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Hysteresis effects of changing the parameters of noncooperative games
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We adapt the method used by Jaynes to derive the equilibria of statistical physics to instead derive equilibria of
bounded rational game theory. We analyze the dependence of these equilibria on the parameters of the underlying
game, focusing on hysteresis effects. In particular, we show that by gradually imposing individual-specific tax
rates on the players of the game, and then gradually removing those taxes, the players move from a poor
equilibrium to one that is better for all of them.
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I. INTRODUCTION

One of the most succinct derivations of statistical physics
is based on the maximum entropy (Maxent) principle of
information theory [1–3]. In this paper we apply Maxent to
the problem of predicting the joint behavior of interacting
humans rather than the problem of predicting the joint behavior
of interacting particles. This provides a connection between
statistical physics, information theory, and game theory.

Maxent concerns the problem of how best to predict the
probability distribution p over a system’s states based on
limited prior knowledge concerning p. It says we should make
that prediction using a version of Occam’s razor: Choose the
p that assumes nothing beyond the prior knowledge. Maxent
formalizes this version of Occam’s razor as meaning we
should choose the p that has maximum entropy among all
p consistent with that prior knowledge. To solve for that p we
must extremize a Maxent Lagrangian.

In the context of statistical physics, our prior knowledge
might be the Hamiltonian of the system and the value of the
system’s expected energy. In this case the Maxent Lagrangian
is the system’s free energy. So the Maxent principle says
that for that prior knowledge, we should predict the p that
minimizes the free energy of the system, that is, predict p

is the canonical ensemble [3,4]. If our prior knowledge also
specifies the expected number of particles in the system, p is
defined over a different space, and Maxent now says we should
predict that p is the grand canonical ensemble.

Noncooperative game theory [5–8] is concerned with how
to predict the behavior of a set of human “players,” based on
knowing each player’s utility function. This is a starting point
for the field of microeconomics. More generally, it is central
to the foundations of many formalizations of socioeconomic
systems. It also has proven central to many analyses of natural
selection, in the guise of evolutionary game theory [9,10].
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The idea of applying tools from statistical physics to
microeconomics extends back to the 19th century. While some
more recent work on this issue has come from the economics
community [11], most of the recent work has originated in the
physics community, under the label of “econophysics.” Much
of econophysics is concerned with socioeconomic systems at a
“coarse-grained level,” for instance using the tools of statistical
physics to analyze stylized facts of empirical distributions
such as the returns in financial markets [12]. In addition to
such analysis of statistical regularities in large financial and
economic data sets, econophysics also includes models of
interactions of possibly heterogeneous agents.

Often (but not always) this work either does not consider the
foundations of the behavior, or tries to provide explanations
using nongame theoretic, mechanistic models. Some examples
are multiagent models with agents choosing their behavior
according to some plausible rules [13]. Other examples are
models from physics such as Ising or Potts models that are
used as abstract models for collective phenomena, for example,
in option dynamics [14] or herd behavior in stock markets
[15]. Typically this work tries to deduce or predict statistical
regularities at the coarse-grained macrolevel as emerging from
the local interactions of many such agents and to understand
the mechanisms of aggregation. Among many references, a
sample of recent achievements is [16] (minority game models),
[17] (global effects of local behavior), and [18] (heterogeneous
agents and phase transitions). See [19] for a nice overview.

In this paper we start by showing how the techniques of sta-
tistical physics can also be applied to analyze socioeconomic
systems at the fine-grained level of game theory, as well at the
coarse-grained level usually considered. Elaborating on the
analysis of [20], we begin by showing how to use the Maxent
principle to derive a modification to the Nash equilibrium (NE)
concept of game theory [5–8].

In this application of Maxent to game theory, we have a
separate piece of prior knowledge for each player of the game,
concerning the expected value of the utility of that player.
In comparison, when using Maxent to derive the canonical
ensemble, we have a single piece of prior knowledge, which
also concerns an expected value (of the energy of the full
system). Due to the formal similarity of these two types of
prior knowledge, the modified version of the Nash equilibrium
that we derive is similar to the canonical ensemble. However,
rather than a single Boltzmann distribution, involving a single
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Hamiltonian and a single temperature, our modification to
the Nash equilibrium has a separate Boltzmann distribution
for each player. Each player’s Boltzmann distribution involves
that player’s utility function, and a “temperature” unique to that
player. (This temperature is a quantification of the associated
player’s bounded rationality.) We also briefly discuss the
application of Maxent to game theory when the number of
players of various types in unknown. This results in each
player type following a grand canonical ensemble rather than
a canonical ensemble.

After deriving our modified Nash equilibrium that is related
to the canonical ensemble, we analyze its dependence on the
parameters of the underlying game, focusing on bifurcation
behavior and hysteresis effects. In particular, we show that
the changes of the temperature can be interpreted as changes
of a “tax rate” and that by “adiabatically slowly” increasing
individual-specific tax rates on the players of the game, and
then gradually removing those taxes, the joint behavior of the
players moves from a poor equilibrium to a Pareto-superior
one. In fact, this can be done in such a way that the players
agree to each infinitesimal change in tax rates since each such
change increases their expected utility.

Next we introduce three toy models of how a society may
collectively decide on each such infinitesimal change in tax
rates. One of these is a myopic model of “socialism,” in which
each change is made to maximize the immediate gain in the
sum of the player expected utilities. Another is a myopic model
of a “market,” in which the players use unstructured bargaining
[6] to decide on the infinitesimal changes in their tax rates. The
final model is a myopic version of “anarchy,” in which each
player changes their own tax rate, assuming the others do not
change theirs.

We end up by comparing these three ways of running a
society in terms of the associated discounted sum of total
utilities along the path of tax rates. We find that the anarchy
model always does worse than the other two models. However,
the market model outperforms the socialism model for a low
enough discounting rate, whereas socialism does better near
term, that is, with a large enough discounting rate.

II. BACKGROUND

A. The maximum entropy principle

Shannon [21] was the first person to realize that based
on a simple set of axioms there is a unique real-valued
quantification of the amount of syntactic information in a
distribution p(y). This quantification is the Shannon entropy of
that distribution, S(p) = −∑

u p(y)ln[ p(y)
μ(y) ]. It measures the

amount of uncertainty in p concerning an outcome y generated
by sampling p. As such, it can be seen as the amount of
information that can be gained from observing an outcome
sampled according to p.1

1In this equation μ is an a priori measure over y, allowing the
argument of the logarithm to be unitless. It is often interpreted as
a prior probability distribution. Unless explicitly stated otherwise,
in this paper we will always assume it is uniform, and not write it
explicitly. See [1,3,4].

As an example, the distribution with maximal entropy, that
is, highest uncertainty, is the one that does not distinguish at all
between the various y; the uniform distribution. Conversely,
the most precise distribution is the one that specifies a
single possible y. For this distribution, we cannot gain
any further information by observing an outcome, because
we know already which outcome—y—will appear. Note
that for a product distribution, entropy is additive, that is,
S[

∏
i pi(yi)] = ∑

i S(pi).
Say we are given some incomplete prior knowledge about a

distribution P (y). How should one estimate P (y) based on that
prior knowledge? Shannon’s result (as interpreted by Jaynes
[3]) tells us how to do that in the most conservative way:
do not put anything else into your estimate of P (y) beyond
what is already contained in the prior knowledge about P (y).
Information about what is uncertain, that is, not yet known,
should be gained from observations and not assumed prior to
them. This approach is called the maximum entropy principle
(Maxent).

As an example, the prior knowledge concerning P (y) may
be in the form of one or more constraints on expected values
of functions under P . Used this way, Maxent has proven
extremely accurate in domains ranging from signal processing
to image processing to supervised learning [2]. Famously, it
was also used by Jaynes to derive statistical physics [4]; the
prior knowledge constraints in that domain concern quantities
like the expected energy of a system or its expected number of
particles of various types.

B. Noncooperative game theory

In a finite, strategic form noncooperative game, one has a
set of N players. Each player i has its own set of allowed
pure strategies Xi . A mixed strategy is a distribution qi(xi)
over player i’s |Xi | possible pure strategies. We write the joint
space of all players’ pure strategies as X. The joint distribution
over X is given by sampling each player’s mixed strategy
independently: q(x) = ∏

i qi(xi). As shorthand, we will use
the minus symbol to indicate the set of all players with one
removed, for example, q−i(x−i) ≡ ∏

j �=i qj (xj ). We call a joint
pure (mixed) strategy choice of all the players a pure (mixed)
strategy profile.

Each player i has an utility function ui : X → R. So given
mixed strategies of all the players, the expected utility of
player i is E(ui) = ∑

x

∏
j qj (xj )ui(x). Much of noncoop-

erative game theory is concerned with equilibrium concepts
specifying what joint strategy one should expect to result from
a particular game. In particular, in a Nash equilibrium every
player adopts the mixed strategy that maximizes its expected
utility, given the mixed strategies of the other players. More
formally, ∀i,

qi = argmaxq ′
i

[ ∑
x

p′
i(xi)q−i(x−i)ui(x)

]
.

In general, this set of coupled equations has multiple solutions.
A well-recognized problem with using the Nash equi-

librium concept as a way to make predictions concerning
the real world is its assumption of (common knowledge of)
full rationality. This is the assumption that every player i
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can both calculate what the strategies qj �=i will be and then
calculate its associated optimal distribution. This assumption
has been found to be (sometimes badly) violated in many
experimental settings [22,23]. Below we provide a modified
version of the Nash equilibrium that accommodates bounded
rationality.

A central feature of all noncooperative game theory,
bounded rational or otherwise, is that the players are “strate-
gic”: each player i uses her knowledge concerning the utility
functions of the other players to predict the behavior of those
other players, presuming they will do the same concerning
her. Player i then uses that prediction together with her own
utility function to decide how she will behave. (In contrast,
“nonstrategic” models are more like mean-field models, in
that each player i presumes that other players ignore her.)

III. MAXENT AND QUANTAL RESPONSE EQUILIBRIA

A. Maxent noncooperative games

To predict what q the players in a given N -player game
� will adopt, first pick one of the players i. Consider a
counterfactual situation, where i has the same move space
and utility function as in �, but rather than have a set of
N − 1 other humans set the distribution over X−i , an inanimate
stochastic system sets that distribution, to some q−i(x−i).
In general, due to her limited knowledge of q−i , limited
computational power, etc., i will choose a suboptimal qi ,
that is, qi �∈ argmaxpi

[Epiq−i
(ui)].2 To quantify this bounded

rationality, in analogy to Jaynes’ derivation of the canonical
ensemble, presume that player i is good enough at choosing
her mixed strategy qi so that Eqi ,q−i

(ui) is some (nonmaximal)
value Ki for the given q−i .

Writing it out explicitly, for each player i the Maxent
Lagrangian associated with this constraint is

Li(qi) = S(qi) + βi

[
Ki −

∑
xi

qi(xi)E(ui | xi)

]

+ λ′
i

[
1 −

∑
xi

qi(xi)

]
, (1)

where the Lagrange parameters are βi and λ′
i , q−i is implicit,

and as usual q(x) = ∏
i qi(xi). The normalized qi that maxi-

mizes the Lagrangian in Eq. (1) is

qi(xi) = eβiE(ui |xi )∑
x ′

i
eβiE(ui |x ′

i )
. (2)

Note that as βi → ∞, i becomes increasingly rational,
whereas as βi → 0, she becomes increasingly irrational;
rational people are cold and irrational people are hot, using
the analogy of βi with an inverse temperature.

Next, recall that by the axioms of utility theory [24], all
that player i is concerned with in choosing her mixed strategy
is the resultant expected utility. Accordingly, we presume that

2Whereas physics systems “want to minimize” the value of their
Hamiltonian, humans want to maximize the value of their utility
function.

if the best i can do is choose a particular qi when q−i is set
by an inanimate system, she would also choose qi if she faces
that same distribution q−i when it is set by other humans.

There is nothing in the foregoing that is particular to player
i. So Maxent predicts that Eq. (2) should hold simultaneously
for all N players i, for the appropriate player-specific Ki and
ui (and therefore for Lagrange parameters βi that are player
specific). This gives a set of N coupled nonlinear equations
for q. Brouwer’s fixed point theorem [25] guarantees that that
set always has a solution, and it might have more than one.3

Usually in Maxent the constraints are exact equalities for
the expectation values, for example, in the derivation of the
canonical ensemble. So we have formulated the constraints
that way here. Note though that we get the same solution of
Eq. (2) for each qi if we change the optimization problem by
using the weaker inequality constraint that E(ui) � Ki rather
than E(ui) = Ki .

This prediction for q is not based on a model of bounded
rational human behavior derived from experimental data. It
is based on desiderata concerning the prediction process of
the modeler external to the system, not on a model of the
system being predicted. Nonetheless, it is intriguing to note
that maximizing Shannon entropy has a natural interpretation
in terms of common models of human bounded rationality
involving the cost of computation. To see this, recall that
−S(qi) measures the amount of information in the distribution
qi , up to an overall additive constant. Say we equate the cost
to i of computing qi with this amount of information.4 Then
under the Maxent solution, player i minimizes the cost of
computing her mixed strategy, subject to a lower bound on
the value of her expected utility. (This lower bound acts as an
“aspiration level” for player i.) Equivalently, she can be seen
as maximizing her expected utility, subject to a bound on her
computational cost. Under either interpretation, βi quantifies
i’s cost of computing qi , in units of expected utility.

B. Relation to earlier work

Solutions for q to the N coupled equations given by
Eq. (2) are typically called (logit) quantal response equilibria
(QRE) in game theory [31–34]. They were originally derived
under assumptions that the players are purely rational, but
uncertain of one another’s utility functions. They also arise in
asymptotic analysis of several ad hoc models of how players
learn over repeated plays of the same game [26]. In addition,
they have been independently suggested several times as an
a priori reasonable way to model human players [26,35–39].
(Some of this work has noted the relation between the logit
distribution and statistical physics, e.g., [39].) The use of
the logit distribution over possible moves by agents also has
a long history in the reinforcement learning (RL) literature

3An alternative Maxent approach would use it to set the entire joint
distribution q(x) = ∏

i qi(xi) at once, rather than use it to set each
qi separately and then impose self-consistency. However there are
difficulties in choosing what constraints to use under this approach.
See [20].

4Other models of the cost of computation can be found in
Refs. [26–30].
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[40–43], and has also been shown to be is related to the
replicator dynamics of evolutionary game theory as well as the
QRE [44].

None of this earlier work has derived the use of a logit dis-
tribution from first principles considerations of the prediction
problem.5 Nor has any of it connected the logit distribution
mixed strategies with information theory. In practice, the QRE
is simply treated as a few degree of freedom model of bounded
rational play, and has been broadly and successfully used to fit
experimental data concerning human behavior.

In addition, none of the earlier work on the QRE has
considered the shape of the QRE surface as a function of
the parameters of the game. Nor has any of it considered the
associated issue of how to change those parameters to move
a set of players across the QRE surface. These are the topics
of the next two sections. (Perhaps the closest results in the
literature can be found in Refs. [33,46].)

Also, recall that the Maxent prediction that each player’s
mixed strategy is a logit distribution is not based on any
model of human behavior. It arises from axioms concerning
the prediction process of a scientist external to the system. This
also contrasts with the earlier work, where it arises as part of
a model of the system being predicted.

Finally, there has been other earlier work that is related to
the analysis of this paper in that it involves path dependency
of the effects of changes to parameters of an economy [47],
in some instances considering “adiabatically slow” changes.
Some of this earlier work explicitly considered bifurcation
surfaces. In particular some of it focuses on catastrophes as
paths discontinuously jump from one fold to another. (Some
of that work has been been criticized for claiming to explain
too many empirical phenomena; see [48] for a discussion.)

Most of this earlier work on path dependency has not
involved game theoretic models, but rather has been more
“coarse grained,” involving nonstrategic players interacting
in purely macroeconomic models [49–55]. In particular,
conventional catastrophe theory is based on bifurcations
surfaces involving a single potential function, whereas the
work here is based on bifurcations that inherently involve
multiple “potential functions” under the guise of the players’
utility functions. In addition, almost all of this earlier work
has assumed fully rational players, despite the huge volume of
laboratory and field experimental data [22] establishing that
real humans are often very nonrational.6 In particular, none
of this earlier work has explicitly considered a QRE model
of players, as we do here. Note though that subsequent to a
posting of an early version of this paper, some experimental

5In particular the use of a logit distribution in the QRE literature is
justified by appealing to the the choice theory literature [45], where
it arises if we assume double-exponential noise is added to a player’s
perceived utility values. However that double-exponential assumption
is never axiomatically justified in the choice theory literature; it is
adopted for the calculational convenience of its resulting in the logit
distribution over player choices.

6One exception is [26], which considers Hopf bifurcations under
an ad hoc model for player behavior that involves Shannon entropy.
Another is [56], which relaxes the full rationality assumption in a
way that has nothing to do with entropy.

work was done that validates some of the “stylized” character
of the predictions that we make here for a QRE model [57].

Finally, there is some work in traditional game theory that
models games with variable numbers of players. However the
kinds of scenarios considered in such work differ substantially
from the ones considered above in the derivation of the grand
canonical QRE [58].

C. Beyond game theory’s canonical ensemble

Whenever one’s information concerning a distribution q

over the states of a system can be expressed as constraints on
q, it is straightforward to use Maxent to estimate q. Such
constraints do not have to concern expected utility and/or
computational effort of the players. As a result the Maxent
approach is broadly applicable to game theory, just as it is
broadly applicable to many other fields, ranging from signal
processing to phyogenetic tree reconstruction to text analysis.
This allows us to uncover many formal connections between
game theory and statistical physics.

A very simplified example can illustrate those connections.
Consider a situation where there are F total firms in a particular
industry, each with a total of T possible employee types (e.g.,
salesmen, managers, production line workers, etc.). In general,
each firm will have to decide how many employees of each
type to have. Let nk

i be the number of employees of type k of
firm i, where n is the entire matrix of all such numbers. Say
that for each firm i we know Ni , the expected total number
of employees that firm i has, that is, we know the values of
E(

∑
k nk

i ) for all firms i. The utility (e.g., profit) of each firm
i will depend on a huge number of variables of course. Rather
than presume that we know that full dependence, say we only
know the expected utility of firm i conditioned on any value of
the matrix n. Write that conditional expected utility as ui(n).
Finally, say we also know the unconditioned expected utility
for each firm i, Ki .

There are numerous ways we might ascertain these expec-
tation values, for example, using observables like historical
data, industry surveys, instrumental variables, etc. (Such
observables play the same role here as the temperature reading
on a thermometer plays in Jaynes’ derivation of the canonical
ensemble; indirect estimators of an expectation value that
cannot be directly observed.) Presume though that we know
nothing besides these few expectation values about the firms in
the industry. So in particular, we know nothing about the size of
the total labor pool, internal operating details of the firms, etc.
For simplicity we are considering the case where our ignorance
is so broad that we do not even know any stylized facts
about the kinds of principle-agent problems holding for firms,
anything about how quickly they can change the composition
of their workforce as they interact with one another, etc.

How should we, external to the game and given only these
expectation values, predict q(n) = ∏

i qi(ni), the probability
distribution of firm i having n

j

i employees of type j? As before
we can do this with the Maxent procedure we used above in
deriving the QRE. In the development here n is the state space
variable rather than x, which was the state space variable in
the derivation of the QRE above. Similarly ui(n) plays the
same role here that ui(x) does in the development above, and
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the vector ni plays the role of the pure strategy xi above. So
writing it out in full, the Maxent Lagrangian for firm i is

Li(qi) = S(qi) + βi

[
Ki −

∑
ni

E(ui | ni)qi(ni)

]

+μiβi

{
Ni −

∑
ni

[
qi(ni)

∑
j

n
j

i

]}

+ λ′
i

[
1 −

∑
ni

qi(ni)

]
, (3)

where

E(ui | ni) =
∑
n−i

ui(ni,n−i)q−i(n−i), (4)

the values λ′
i , βi , and μi give us the Lagrange parameters, and

as in statistical physics we have adopted the convention of
writing the Lagrange parameter for the constraint on expected
counts as the product of two of those values.

Evaluating the associated Lagrange equations results in
a “grand canonical” QRE, given by the following set of F

coupled nonlinear equations:

qi(ni) = eβiE(ui |ni )+βiμi

∑
j n

j

i∑
n′

i
eβiE(ui |n′

i )+βiμi

∑
j n′j

i

, (5)

where the values {βi,μi : i = 1, . . . ,F } are set by the provided
expectation values and the provided expected total number of
employees of each firm. The coupling arises through the term
E(ui | n

j

i ) since it depends on the vectors qk(nk) for k �= i in
general. [This is just like how in the QRE, E(ui | xi) depends
on the values qk(xk) for k �= i in general.]

Note that in deriving this result we do not assume that
firm i in any sense “chooses” to have a particular vector of
employee numbers ni ; we do not anthropomorphize firms.
Rather the distribution qi solely reflects lack of information of
the scientist external to the game who is making predictions
concerning the behavior of the firms.

In some cases the external scientist will have more infor-
mation than expected values of utility functions and number
of employees (e.g., information about the internal structure
of the firms, information about the size of the labor market,
information about the values of higher order moments of utility
functions beyond first order expectations, etc.). Whenever such
extra information can be expressed as inequality constraints
involving q, the Maxent procedure for formulating q changes
in a straightforward way: one expands the Lagrangian to
include those constraints, so that they appear as terms in the
exponentials giving the separate qi .

Future work on Maxent noncooperative equilibria involves
incorporating the extensive experimental data concerning
human behavior [22] as additional constraints for the Maxent
procedure. The resultant Maxent solution could be viewed as a
refined version of our behavioral models concerning bounded
rationality.

IV. THE SHAPE OF THE QRE SURFACE

In the rest of this paper we concentrate on the conventional
QRE with a fixed number of players, rather than consider the
grand canonical QRE. To analyze the QRE surface of Eq. (2),
we express that equation as a set of functional relationships,

fi[q−i ,βi] − qi = 0 (6)

for all players i and associated vectors qi and q−i . For example,
when there are only two players, by choosing either player as
i and then plugging in twice we get the equation

fi[f−i(qi,β−i),βi] − qi = 0. (7)

This gives qi as a function of itself and of the two β. Implicit
differentiation then tells us that the function from (βi,β−i) to
qi is ill-behaved at any point where

∂fi

∂q−i

∂f−i

∂qi

∂qi

∂βi

+ ∂fi

∂βi

− ∂qi

∂βi

= 0 (8)

cannot be solved for ∂qi

∂βi
, that is, where det( ∂fi

∂q−i

∂f−i

∂qi
− Id) = 0.

To illustrate this and related phenomena, we consider some
games between a row and column player where each player
has only two pure strategies. The first game we consider is
the famous “battle of the sexes” coordination game [5]. In this
game the utility functions of the players can be represented as

2|1 0|0
0|0 1|2, (9)

where the first (second) entry in each cell is the row (column)
player’s utility for the associated pure strategy profile.

The q in Eq. (2) induces a value of E(ui) given by∑
xi

E(ui | xi)qi(xi)

=
∑
xi

E(ui | xi)
eβiE(ui |xi )∑
x ′

i
eβiE(ui |x ′

i )
≡ κu

i (βi), (10)

where u is shorthand for the set of utility functions of all
the players. κu

i (·) is a monotonically increasing function.7

Therefore it is invertible over its codomain [minxi
E(ui | xi),

maxxi
E(ui | xi)]. So each possible vector of constraints 	K =

(Krow,Kcol) implicitly sets an associated vector of inverse tem-
perature 	β ≡ (βrow,βcolumn). This inverse temperature vector in
turn fixes the QRE q for the game.

This means we can consider the functions taking 	β to the
QRE q and associated expected utilities, rather than the func-
tions taking 	K to the QRE q and associated expected utilities.
Figure 1 plots the surface taking 	β to Col’s mixed strategy,
expressed as the symmetrized variable QCol ≡ 2[qCol(x2) −
qCol(x1)]. Figure 2 plots the corresponding surface taking 	β to
Eq(ucol).8

7To see this, note that for any set of utility functions and number
of players, ∂κu

i (βi)/∂βi equals the variance of the Boltzmann
distribution given in Eq. (2).

8Note that the QRE equations are not changed if one interchanges
both the utility functions and the β of the players. Therefore the same
plot gives the expected utility of the row player, if one flips the β

axes.
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FIG. 1. (Color online) Col’s mixed strategy plotted against 	β.
This is for the QRE of the game in Eq. (9). The hysteresis path
discussed in the text is highlighted, starting at the bottom right.

There are three NE of this game: one where the play-
ers jointly follow the pure strategy profile that row wants
(top left), one where they jointly follow the pure strategy profile
col wants (bottom right), and one where there is 2/3 probability
of row choosing top, and 2/3 probability of col choosing right.
These three NE correspond to the the threefolds of the surface
in the bottom right sections of Figs. 1 and 2. The bottom fold
of Fig. 2 corresponds to the uniform random NE, which is
the middle fold in Fig. 1. (Note that the battle-of-the-sexes
game is not a zero sum game; here the uniform-mixing NE is
the worst of the three NE for both players.) Examination of
the full surface in Fig. 1 shows that there is no connected path
that:

(1) is restricted to the quadrant where both βi > 0;
(2) starts at one of the two pure strategy NE;
(3) ends at the other pure strategy NE;
(4) only involves changes to one player’s β.
Any connected path from one pure strategy NE to the other

pure strategy NE involves changes to both βi .
At bifurcations the number of QRE solutions changes

between one and three. This means that infinitesimal changes

FIG. 2. (Color online) E(ucol) vs 	β under the QRE of the game
in Eq. (9). The hysteresis path discussed in the text is highlighted,
starting at the bottom right.

in 	β may result in discontinuous changes in expected utility.
As an example, this happens if the system starts at 	β = (5,5)
on the top surface, and then βrow is reduced to 0.

More generally, if one and/or the other player gradually
changes their rationality value βi , then the system will follow
a path on the surfaces. Such paths can be quite complex,
depending on the precise trajectory through rationality space.
For example, say we start in the region where βrow is near 4
and βcol is near 4, and that the QRE is on the lowest of the
threefolds in that region in Fig. 2. Fix βrow, and start to decrease
βcol, as illustrated in the figures. As the column player makes
these changes to her rationality, E(ucol) gradually increases.
By appropriately slowing her changes to her rationality and
eventually starting to increase βcol again, the column player
could cause the path followed by the joint behavior of the
players to “round the bend” in the surface. Doing this puts
the two players in the top fold of the plot, and as the column
player continues increasing her rationality she (still) increases
her expected utility.9

As an alternative to following the bend though, the
column player could monotonically decrease her rationality.
Eventually this would cause the two players to fall off the
edge of the fold (go through the bifurcation), and fall to the
fold that is the bottom of both Figs. 2 and 1. This will cause
the column player to experience a discontinuous fall in her
expected utility. Moreover, if she were to continue to decrease
her rationality after that fall, she would decrease her expected
utility further. So after the fall, it would make sense for her to
start increasing her rationality, just as when she had followed
the bend. Having gone through the discontinuous fall though,
in this path the system is on the bottom fold of Fig. 1 (the
middle fold of Fig. 2) rather than the top one, to the column
player’s detriment.

The negative temperatures (negative β) in the plots cor-
respond to “antirational behavior.” In such behavior, the
associated player is more likely to pick the pure strategy that
is worst for them, given what the other player chooses. This
may happen, for example, due to social norms.

In this regard, an interesting effect occurs if we multiply the
utilities by −1. Figure 4 illustrates part of the surface after this
switch. Note that on the bottom fold, for fixed βcol, decreasing
βrow increases E(urow). So row benefits by being less rational,
due to how column responds to row’s drop in rationality. In
essence, it is smart to be dumb for that player.

V. MODIFYING GAME PARAMETERS TO IMPROVE
SOCIAL WELFARE

A. Changing parameters of the underlying game

Say an agent external to a game wishes to modify the
joint behavior of the two players, preferring some behaviors

9Note that there is no dynamic model underlying our derivation
of the QRE surface, so the dynamic stability of each point on the
indicated path is undefined. However in many dynamic models the
middle fold of Fig 1—where the indicated path starts—is unstable.
In general though, given a dynamic model, there will be paths
somewhere in the figure that both exhibit hysteretic effects like that
of the indicated path and are stable everywhere.
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to others. Suppose as well that the agent can modify the
game the agents are playing, for example, by modifying some
parameters of the utility functions of the players. How can the
external agent use such ability to change the utility functions
to induce the players to change their joint behavior to new
behavior that the external agent prefers?

To answer this question we have to model what about
player behavior is invariant under the class of changes to
their environment that the external agent can impose.10 More
precisely, we have to model what about the Maxent constraints
on the players is invariant as the game they are playing
changes. In particular, since the underlying utility functions
are changing, we cannot require that the expected values of
the utilities are invariant; we must specify a different aspect of
the constraints to be invariant.

To do this we interpret the constant in the QRE exponent of
each qi as a behavioral attribute of that player which quantifies
their “rationality,” in the sense of quantifying how close to
optimal their mixed strategy is. Under this interpretation,
the constant in the QRE qi exponent cannot be changed
by the external agent. In particular it is independent of
changes the external agent can make to the utility functions.
(Since each such constant plays the role of an inverse
temperature, requiring that they be invariant under changes to
the utility functions is analogous to modeling a change to the
environment of a thermodynamic system as being isothermal.)

To capture this restriction means we must re-express our
constraints. There are an infinite number of ways that we might
do this. In particular, a natural choice is to require that for any
utility function wi for player i, qi must obey

Eqi
(wi) = κw

i (bi) (11)

for a fixed value of i rationality constant, bi (where q−i is
implicit as usual).

As an illustration, suppose that while they cannot affect
behavioral attributes like bi , the external agent can apply a
player-specific “tax rate” 1 − αi to each player i. Formally,
this means that the utility function for player i changes from
ui to vi ≡ αiui . This means the Maxent Lagrangian for each
player i becomes

Li(qi) = S(qi) + λi

[
Eqi

(vi) − κv
i (bi)

] + λ′
i

[
1 −

∑
xi

qi(xi)

]

(12)

giving the solution

qi(xi) ∝ exp[λiE(vi | xi)], (13)

where λi is set by the constraint E(vi) = κv
i (bi). The expected

utility for this q is

E(vi) =
∑

xi
E(vi | xi) exp[λiE(vi | xi)]∑

xi
exp[λiE(vi | xi)]

= κv
i (λi). (14)

10This is analogous to modeling what about a thermodynamic
system is invariant under a given class of changes to the system’s
environment, e.g., modeling whether the changes are adiabatic,
isothermal, etc.

FIG. 3. (Color online) Col’s expected post-tax utility plotted
against the tax rates (expressed as fractions) on the two players. This
is for the QRE of the game in Eq. (9). The constraint for each player i

in this taxed game is bi = 5. So for example, 	α = (1,1) corresponds
to the point with 	β = (5,5) in Fig. 2.

Since κv
i (·) is invertible, the only way this is possible in light of

our constraint that E(vi) = κv
i (bi) is if λi = bi . Accordingly

the solution is

qi(xi) ∝ exp[biE(vi | xi)] = exp[αibiE(ui | xi)] (15)

with bi a fixed attribute of player i.
Comparing Eqs. (2) and (15), we see that changing αi while

leaving bi fixed, for the version of a game that has variable tax
rates 1 − αi , is the same as changing βi , for the version of that
game that has taxes fixed to zero. (Intuitively, changing the tax
on a player is the same as changing how rational they are.)
So in particular if the untaxed version of the game is the one
specified in Eq. (9), then the surface plotting QRE values of
E(vi) as a function of (αi,α−i) in the taxed version of the game
is given by a simple transformation to the surface in Fig. 2.
The resultant new surface is shown in Fig. 3, for the choice
that bi = 5 for both players.

From now on, for pedagogical simplicity, rather than
distinguish αi and bi we will simply work with their product.
We will label this product as “βi .” Also for simplicity we will
make references to the figures which have βi as independent
variables even when we are concerned with varying αi . When
we do this the multiplication of utility values by αi—which
amounts to scaling them at each point by the associated value
βi—is implicit.

The first thing to note after recasting the analysis in terms
of tax rates is that in general a player i may benefit if her
tax rate increases. Intuitively, this is because the other player
knows that i’s tax rate has risen; and therefore makes different
predictions for i’s behavior; and therefore acts differently
herself; all in a way that benefits i more than i loses due
to her higher tax rate. An example of this is shown in Fig. 4,
where anywhere on the bottom surface, row benefits if her tax
rate increases. (Note that the effect of lowering the parameter
βrow on the QRE q of an untaxed game is equivalent to the
effect of lowering αrow on the QRE q of a taxed version of the
game.)
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FIG. 4. (Color) A QRE surface with paths shown for the anarchy
(red), socialism (blue), and market (purple) procedures. As in Fig. 2,
the x and y axes are player rationalities, βrow and βcol, and the z axis is
expected utility (this time of player row). This plot is for a variant of
the battle of the sexes game where all utility functions are multiplied
by −1.

In economic analysis of optimal regulatory policy, typically
pairs of exogenous factors like tax rates are compared by
examining the joint behavior of the players under the (games
parametrized by) those tax rates. This is called “comparative
statics” (in contrast to comparative dynamics). The premise
is that a regulator should adopt whichever of the exogenous
factors results in a higher expected value of some real-valued
social welfare function defined over that joint behavior [59].

Inspired by comparative statics and the fact that row may
prefer a higher tax rate, we may wonder whether by varying
tax rates slowly enough that the joint behavior of the players is
always on the QRE surface, we may be able to monotonically
improve expected utilities for both players. The answer is
yes: For some games, by changing tax rates we can gradually
move the equilibrium across the surface from one fold to the
other, and then undo those changes, returning the rates to their
original values, but leaving both players with higher expected
utility. (See [46] for other work that exploits the shape of a
QRE surface to optimize player joint behavior.)

As an example of this, consider a variant of the battle of
the sexes game, where the utility functions are the negatives of
the one considered above. The associated bifurcation surface
for mixed strategies is the same as the one in Fig. 1, with
all βi multiplied by −1. Similarly, the bifurcation surface for
expected utility is the same as in Fig 2, with all βi multiplied
by −1 and the dependent variable of E(ucol) also multiplied
by −1. For this modified game, there are paths of 	β (i.e, of 	α)
such that:

(1) Neither player ever is more rational (taxed at a higher
rate) on the path than at the starting point.

(2) At each step on the path, if after the next infinitesimal
change in 	β there is a QRE q infinitesimally close to the current
one, it is adopted. (Adiabaticity.)

(3) Each infinitesimal change in 	β increases both Eq(ui).
(4) At each infinitesimal step, if multiple changes in q meet

(1)–(3), but one is Pareto superior to the others (i.e., better for
both players), the players coordinate on that one.

Examples of such paths are illustrated in Fig. 4.
Concretely, such adiabatically slow changing of tax rates

might be implemented with a large population of players who
repeatedly play the game with other anonymous members
of the population chosen at random. (Since the players are
anonymous, the likelihood of “trigger strategies” or similar
phenomena [5–7] that can arise in multistage extensive form
games should be minimized; the players are likely to treat
each game afresh, rather than consider them as stages in such
a multistage game.) In a first stage of the experiment one would
observe the player behavior and use that to statistically estimate
their individual rationality coefficients βi . (See [33,46] and
references therein for how to do such estimation.) One would
then change the tax rate a very small amount once every T

plays of the game for some T that is large compared to the
discounting rate of the players. This would help ensure that
the players do not anticipate the future when making their
decisions at any particular time.

B. How best to myopically control a society

The existence of paths through tax space that benefit all
players raises the question of how a society should dynamically
update its tax rates. We now compare three procedures for
how this could be done by society as a whole. (For notational
simplicity, and to emphasize the analogy with annealing, we
parametrize the procedures in terms of changes to 	β rather
than changes to 	1 − 	α.)

(I) “Anarchy”: Players independently decide how to modify
their β. To do this they follow gradient ascent with a small step
size �, subject to the constraint that no player i can go to a βi

larger than the starting one. Thus, both players i change βi by
δβi ∈ [−�,�], using ∂E(ui)/∂βi to make their choice of what
value δβi to pick. (Since this is a linear procedure, the players
will always choose one of the three values {−�,0,�}.)

(II) “Socialism”: An external regulator determines the path,
again using gradient descent, this time over the sum of the
players’ expected utilities. At each step of the path 	β is changed
by the (δβrow,δβcol) vector that maximizes[

δβrow
∂E(urow)

∂βrow
+ δβcol

∂E(urow)

∂βcol

]

+
[
δβrow

∂E(ucol)

∂βrow
+ δβcol

∂E(ucol)

∂βcol

]
(16)

subject to ||(δβrow,δβcol)||2 � 2�2. (The constraint is to match
the step size to that of the first procedure.)
(III) “Market”: Let T be the set of joint expected utilities

for all the bargains that a set of N bargainers might reach in
a particular bargaining scenario. Then certain mild axioms
concerning bargaining behavior of humans give a unique
prediction for which bargain in T is reached. This prediction,
known as the “Nash bargaining concept” [6,7], says that
the the joint expected utility of the bargain reached is
argmax	u∈T [

∏N
i=1 ui].

We can use the Nash bargaining concept to predict what
change to 	β the players would agree to under a “market” where
they bargain with one another to determine that change. To do
this we fix the set of all allowed bargains to the set of all pairs 	β
such that || 	β − 	β(t)||2 � 2�2, where 	β(t) is the current joint
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β. We also choose 	d to be the joint expected utility at 	β(t). So
under Nash bargaining, at each iteration t , the players choose
the change in joint β, δ 	β, that maximizes the product

[E(uRow | 	β(t) + δ 	β) − E(uRow | 	β(t))]

× [E(uCol | 	β(t) + δ 	β) − E(uCol | 	β(t))] (17)

subject to ||δ 	β|| � 2�2.
As in the other two procedures, we use first order approxi-

mations in this one, to evaluate the two differences in expected
utilities. This means that in this procedure we find the vector
δ 	β that maximizes the product

[∇	βE(urow | 	β) · δ 	β][∇	βE(ucol | 	β) · δ 	β]

=
[
δβrow

∂E(urow)

∂βrow
+ δβcol

∂E(urow)

∂βcol

]

×
[
δβrow

∂E(ucol)

∂βrow
+ δβcol

∂E(ucol)

∂βcol

]
(18)

subject to ||(δβrow,δβcol)||2 < 2�2. Using Lagrange multipli-
ers for given ∇	βE(urow | 	β) and ∇	βE(ucol | 	β), the optimal δ 	β
is given by solving a quadratic equation. Once we have found
that optimal δ 	β, we add it to 	β(t) to get the new position in β

space. [Compare Eqs. (18) to (16).]
A variant of this market procedure could be used as to

model how democracies would modify the game parameters,
or more generally to model any process by which the players
of the game collectively gradually change the parameters of
the game.

Note that in all three procedures the total change in 	β in
any step never exceeds

√
2�. This adiabaticity reduces the

computational burden on the players by not changing the game
too much from one time step to the next.

As in standard economics, we can quantify how good a full
path produced by a procedure is for society as a whole by
calculating the discounted sum of future social welfare along
the path, for example, by defining social welfare as the sum of
player utilities:

W ≡
∑
t ′>0

(1 + γ )t−t ′
N∑

i=1

E[ui(t
′)]. (19)

Using this definition we can compare the three procedures
by calculating the W for the paths they generate starting from
some shared 	β at time t = 0. We did this for two representative
initial 	β, for the surface in Fig. 4, with the resultant paths
illustrated in that figure.

While for both of the initial 	β any two of the paths will
intersect at some point ( 	β,q), they get to that intersection
point at different times. In addition, they diverge beyond that
intersection point. These two effects mean that the discounted
sum of future expected utilities is different for the three
procedures of changing 	β.

We found that anarchy always did worse than the other two
procedures. Those others are compared to each other in Fig. 5.
When the discounting factor γ is large (i.e., we are more
concerned with near-term than long-term utility) the market
procedure does better, otherwise socialism does.

To our knowledge no laboratory game theory experiment
has ever looked at slowly varying game parameters [22,60]

FIG. 5. (Color online) The difference between the discounted
sums of future expected utilities of the two players under the
“socialism” and “market” procedures, plotted against the discounting
factor γ .

(with the partial exception of [57], which as mentioned above
was posted subsequent to the posting of this paper). However
it would not be difficult to design such an experiment. For
example, we could have some of the experiments be where
the tax rates are changed in an “anarchic” manner, where the
players can change their tax rates a very small amount at
some regular interval, but are not allowed to interact to decide
those tax rates; some where the players are allowed to bargain
on those changes; and some where the changes are set by an
external “socialist” regulator, based on their QRE model of
player behavior.11

Of course, even if such experiments were to confirm
the predictions made by our theoretical analysis, the results
should in no way be taken to imply how society should
change tax rates; the toy models considered in this paper are
illustrative only. An interesting question in this regard is what
characteristics of a (potentially very realistic) game determine
the relative performances of the three control algorithms we
have considered. Even more interesting would be to investigate
this issue for more realistic control algorithms than the ones
we consider.

C. How best to nonmyopically control a society

All three procedures described above are local, only looking
a single step into the future, and therefore only considering
the local shape of the QRE surface. A procedure that also
considers the QRE surface’s global geometry will produce

11As a practical matter, we may have to suggest ahead of time to
the subjects that it may be in their interest to have their own tax rate
increased since that is counterintuitive. Also, to make sure the games
start at a nonoptimal QRE for the initial tax rates, we may want to
start each subject playing against a computer programed to behave as
the subject’s opponent would at that nonoptimal equilibrium. Then
as the experiment progresses, we could simultaneously replace the
programs playing against some pair of subjects A and B with those
subjects themselves, i.e., suddenly have the subjects play one another
rather than computer programs.
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FIG. 6. (Color online) The expected utility of the row player along
the path through 	β highlighted in Fig. 2, illustrated as a function of
the row player’s rationality βrow. The path starts at the bottom right,
then travels left, before turning and finishing at the top right.

better paths in general. In particular, such global information
allows us to consider paths where a player loses expected
utility for certain periods, but in the end all players are better
off. Figure 2 highlights such a path, along which player column
always benefits but player row loses initially, before ultimately
benefiting. A cross section of the expected utility of row
along the path is shown in Fig. 6. Note that player row might
demand compensation to agree to follow such a path where
they temporarily lose expected utility, for example, in terms of
a subsidy paid for with a bond that is repaid by all players at
the end of the path.

Once we allow such paths whose benefits arise from the
global rather than local geometry of the QRE surface, we are
faced with the question of which path should be adopted for
any given starting point of the path. Under a socialism model,
this question is relatively well-posed. For example, we could
stipulate that the path followed be the one that maximizes the
discounted sum of utilities, either with subsidies taken into
account or not.

In general, by implementing the associated sequence of
regulations the regulator would induce higher social welfare
than they could induce if they instead used a comparative
statics approach, in which they implement a single change in
the regulations. Indeed, it is not even clear how one could use
a single regulation change to do some of the things possible
with an extended path through regulation space. For example,
say the regulator is told to get society from joint behavior
lying on a suboptimal fold for a current value of a regulation
parameter to joint behavior lying on the optimal fold for that
same value of that regulation parameter. One can often do this
by following a path through regulation space, as illustrated in
Fig. 2 for the case where the regulations are tax rates. However
one cannot do this with a single change in regulations.

There should also be practical advantages to implementing
a sequence of small changes to regulations rather than a single
large change to regulations. In particular, doing so would allow
the regulator to modify their behavioral model of the players as
the sequence unfolds, and thereby improve that sequence. For
example, they could refine their estimates of exponents βi as
the sequence unfolds, and therefore refine their estimate of the
QRE surface. They would then use that improved estimate

of the QRE surface to improve the remaining regulation
changes in the sequence. Alternatively, as the sequence unfolds
they might acquire extra information for the Maxent proce-
dure beyond the constraints concerning expected utilities of
the players. This too would cause them to change their estimate
of the surface taking regulations to expected utilities of the
players, and therefore cause them to modify the remaining
steps in the sequence of regulation changes. (In fact, when
they acquire new constraints for the Maxent procedure, the
surface they use would no longer be a QRE surface.)

In these kinds of ways, the regulator could exploit feedback
when using a sequence of small changes in regulations to
control joint behavior of the players. In contrast, in an approach
involving a single change in regulations, the control is purely
“open loop.” (Some of these advantages of “gradualist” regu-
latory policies that implement paths through regulation space
have been discussed in the economics references mentioned
above, albeit under assumptions of fully rational behavior in
coarse-grained, macroeconomic models.)

While the issues in using global properties of the QRE
surface to determine paths through regulation space are
relatively well-posed for the socialism model of regulation,
under the market model they become more open ended. That
is because in a market model all players have to agree to
the path. So rather than a sequence of bargains, each over an
infinitesimal step along the path (as in the analysis above),
the players would bargain over the entire path at once. For
example, such bargaining might be modeled by saying that
each player values any given full path as the discounted sum
of their future utilities along that path. Under this model, the
joint valuation of any given path is given by the vector of
all players’ future-discounted sums of utilities for that path.
The feasible set of possible joint valuations that underlies the
bargaining is the set of possible joint valuations for all paths.
At any given moment the players would bargain over which
element in the feasible set to adopt. One could then predict
what bargain they reach using the Nash bargaining solution,
for example.

Note though that this model opens the issue of “hold-up”
problems, where once a path has been followed a certain
distance, the relative bargaining powers of the players for the
remainder of the path changes. More precisely, say that at
t = 0 there is a joint rationality 	β(0), and that society starts
to follow a path 	β0(t) from there that is a Nash bargaining
solution at t = 0 over the feasible set T (0) given by all paths
starting at 	β(0). Then in general, for t ′ > 0, the path 	βt ′(t)
that is a Nash bargaining solution for full paths starting from
	β0(t ′) is not a truncation of 	β0(t) to t > t ′. [This is because
the feasible set T (t) of possible remaining joint values of each
player’s future-discounted sums of utilities may change its
shape as the path is traversed, not just get rescaled.] There is
an inconsistency across time.

The analysis becomes even more complicated if the players
intermix their bargaining over the parameters of the game
with their strategies in that game. For example, it may be that
in choosing their mixed strategy at any time step t , a player i

would consider how the ensuing feasible set T (t + δt) depends
on their choice. More generally, if they are bargaining over full
paths, the players may be forced to consider entire sequences
of strategies in the associated set of games, rather than treat
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each successive game independently. (This means that their
“strategy space” is far more complicated than in the simple
case analyzed above where players only use local properties
of the QRE surface.) All of this suggests the analysis should
include game theoretic concepts like binding commitments,
renegotiation-proof equilibria, etc. The situation gets even
richer if paths involving subsidies are allowed. All of this
is the subject of future work.

VI. FINAL COMMENTS

In this paper we have focused on how the Maxent procedure
of statistical physics can be applied to noncooperative game
theory. The importance of Jaynes use of Maxent to derive
the canonical ensemble distribution is that it provided a new
perspective on that distribution, as arising from the fundamen-
tally statistical nature of the scientists task rather than intrinsic
fluctuations of the system. This allowed him to sidestep various
controversial presumptions in earlier derivations, for example,
involving ergodicity or heat baths (which for example are
nonsensical when the system in question is the entire universe).

Similarly, our derivation provides a new perspective on the
QRE distribution, as arising from the fundamentally statistical
nature of the scientist’s task rather than intrinsic fluctuations of
their system. This allows us to sidestep various controversial
presumptions in earlier derivations, for example, that the
players are completely rational, or have played the same game
with one another an infinite number of times.

We then showed that the QRE distribution contains some
phenomena quite familiar from statistical physics, like bi-
furcation surfaces and hysteresis effects. However in some

ways it is intrinsically more complicated than conventional
statistical physics, since it involves multiple utility func-
tions rather than a single Hamiltonian. We then went on
to explore some toy models of the implications of this
Maxent game theory formalism for issues of how to manage
a society.

There are many other issues one could investigate with
this formalism however. To give a simple example, in the real
world, whatever process might change game parameters, it
might be quite noisy. The QRE surface provides information
about how stable player behavior should be against such noise
in the game parameters. For example, say the players are
on the top fold of the surface in Fig. 2, with 	β = (2,4),
so the joint behavior is near an edge of the QRE surface.
In this situation, small external noise may lead the players
to “fall off the edge” and undergo a discontinuous jump to
the lower surface. Moreover, even if the players managed to
(adiabatically slowly) restore their original rationalities after
such a jump, they would end up on the middle fold of the region
where βrow is near 2, not on the good fold they started in. Due
to this, when an economic situation exhibits such qualitative
features, it may behoove society to stay away from such edges
in the QRE surface, even if that lowers total expected utility.
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