coupled
nonlinearly through the coefficients (A5a) and (A5b), which
couple through Eq. (8c) all the firing rates obtained from the
boundary terms expressed in Eq. (A7d). The main task of
the next section is to reduce this kinetic theory to the much

simpler mean-field approximation in Eq. (8a) for the average
firing rates mk of the k neurons alone.

2. Mean-field approximation

We now address the mean-driven operating regime of the
network (4) and (A1), in which the input fluctuations of any
neuron become negligible as compared to its mean input, that
is, σ 2

k (t)/gk(t) → 0 for the quantities in Eq. (A5) and all
node degrees k. In this limiting network, the input to all k

neurons is the same, and the effect of the the last two terms
in Eq. (A1) is statistically equivalent to a smooth input of
the form gk(t) = f ν(t) + Skμk(t). As can be deduced from
Eqs. (4) and (A1) with this replacement, neuronal membrane
potentials in this limit grow rapidly from reset to threshold and
then fire. Therefore, in a statistical sense, information about a
given neuron’s instantaneous conductance value provides little
information about its current membrane-potential value, and
so one should expect that the dynamics of conductance and
voltage are uncorrelated in this mean-driven limit.

In view of the discussion in the previous paragraph, in the
mean-driven limit of Eq. (A4), we can therefore first assume
the diffusion terms, which are multiplied by the conductance-
fluctuations variance, σ 2

k (t) in Eq. (A5b), to become negligible
as compared to the rest of the terms in Eq. (A4). Second, we
can also assume the probability densities of conductance and
voltage to be statistically independent [38], so that

ρk(v,g,t) = ρ
(v)
k (v,t)ρ(g)

k (g,t). (A8)

Inserting the solution form (A8) into the resulting limit of
Eq. (A4), integrating over the conductance, and taking into
account the boundary condition (A7c), yields the equation

∂tρ
(v)
k (v,t)=∂v

{[(
v−Vr

τ

)
+〈g〉k(t)

(
v−VE

τ

)]
ρ(v)(v,t)

}
,

(A9a)
where

〈g〉k(t) =
∫ ∞

0
gρ

(g)
k (g,t)dg

is the expected conductance value. Likewise, inserting the
solution form (A8) in the mean-driven limit of Eq. (A4),
multiplying by the conductance, integrating over both the
membrane potential and conductance, and taking into account
the boundary condition (A7a) yields the equation

d

dt
〈g〉k(t) = − 1

τg

[〈g〉k(t) − gk(t)] (A9b)

for the expected conductance 〈g〉k(t), where gk(t) = f ν(t) +
Skμk(t) is the mean input to a k neuron, given in Eq. (A5a).
The boundary condition (A7d) translates into

mk(t) = −
[(

VT − Vr

τ

)
+ 〈g〉k(t)

(
VT − VE

τ

)]
ρ

(v)
k (VT ,t) .

(A9c)
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In the stationary case, Eq. (A9b) relaxes to 〈g〉k = gk =
f ν + Sμk , and Eq. (A9a) can be integrated to yield

ρ
(v)
k (v) = − τmk

(v − Vr ) + gk(v − VE)
. (A10)

The normalization condition of ρ
(v)
k (v) as a probability density

function then gives the implicit equation for the firing rate mk ,
Eq. (8a).

We now take a more careful look at the conditions
that ensure the validity and consistency of the mean-field
approximation. Intuitively, small input fluctuations should
occur in neurons that receive many spikes, each of which
induces a very small conductance jump. This is ensured by
the limit in which f → 0 and S → 0 on the one hand, and at
least one of ν → ∞ or kμk → ∞ on the other, but such that
at least one of the products f ν and Skμk remains bounded
away from zero. An examination of the mean input gk and its
variance σ 2

k in Eqs. (A5) reveals that the ratio σ 2
k /gk indeed

vanishes in this limit. Note that the rescalings of the coupling
strength S by factors that decay with the network size N in
Secs. IV and V ensure the limit S → 0, and also that then,
in fact, σ 2

k /gk → 0 regardless of whether kμk → ∞, remains
bounded, or vanishes. Namely, in the latter two cases, the
relative smallness of the input fluctuations is due to the external
drive rather than the network drive.

For the network in Sec. IV D, however, the coupling
strength S does not need to be scaled so that it decays in
the large-network limit, and thus there is no a priori reason
why the mean-field model should even be applicable to it.
Nevertheless, comparison with numerical simulations depicted
in Fig. 5 clearly shows that the mean-field approximation is
quite accurate for this network, and therefore we included it in
the present paper. Why the validity of the mean-field model in
this case extends well beyond its formal range appears still to
be an open question, which will be addressed elsewhere.

APPENDIX B: DERIVATION OF THE EDGE-TYPE
DISTRIBUTION FUNCTION IN THE SCALE-FREE

NETWORK

In this Appendix, we describe the derivation of the edge-
distribution function, T (n,k) in Eq. (32), associated with the
pulse-coupled network studied in Sec. IV C. We construct
this directed network in two steps: First we construct the
corresponding undirected network following the algorithm
described in Ref. [41], and then randomly assign a direction
to each of the undirected edges.

In the major part of this Appendix, we discuss the
calculation of the edge-distribution function, Tu(n,k), in the
undirected network of [41]. Therefore, in what is to follow,
we use the term “degree of a node” to denote this node’s total
degree, that is, the number of all the (undirected) edges that
emanate from this node. This use of the term “node degree”
is restricted to this appendix only, as is the notation Pu(k)
for the distribution of these degrees and Tu(n,k) for the the
distribution of the edge types.

We grow the undirected network of [41] in stages: We
begin with an all-to-all connected network consisting of �

nodes, which are said to be active. In addition, in order to
avoid repeated node degrees, we modify the algorithm of [41]

by also attaching the j th of these initial active � nodes to
precisely j inactive nodes with degree 1. At each stage of
the network growth, a new active node is attached to every
active node via an undirected edge, resulting in � + 1 all-to-all
connected, active nodes. At this point, one of the active nodes
is deactivated; a node with the current degree n is deactivated
with the probability ∝1/n. Once a node has been deactivated,
it can never become active again. The procedure is repeated
for each new node.

The network construction proceeds so that there are no
repeated degrees in the set of active nodes at any stage of
the network growth, as mentioned above, which can easily
be shown by induction. In particular, if we begin with a set
of � active nodes with different degrees, all of which exceed
or equal �, then upon adding a new node, we increase those
degrees by one and end up with another set of � nodes with all
different degrees exceeding �, plus a node of degree �. After
one of these � + 1 nodes is deactivated, we are back to � nodes
with all different degrees that exceed or equal �. Thus, except
for the initial inactive nodes with degree 1, for every node in
the network, its degree n exceeds or equals the initial number
of active nodes, �, that is, n � �. Note that the initial inactive
nodes are not involved in the network construction and can be
dropped at the end of it.

1. Master equation

We now construct a set of master equations to describe
the expected number of edges connecting two deactivated
nodes with degrees n and k after t growth stages, denoted
by C3(n,k,t), from whose large-t limit we will compute the
edge-type distribution Tu(n,k). The following quantities are
auxiliary in the computation of C3(n,k,t): (i) P (n,t), the
probability that an active node, randomly chosen after stage t ,
is an n node; (ii) C1(n,k,t), the expected number of edges
connecting nodes with degrees n and k, with both nodes
active after stage t ; (iii) C2(n,k,t), the expected number of
edges connecting nodes with degrees n and k, with the node
with degree n deactivated and the node with degree k active
after stage t . Recall that all the node degrees involved in the
construction exceed or equal the initial number of active nodes,
n,k � �.

In order to construct the equations governing the evolution
of the probability P (n,t), n > �, we note that the expected
number of active n nodes after the t th node has been attached to
the active nodes, but before one of these nodes is deactivated,
is �P (n − 1,t − 1). (Here we recall that � is the number of
active nodes before the new node has been attached; the
expected number of nodes with degree � is 1; that is, we
are guaranteed the presence of the new node whose degree
is �.) At the same time, according to the above rules of the
network growth, there can be at most one active n node at any
growth stage, and therefore �P (n − 1,t − 1) also must equal
the probability, Prob(F ), of the event F that one of the active
nodes has degree n:

�P (n − 1,t − 1)

= 1 × Prob(F ) + 0 × [1 − Prob(F )] = Prob(F ). (B1)

At the end of the stage t , one of the � + 1 nodes is
deactivated. Let us introduce an auxiliary quantity, ρ(n,t),
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the probability that an active n node is deactivated at the
completion of stage t . [As mentioned above, ρ(n,t) ∝ 1/n.]
We then obtain the expression for the expected number of
active n nodes:

�P (n,t) = 1 × [1 − ρ(n,t)] Prob(F )

+ 0 × ρ(n,t) Prob(F ) + 0 × Prob(Fc), (B2)

where the superscript c denotes the complement of the given
event. In other words, upon the completion of the t th stage, the
expected number of n nodes is proportional to the expected
number of (n − 1) nodes at the (t − 1)st stage. From Eqs. (B1)
and (B2), we thus find that P (n,t) evolves according to the
equation

P (n,t) = P (n − 1,t − 1)[1 − ρ(n,t)]. (B3a)

To find the expression for the above probability ρ(n,t), we
count, as above, the expected number of active n nodes by
�P (n − 1,t − 1), n > �. Realizing that the last added active
node is certain to be the only one with degree �, and neglecting
the certainty that the deactivated n node was among the active
nodes, we find the approximate normalization factor in ρ(n,t).
Thus, we derive for ρ(n,t) the approximate formula

ρ(n,t) = 1

n
(
�
∑t+2�−1

i=�+1 P (i − 1,t − 1)/i + 1/�
) . (B3b)

Using a similar argument, we can show that the evolution
of the number of edges linking two active nodes with degrees
n and k, C1(n,k,t), is governed by the equation

C1(n,k,t) = C1(n − 1,k − 1,t − 1)[1 − ρ(n,t) − ρ(k,t)],

(B3c)
where the factor C1(n − 1,k − 1,t − 1) corresponds to the
number of edges connecting nodes with degrees n and k during
the t th stage, before the next node is deactivated, and the factor
in the brackets is the probability that neither of the two nodes
is deactivated at this stage.

The evolution of the number of edges linking an active node
with degree k and an inactive node with degree n, C2(n,k,t),
is governed by the equation

C2(n,k,t) = C2(n,k − 1,t − 1)[1 − ρ(k,t)]

+C1(n − 1,k − 1,t − 1)ρ(n,t). (B3d)

In the first term of the sum on the right-hand side, the
factor C2(n,k − 1,t − 1) corresponds to the number of edges
connecting an inactive node with degree n and an active
node with degree k during the t th stage before the next
node is deactivated, and the factor in the square brackets
gives the probability that the active node of degree k is not
deactivated at this stage. The second term corresponds to the
expected number of edges that connected two active nodes
with degrees n − 1 and k − 1 at stage t − 1, where the node
with degree n − 1 was deactivated immediately after receiving
an additional edge from the newly added node.

Finally, the evolution of the number of edges linking two
inactive nodes with degrees n and k, C3(n,k,t), is governed by

the equation
C3(n,k,t) = C3(n,k,t − 1) + C2(n,k − 1,t − 1)ρ(k,t)

+C2(k,n − 1,t − 1)ρ(n,t). (B3e)

The first term on the right-hand side of Eq. (B3e) gives
the number of edges connecting two inactive nodes at stage
t − 1. This number is updated during the subsequent stage by
an edge connecting what at stage t − 1 were an inactive node
with degree n and an active node with degree k − 1, or vice
versa, with either active node being deactivated during stage t

with probability ρ(k,t) or ρ(n,t), respectively, after receiving
an additional edge from the newly added node.

The nonvanishing initial conditions for the quantities in
Eqs. (B3) are

P (n,0) = 1/�, when n ∈ [�,2� − 1], (B4a)

C1(n,k,0) = 1, when n,k ∈ [�,2� − 1], n �= k, (B4b)

C2(1,k,0) = k − � + 1, when k ∈ [�,2� − 1]; (B4c)

all the other initial conditions vanish. These conditions
correspond to the initial network with the � all-to-all connected
active nodes and the � inactive nodes of degrees 1, . . . ,�

connected to them.
The boundary conditions for Eqs. (B3) are

P (�,t) = [1 − ρ(�,t)]/�, (B5a)

C1(n,�,t) = C1(�,n,t)

= �P (n − 1,t − 1)[1 − ρ(n,t) − ρ(�,t)], (B5b)

C2(n,�,t) = �P (n − 1,t − 1)ρ(n,t), (B5c)

C2(�,n,t) = C2(�,n − 1,t − 1)[1 − ρ(n,t)]

+ �P (n − 1,t − 1)ρ(�,t), (B5d)

C3(�,n,t) = C3(n,�,t) = C3(n,�,t − 1)

+C2(�,n − 1,t − 1)ρ(n,t), if n �= �, (B5e)

C3(�,�,t) = 0, (B5f)

where ρ(·,t) can be computed from Eq. (B3b) using only
quantities known from stage t − 1. Arguments used to obtain
these conditions are similar to those used in the derivation
of the corresponding recurrence equations, except that the
expected number of active � nodes just before the completion
of a stage always equals 1. Thus, the right-hand side of
Eq. (B5a) equals the probability that an active node picked
at random with probability 1/� will be the � node, given that
this node has not been deactivated. Likewise, the expected
number of edges connecting an active node with degree n to
the sole active node with degree � just before the t th stage
is completed is now given by �P (n − 1,t − 1) rather than by
C1(n − 1,k − 1,t − 1) used in Eqs. (B3c) and (B3d), which
hold when both n,k � (� + 1). Equation (B5e) is obtained in
the same manner as Eq. (B3e), except taking into account that
no node with degree <� exists, and so C2(n,� − 1,t − 1) = 0.
For the same reason, we must have C3(�,�,t) = C3(�,�,t − 1),
and since C3(�,�,0) = 0, Eq. (B5f) follows.
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2. Late-stage asymptotics

We study the equations (B3a)–(B3e) in the limit of large t ,
in the approximation of continuous n and k. In this limit, all the
edges can be considered deactivated and their distribution is
described by the function C3(n,k,t). The influence of the initial
conditions becomes lost in this limit. We drop the argument
t in all the dependent variables except C3, so that P (n) ∼
P (n,t � 1), ρ(n) ∼ ρ(n,t � 1), and Ci(n,k) ∼ Ci(n,k,t �
1), i = 1,2. Note that, in this limit, the network size grows
without a bound, so that t → ∞ implies N → ∞. In the rest
of this Appendix, we therefore assume that the network size
N is large and consistently neglect quantities that decay as N

grows.

a. P and ρ asymptotics

In the large-t limit, after the probability density ρ(n) is
expressed through Eqs. (B3b) and (B3a) becomes

dP (n)

dn
= − P (n)

n
[
�
∫ ∞
�

P (k)dk/k + 1/�
] , (B6)

where the difference P (n) − P (n − 1) has turned into the
derivative with respect to n and the sum in the denominator on
the right-hand side has become an integral. The infinite upper
limit is the result of the limit t → ∞.

We look for a solution of Eq. (B6) in the form of P (n) =
αnγ , n � �. From the normalization

∫ ∞
�

P (n) dn = 1 we find
that

α = −(γ + 1)�−(γ+1). (B7)

Substituting this P (n) anzatz in Eq. (B6), we then find the
value of γ to be

γ = − 2

1 + 1/�
, (B8)

which also implies that the denominator on the right-hand side
of Eq. (B6) equals −γ . Further substituting this denominator
in Eq. (B3b), we finally find the distribution ρ(n) to be given
by

ρ(n) = −γ

n
. (B9)

b. C1 asymptotics

The asymptotic behavior of C1(n,k) is found by approxi-
mating Eq. (B3c) in the continuous limit of n and k with the
partial differential equation

∂C1

∂n
(n,k) + ∂C1

∂k
(n,k) = −C1(n,k)[ρ(n) + ρ(k)]

= γC1(n,k)

(
1

n
+ 1

k

)
, (B10)

where we used Eq. (B9). Using the method of characteristics
[109,110], we find the solution of this equation to be of the
form

C1(n,k) = βnγ kγ G(|n − k|), (B11)

where the constant β and the function G(·) are obtained from
the boundary conditions (B5). Note, in particular, that there
is never an edge connecting two active nodes with the same

degree, therefore C1(n,n) = 0, which we formally take into
account by setting

G(|n − k|) = 1 − δ(n − k). (B12)

From the boundary conditions (B5b), we find

C1(n,�) = �P (n)[1 − ρ(n) − ρ(�)]

= αnγ �

(
1 + γ

n
+ γ

�

)
. (B13)

At the same time, from Eqs. (B11) and (B12), we find
C1(n,�) = βnγ �γ , and therefore for n � � � 1

β = α�−γ+1 = −(γ + 1)�−2γ (B14)

and

C1(n,k) = −(γ + 1)�−2γ nγ kγ [1 − δ(n − k)]. (B15)

c. C2 asymptotics

Again, by treating n and k as continuous variables, we
approximate the difference in Eq. (B3d) by

∂C2

∂k
(n,k) = −C2(n,k)ρ(k) + C1(n,k)ρ(n).

Using Eqs. (B9) and (B15), we can rewrite this equation as

∂C2

∂k
(n,k) − γC2(n,k)

k
= −γβnγ−1kγ [1 − δ(n − k)],

which, after being multiplied by k−γ , reduces to

[k−γ C2(n,k)]k = −γβnγ−1[1 − δ(n − k)].

Integrating this equation over k and multiplying the result by
kγ , we obtain

C2(n,k) = −γβnγ−1kγ+1

+ ξ (n)kγ + 2γβnγ−1kγ H (n − k), (B16)

where H (·) is the Heaviside function and ξ (·) is an unknown
arbitrary function. Letting k = � and n �= � in this equation,
we find

C2(n,�) = −γβnγ−1�γ+1 + ξ (n)�γ ,

while the boundary condition in Eq. (B5c) gives

C2(n,�) = −γα�nγ−1,

which determines the unknown function as ξ (n) = ϕnγ−1,
where ϕ is given by the expression

ϕ = �−γ+1γ (β�γ − α). (B17)

Thus, the final expression for the number C2(n,k) is

C2(n,k) = −γβnγ−1kγ+1 + ϕnγ−1kγ

+ 2γβnγ−1kγ H (n − k), (B18)

where α, β, and γ are given by Eqs. (B7), (B14), and (B8),
respectively.
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d. C3 asymptotics

Finally, for continuous n and k and t � 1, Eq. (B3e) for
the function C3(n,k,t) is approximated by the equation

∂C3

∂t
(n,k,t) = C2(n,k)ρ(k) + C2(k,n)ρ(n),

where we have approximated n ∼ n − 1 and k ∼ k − 1,
respectively. Integrating this equation over t and using
Eqs. (B9) and (B18), we find

C3(n,k,t) ∼ t[C2(n,k − 1)ρ(k) + C2(k,n − 1)ρ(n)]

= t

[
nγ−1(−γβkγ+1 + ϕkγ )

(
− γ

k

)

+ kγ−1(−γβnγ+1 + ϕnγ )

(
− γ

n

)

− 2γ 2βnγ−1kγ−1

]
,

where the last term is the result of adding two Heaviside
functions. This expression finally simplifies to

C3(n,k,t) ∼ tγ 2β(nγ−1kγ + nγ kγ−1 − 2�kγ−1nγ−1), (B19)

where the constants β and γ are given in Eqs. (B14) and (B8),
respectively.

3. Large initial network approximation

For a large number, �, of initial active nodes, the parameter
γ in Eq. (B8) satisfies the relationship γ ≈ −2. Therefore, in
this limit, Eq. (B19) for the edge-distribution function Tu(n,k)
reduces to the equation

C3(n,k,t) = tγ 2β

(
1

n3k2
+ 1

n2k3
− 2�

k3n3

)
. (B20)

As shown in Ref. [41], the distribution of the node degrees for
this network equals

Pu(k) = 2�2

k3
, (B21)

with the mean degree μu ≡ 2�. Therefore, the edge-
distribution function, Tu(n,k), which is obtained by normaliz-
ing the function C3(n,k), is given by the formula

Tu(n,k) = APu(n)Pu(k)(n + k − μu), (B22)

where the constant A is obtained from the normalization of the
function Tu(n,k),

1 =
∫ ∞

�

∫ ∞

�

Tu(n,k)dndk

= A

∫ ∞

�

∫ ∞

�

Pu(n)Pu(k)(n + k − μu)dndk = Aμu.

(B23)

We thus conclude that

Tu(n,k) = Pu(n)Pu(k)(n + k − μu)

μu

, (B24)

up to terms that decay with the network size.
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FIG. 8. (Color online) The dependence of the conditional prob-
ability Pu(n | k) in the undirected network with � = 50, as derived
from the edge-distribution function Tu(n,k) and the incoming-degree
distribution Pu(k) using Eq. (3). The dots (red online) represent
averages over 103 network realizations using Monte Carlo simulations
of the network of size N = 104. The dashed line (green online)
represents the analytical result of Eqs. (B21) and (B24) with n,k � �.
(Recall that Pu(n | k) = 0 for n,k < �.) Top to bottom on the right-
hand side of the figure: k = 50, 400, and 4000.

We have verified the accuracy of the approximation in
Eq. (B24) by comparing its results with those of direct numer-
ical Monte Carlo simulations. The comparison is presented
in Fig. 8, which shows a highly accurate match provided the
expressions in Eqs. (B21) and (B24) are normalized using sums
over integers rather than integrals. We present the conditional
probability Pu(n | k), as derived from the edge-distribution
function Tu(n,k) and the incoming-degree distribution Pu(k)
using Eq. (3), because the curves representing it are normalized
and therefore easier to depict on one set of axes. Equation (3)
holds for total degrees just as it holds for incoming degrees
and for the same reason.

4. Directed network

Finally, we compute approximate expressions for the node-
degree and edge-type distribution functions in the directed
network from the corresponding distributions in the undirected
network. We compute these approximate expressions in the
limit of a large initial number of active nodes, � � 1. Recall
that we obtain the directed network by assigning the direction
to every edge in the undirected network randomly with
probability 1/2.

a. The node-degree distribution

First, let us discuss how to obtain the incoming-degree
distribution in the directed network, Pin(k), from the total-
degree distribution of the undirected network,

Pu(k) = 2�2

k3
, (B25)

which was derived in Ref. [41]. We begin by determining the
number of ways in which a given n node in the undirected
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network can become a k node in the directed network, which
equals ( n

k ). [Recall that ( n

k ) = 0 if k > n.] The probability
that an undirected edge emanating from this node becomes
an incoming edge for this node is 1/2, and the same for an
outgoing edge. Therefore, the probability that an n node in
the undirected network can become a k node in the directed
network equals (

n

k

)(
1

2

)n

.

Using the law of total probability, if all node degrees were
allowed in the undirected network, we would find that the
directed node-degree distribution Pin(k) obtained from the
undirected node-degree distribution Pu(n) would be given by

Pin(k) =
N∑

n=k

(
n

k

) (
1

2

)n

Pu(n).

Since, in our case, the undirected network can only have nodes
with degrees ν � �, then

Pin(k) =
N∑

n=max{�,k}

(
n

k

) (
1

2

)n

Pu(n). (B26)

Note that we clearly can have k < � in the directed network.
The De Moivre-Laplace theorem [111] shows that the

binomial distribution can be approximated by the Gaussian
distribution for large n and k − n/2 = O(

√
n) as(

n

k

) (
1

2

)n

∼ 1√
πn/2

exp

(
− (k − n/2)2

n/2

)
. (B27)

(For other values of k, both sides are exponentially small.)
Using the undirected-network degree distribution (B25), we
therefore find for the directed network distribution (B26) the
approximate expression

Pin(k) ∼ 23/2π−1/2�2

×
∫ N

max{�,k}
n−7/2 exp

(
− (k − n/2)2

n/2

)
dn, (B28)

and the substitution n = 2kv lets us transform this integral into
the form

Pin(k) ∼ 2−1π−1/2�2k−5/2

×
∫ N/2k

max{�/2k,1/2}
v−7/2 exp

(
−k

(1 − v)2

v

)
dv.

(B29)

For large values of k, the right-hand side of Eq. (B29)
contains the type of integral whose asymptotic behavior can
be calculated using Laplace’s method by expanding around the
maximum of the exponent at v = 1. The gist of this method
is the realization that the exponential can be approximated
beyond all orders by a Gaussian centered at the maximum of
the exponent and that only an O(1/

√
k)-size neighborhood of

this maximum counts in the integration. Therefore, for k >

�/2, we can move the lower limit of integration in Eq. (B29)
to any fixed number below 1 while only incurring a negligible
error at any order of the expansion. On the other hand, when
k � �/2, the lower limit �/2k must be retained. Therefore, at

the leading order, we can fix the lower limit in Eq. (B29) at
�/2k. Moreover, the v variations in the powers multiplying
the exponential can be ignored in both cases. Therefore, after
making the coordinate change x = v − 1, we can approximate
the integral in Eq. (B29) by

Pin(k) ∼ 2−1π−1/2�2k−5/2
∫ N/2k−1

�/2k−1
exp(−kx2)dx

= �2

4k3

{
erf

[√
k

(
N

2k
− 1

)]

− erf

[√
k

(
�

2k
− 1

)]}
, (B30)

where erf(·) is the complementary error function erf(z) =
(2/

√
π)

∫ z

0 e−t2
dt .

For 1 � �/2 � k � N/2 we find the final asymptotic
approximation for the function in Eq. (B30) to be as in Eq. (30),
while for 1 � k � �/2 or k � N/2 the function in Eq. (B30)
has an O(

√
k)-wide transition layer near k = �/2 or k = N/2,

respectively. For k = O(1) � �, one must scale the integration
variable in Eq. (B28) by � instead of k and perform a similar
Laplace-type asymptotic analysis. However, the result of this
analysis and Eq. (B30) both give Pin(k), which is exponentially
small in � and thus negligible for k = O(1) � �. Therefore,
using Eq. (B30) all the way down into this regime gives an
acceptable uniform asymptotic approximation of the density
Pin(k). In fact, in view of the sharp transition in the density
Pin(k) near k = �/2 between the expression in Eq. (30) and
an exponentially small quantity, we approximate Pin(k) even
more simply by Eq. (30) for nodes with incoming degrees
k � �/2 and 0 for those with degrees k < �/2. Likewise,
we approximate Pin(k) as vanishing for k > N/2. This is the
approximation that we use in the body of the paper.

b. The edge-type distribution

We use a similar procedure to approximate the edge-type
distribution function in the directed network. The probability
that an edge connecting a ν node to a κ node in the undirected
network becomes a directed edge connecting an n node to a
k node in the directed network is computed as follows: First,
let us assume that the ν node becomes the n node and the κ

node becomes the k node. Note that the probability is 1/2 that
the direction of the edge is chosen to point from the ν node to
the κ node. We therefore know that the ν node must acquire
one outgoing edge and so must still get n incoming edges
chosen from the total of ν − 1 undirected edges. Likewise, the
κ node must acquire one incoming edge, and so must still get
k − 1 incoming edges from among κ − 1 undirected edges.
Altogether, the number of ways this can be accomplished is
thus (

ν − 1

n

)(
κ − 1

k − 1

)

and the conditional probability for this to happen is

(
ν − 1

n

)(
κ − 1

k − 1

)(
1

2

)ν+κ−2

,
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given that the direction of the edge was chosen from the ν

node to the κ node. The total probability for this to happen is
therefore (

ν − 1

n

)(
κ − 1

k − 1

)(
1

2

)ν+κ−1

.

Likewise, if the ν node in the undirected network becomes
the k node in the directed network and the κ node in the
undirected network becomes the n node in the directed network
at the two ends of the given edge, the probability for this event
is (

ν − 1

k − 1

)(
κ − 1

n

)(
1

2

)ν+κ−1

.

Therefore, altogether, the probability that an undirected
edge connecting a ν node to a κ node in the undirected network
becomes a directed edge connecting an n node to a k node in
the directed network is(

ν − 1

n

) (
κ − 1

k − 1

) (
1

2

)ν+κ−1

+
(

ν − 1

k − 1

) (
κ − 1

n

) (
1

2

)ν+κ−1

.

If all the node degrees in the undirected network were
allowed, the expression for the distribution Td (n,k) would thus
be

Td (n,k)

=
N∑

ν=n+1

N∑
κ=k

(
ν − 1

n

)(
κ − 1

k − 1

)(
1

2

)ν+κ−1

Tu(ν,κ)

+
N∑

ν=k

N∑
κ=n+1

(
ν − 1

k − 1

)(
κ − 1

n

)(
1

2

)ν+κ−1

Tu(ν,κ)

=
N∑

ν=n+1

N∑
κ=k

(
ν − 1

n

)(
κ − 1

k − 1

)(
1

2

)ν+κ−2

Tu(ν,κ),

where we have taken into account that the distribution Tu(ν,κ)
is symmetric with respect to interchanging its arguments. Since
only degrees ν,κ � � are allowed in our undirected network,
this formula becomes

Td (n,k) =
N∑

ν=max{�,n+1}

N∑
κ=max{�,k}

(
ν − 1

n

)

×
(

κ − 1

k − 1

)(
1

2

)ν+κ−2

Tu(ν,κ), (B31)

To find the large-� approximation for the edge-type distri-
bution Td (n,k) in Eq. (B31), we again begin by approximating
its coefficients using the DeMoivre-Laplace formula (B27),
replacing the sums with appropriate integrals, and applying
Laplace’s method. While the calculation is considerably more
involved than that leading to the directed edge distribution, the
end result is indeed given by Eq. (32) for �/2 < n,k < N/2,
and negligibly small otherwise. Instead of giving the details
of this calculation, in Fig. 9, we show the agreement of
this large-� asymptotic approximation for Td (n,k) with the
approximate evaluation of Eq. (B31), as described below, and

10
2

10
310

−7

10
−5

10
−3

10
−1

n

P
d
(n

|k
)

simulations
numerical evaluation
analytic

FIG. 9. (Color online) The dependence of the conditional prob-
ability Pd (n | k) in the directed network with � = 50, as derived
from the edge-distribution function Td (n,k) and the incoming-degree
distribution Pin(k) using Eq. (3). The dots (red online) represent
averages over 103 network realizations using Monte Carlo simulations
of the network of size N = 104. The solid line (black online)
represents a numerical evaluation using Eqs. (B31) and (B26) as
described in the text. The dashed line (green online) represents the
analytical result of Eqs. (30) and (32) with �/2 < n,k < N/2. Top to
bottom on the right-hand side of the figure: k = 25, 200, and 2000.
We do not display the transition layer near n = N/2.

the results of Monte Carlo simulations. For ease of depiction,
we again present the conditional probability Pd (n | k), as
derived from the edge-distribution function Td (n,k) and the
incoming-degree distribution Pin(k) using Eq. (3).

Finally, for a directed network of size N , a direct numerical
evaluation of the edge distribution Td (n,k) in Eq. (B31)
would require ∼N4 operations (1016 in our case). Instead,
for �/2 � n,k � N/2, we approximate the sums in Eq. (B31)
by taking ν’s and κ’s from the intervals centered at 2n and
2k with half-widths 2

√
2n and 2

√
2k, respectively. These two

half-widths approximately equal twice the standard deviations
of the (approximately) binomial distributions appearing in
Eq. (B31).

APPENDIX C: LEADING-ORDER PULSE RATE
FOR THE ASYMMETRIC, SCALE-FREE NETWORK

In this Appendix we derive Eq. (46) from Sec. IV D.
We begin by seeking a solution of Eq. (13) with large-k
asymptotic behavior mk ∼ Bkγ , where γ > 1, assumed in
Eq. (45). Inserting this ansatz into Eq. (13) and computing
the kernel K(n,k) from Eqs. (14), (42), and (43), we arrive at
integrals of the form

∫ ∞

0

nγ dn∏l
j=r (n + aj )

= − π

sin πγ

r∑
j=1

a
γ

j∏r
l = 1
l �= j

(al − aj )
, (C1)

with aj > 0, j = 1, . . . ,r . These integrals are evaluated using
residues over a keyhole contour, with the keyhole comprising
the upper and lower edge of the branch cut along the positive
real axis and a small circle around the origin, and the rest of
the contour consisting of a large circle.
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Using the result of Eq. (C1), which in our case converges
for γ < 4, we find Eq. (13) to have become

Bkγ ∼ ψ − πBλ

sin πγ

{
k + 3 − 2γ (k + 1)

− 1

2
[(k + 1)γ+1(k + 2)(k + 3)

− (k + 2)γ+1(k + 3)(3k + 1)

+ (k + 3)γ+1k(3k + 5)

− (k + 4)γ k(k + 1)(k + 3)]

}
. (C2)

Expanding the expression on the right-hand side of this
equation for large values of k, we find that the O(kγ+j ) terms,
with j = 1, 2, and 3, vanish. For the O(kγ ) term, we find
the coefficient −πBλγ (γ − 2)(γ − 3)/ sin πγ , which must
match the coefficient B on the left-hand side, yielding Eq. (46).
We neglect all the terms of lower order in k. This includes the
linear terms, due to the assumption γ > 1.

APPENDIX D: ESTIMATES FOR THE
NETWORK-COUPLING SCALING BOUNDS

In this Appendix, we derive the estimates used to establish
the scaling bounds in Sec. V. First, we derive the estimate
in Eq. (49). A single iteration of Eq. (13) produces the
equation

mk = ψ

(
1 + λ

∫ N

0
K(k,n)dn

+ λ2
∫ N

0

∫ N

0
K(k,n)K(n,p)mp dn dp

)
. (D1)

Noting that all the terms on the right-hand side of this
inequality are non-negative, we see that mk exceeds the sum of
the first two terms alone. The second term is easily calculated
to equal ψλk using Eqs. (14) and (1), and so the estimate (49)
follows.

Second, we show how the estimate in Eq. (51) follows from
the weak-correlation condition (50). In particular, when this
condition is satisfied, Eq. (14) implies that the kernel K(k,n) in
Eq. (13) satisfies the estimate K(k,n) � ηknPin(n)/μ, which
further implies that the ith iterated kernel, Ki(k,n) in Eq. (16c),

satisfies the estimate

Ki(k,n) �
∫ N

0
. . .

∫ N

0

ηky1Pin(y1)

μ

ηy1y2Pin(y2)

μ
· · ·

× ηyi−1nPin(n)

μ
dy1 . . . dyi−1

= ηk

(
η〈n2〉N

μ

)i−1
nPin(n)

μ
. (D2)

Using Eq. (16a), we thus conclude that the ith coefficient
φi(k) in the Liouville-Neumann series (15) can be bounded by
φi(k) � ψηk(η〈n2〉N/μ)i−1. Summing the geometric-series
majorant obtained from this estimate now implies that the
entire Louiville-Neumann series for the pulse rate mk can be
bounded by the estimate in Eq. (51).

To derive the estimate in Eq. (56) from the statistical
symmetry of the network, we iterate Eq. (13) twice, and
integrate the resulting equation over k with the wieght Pin(k).
We thus obtain the following equation for the pulse rate mk

averaged over the entire network:

m̄ =
∫ N

0
Pin(k)mkdk = ψ + ψλμ

+ψλ2
∫ N

0

∫ N

0

∫ N

0
Pin(k)K(k,y1)K(y1,y2)dy1dy2dk

+ λ3
∫ N

0

∫ N

0

∫ N

0

∫ N

0
Pin(k)

×K(k,y1)K(y1,y2)K(y2,y3)my3dy3dy2dy1dk. (D3)

Using Eq. (14), we can rewrite the triple integral multiplying
ψλ2 in this equation as

μ2
∫ N

0

∫ N

0

∫ N

0

T (y1,k)T (y2,y1)

Pin(y1)
dy1dy2dk

= μ

∫ N

0

∫ N

0
y1T (y2,y1)dy2dy1

=
∫ N

0
y2

1Pin(y1)dy1 = 〈n2〉N, (D4)

where we have used Eqs. (55) and (1) to arrive at the
expressions on the second and third lines, respectively. Recall
that Eq. (55) follows from the assumed statistical symmetry
of the network. Equation (D4) implies that Eq. (D3) can be
rewritten as Eq. (56).
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