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Removing spurious interactions in complex networks
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Identifying and removing spurious links in complex networks is meaningful for many real applications and
is crucial for improving the reliability of network data, which, in turn, can lead to a better understanding of the
highly interconnected nature of various social, biological, and communication systems. In this paper, we study
the features of different simple spurious link elimination methods, revealing that they may lead to the distortion
of networks’ structural and dynamical properties. Accordingly, we propose a hybrid method that combines
similarity-based index and edge-betweenness centrality. We show that our method can effectively eliminate the
spurious interactions while leaving the network connected and preserving the network’s functionalities.
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I. INTRODUCTION

Many social, biological, and information systems are natu-
rally described by networks where nodes represent individuals,
proteins, genes, computers, web pages, and so on, and links
denote the relations or interactions between nodes. Hence,
network analysis has become a crucial focus in many fields
including biology, ecology, technology, and sociology [1].
However, the reliability of network data is not always guaran-
teed: Biological networks that are inferred from experiments
or social networks that result from spontaneous human activity
may contain inaccurate and misleading information, resulting
in missing and spurious links [2,3].

The problem of identifying missing interactions, known
as link prediction, consists of estimating the likelihood of
the existence of a link between two nodes according to
the observed links and node’s attributes [4]. Link prediction
has already attracted much attention from disparate research
communities due to its broad applicability. For instance,
in many biological networks (such as food webs, protein-
protein interactions, and metabolic networks), the discovery
of interactions is often difficult and expensive, hence, accurate
predictions can reduce the experimental costs and speed the
pace of uncovering the truth [5,6]. Applications in social
networks include the prediction of the actors co-starring in acts
[7] and of the collaborations in coauthorship networks [8], the
detection of the underground relationships between terrorists
[5], and many others. In addition, the process of recommending
items to users can be considered as a link prediction problem
in a user-item bipartite graph [9] so that similarity-based
link prediction techniques have been applied to personalized
recommendations [ 10]. Moreover, the link prediction approach
can be used to solve the classification problem in partially
labeled networks, such as predicting protein functions [11],
detecting anomalous email [12], distinguishing the research
areas of scientific publications [13], and finding out the fraud
and legitimate users in cell phone networks [14]. For a review
of the field, see Ref. [15].

On the other hand, the problem of identifying spurious
interactions has received less attention despite its numerous
potential applications. For instance, the identification of inac-
tive connections in social networks or spam hyperlinks on the
World Wide Web (WWW) may improve the efficiency of link-
based ranking algorithms [16], and the detection of redundant

1539-3755/2012/85(3)/036101(7)

036101-1

PACS number(s): 89.75.Hc, 89.20.—a

interactions in biological, communication, or citation networks
may find applications in community detection, in constructing
networks’ backbones [17] or in other connection optimization
problems. A possible reason for the lack of effective methods to
deal with this problem is that a spurious link removal error has
far more serious consequences than a missing link addition
one. If some unexpected links are incorrectly identified as
spurious and are removed from the network, the system’s
structure and function may be altered significantly or may
even be compromised. For instance, the network may break
up into separate components so that the system’s functionality
is destroyed. In power grids, only the power plants in the
giant component (GC) can work [18]. In traffic systems, only
the cities in the GC can mutually communicate [19]. In neural
systems, only neurons in the GC can reach a synchronized state
in order to effectively process signals [20]. Hence, the main
challenge for a spurious link detection method is to identify
the spurious interactions and, at the same time, to construct a
network with close functionalities to the original one.

In this paper, we show that many simple spurious link
detection methods indeed have a serious drawback to remove
real and important links, which causes the networks’ structure
to be altered significantly. Hence, we propose a hybrid
algorithm that combines a similarity-based index known as
common neighbors (CN) with the edge-betweenness (EB)
centrality. We show that this method cannot only effectively
identify and remove spurious links, but also preserve the
size of the GC and many important structural and dynamical
properties of the network at the same time.

II. METHOD

In this section, we describe our procedure to study the
features and to evaluate the performance of a spurious link
detection algorithm. We make use of six empirical undirected
networks: the Caenorhabditis elegans (CE) neural network
[21], an email (Email) network [22], a scientists’ coauthorship
(SC) network [23], the U.S. political blogs’ (PB) network [24],
a protein-protein interaction (PPI) network [25], and the U.S.
air transportation (USAir) network [26]. We only consider the
GC of these real networks. Some properties of these systems
are reported in Table I. All of these networks are widely used
in the literature as model systems, hence, we assume that
they are true networks (i.e., without spurious interactions),
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TABLE I. Features of empirical networks: number of nodes (V) and edges (E), average degree ((k)), average shortest path length ((d)),
clustering coefficient (C), degree assortativity (), degree heterogeneity (H = (k?)/(k)?), and traffic congestability (Bpay)-

N E (k) () c r H Buna
CE 297 2148 14.46 2.46 0.308 ~0.163 1.801 2.65 x 10*
Email 1133 5451 9.62 3.61 0.220 0.078 1.942 5.06 x 10*
SC 379 914 4.82 4.93 0.798 —0.082 1.663 5.66 x 10*
PB 1222 16717 27.36 2,51 360 —0.221 2.970 1.46 x 10°
PPI 2375 11693 9.85 4.59 0.388 0.454 3.476 8.98 x 10°
USAir 332 2126 12.81 2.46 0.749 —0.208 3.464 2.28 x 10*

which we denote as A’. We then add a fraction f of spurious
random connections to these true networks to obtain observed
networks, which we denote as A, and evaluate the ability of
the spurious link detection algorithm to recover the features of
the true networks.

To quantify the accuracy of the algorithm in identifying
the spurious interactions, we use the standard metric of the
area under the receiver operating characteristic curve (AUC)
[27]. Since the algorithm returns an ordered list of links (or
equivalently, gives each link a score to quantify its reliability),
the AUC represents the probability that a spurious link is
ranked lower than a true link. To obtain the value of the AUC,
we pick a spurious link and a true link in the observed network
A? and compare their scores. If, among all possible pairs n [28],
the real link has a higher score than the spurious link »’ times
and equal score n” times, the AUC value is as follows:

n' +n"/2
" .

AUC =

Note that, if links were ranked at random, the AUC value
would be equal to 0.5.

As stated in Sec. I, high accuracy is not sufficient for a
spurious link detection algorithm: If just a few real important
links are removed, the structural and dynamical properties of
the network may change dramatically. A simple example can
be seenin Fig. 1. If the dashed link is removed, the network will
break into two separated components. To study the robustness
of the algorithm in this respect, we remove the fraction f’
of the bottom-ranked links from the observed network to
obtain the reconstructed network, which we denote as A”.
We then compare the structure and functionality of true and
reconstructed networks. We will focus mainly on the GC’s size,
which is of great importance for the functionality of many real
systems. Then, we will consider the clustering coefficient [29],
average shortest path length, traffic congestability [30] (i.e., the
maximum betweenness centrality in the network), and other
dynamical properties. We will first study the case of A’ and
A” having the same number of links (f’ = f). However, as,
in general, one does not know how many spurious links there
are in a given network, we finally consider the situation where

fr# [

III. RELIABILITY INDICES

In this section, we describe some representative spurious
link detection methods. These algorithms assign a reliability
index (denoted as R;; for the link connecting nodes i and j)

to each link in A?, which quantifies the likelihood of its true
existence and allows for link ranking.

Similarity-based indices use the network’s structure to
assign a score for each pair of connected nodes ij, which
is directly defined as their similarity with the underlying
assumption that a connection between similar nodes is likely
to be a true one. These algorithms can be classified as local,
quasilocal, and global according to the amount of information
they need. Here are some examples:

(1) Common neighbors (CN): RiCjN = ||I'; NI, where I';
is the set of neighbors of node i and || - - - || indicates the number
of nodes in a set.

(2) Resource allocation (RA): R{* = Yker,nr, m

(3) Local path (LP): RE = (A%);; + € (A%);;, where A is
the network’s adjacency matrix and € < 1 is a free parameter.

(4) Katz index (Katz): R = /2| [(B A)'1;j, where f is
a free parameter that must be lower than the reciprocal of the
largest eigenvalue of A.

Centrality-based indices measure the importance of a link
in the network, assuming that the higher the link’s centrality,
the higher its reliability. We consider two simple indices:

(5) Preferential attachment (PA): RSA = |IT; )l < 1Tl

(6) Edge-betweenness (EB): RlEjB -y in

is the number of shortest paths from node m to node n and Cff,{l)
is the number of such shortest paths passing through link ij.

Clearly, CN, RA, and PA are local indices. CN is the sim-
plest possible measure of neighborhoods’ overlap, whereas,
RA [31] is the best performing local index for the purpose
of link prediction. PA is the algorithm that requires less
information. Instead, LP [32] is a quasilocal method, as it
considers local paths with wider horizons than CN (it also
counts the number of different paths with length 3 connecting
i and j). Finally, Katz [33] and EB methods are global indices
as they are based on the ensemble of all paths in the network.
Specifically, Katz counts the paths between two nodes and
weights them according to their length /, whereas, EB is built
with the number of shortest paths from all vertices to all others
that pass through the given link.

men e Where Gy

FIG. 1. (Color online) A simple example to illustrate how an
improper spurious link removal method can disconnect a network.
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IV. HYBRID INDEX

We now introduce a hybrid index that combines the
similarity-based and the centrality-based approaches. The
underlying idea is that we consider a link to be a true one either
if it connects similar nodes or if it has a central position in the
network. Even if this assumption is not necessarily true, as we
show later, it avoids the removal of important links so that the
network’s properties and functions are preserved with the small
drawback of failing to identify a few spurious interactions.

To construct the hybrid index, we combine the simple CN
with EB centrality as

REN REB
hyb ij ij
" max,,, (R%\l‘) ( ) max,, (REE)

where A € [0,1] is the hybridization parameter. In what
follows, we set A = 0.9 because we want to exploit mainly the
CN, and a small contribution from EB suffices for our purposes
(however, see Sec. VI for a study of the index behavior for
different A’s). Note that this is only one possibility for defining
such an index. We made use of the CN because it is the
most well known of the similarity-based indices. However, one
could use, e.g., RA or Katz instead, although the qualitative
features of the hybrid method would not change.

V. RESULTS

In this section, we compare the features of the spurious link
detection approaches that have been previously introduced.
We start by adding a fraction f of random connections to the
true networks A’ to obtain the observed networks A°. For each
particular index, we rank the links according to their reliability

@ (b) !

0.9 09 Vv g o o
S = V= T S —0—0—0-—NA-H-H-0
< - = &
0.8 08[An A nn A
07 0.7
0 02 04 06 08 0 02 04 06 08
f f
(© ! G
09751 SOt o, 0.95
o ===~ =S
2 0.95 T 2091 I
<
0.925 0.85
0.9 08
0 02 04 06 08 02 04 06 08

0.95 =0—0—6—t—0—0)

P e Y ==
o o
o} D 09 DL TASEAN
< ost” B

: 0.85

07 08

0 02 04 06 08 0 02 04 06 08
f f
[—0—CN——PRA ——LP ——Kaz ——PA —>—EB hybrid |

FIG. 2. (Color online) AUC for various indices and for different
values of f. The true networks are (a) CE, (b) Email, (c¢) SC,
(d) PB, (e) PPI, and (f) USAir. Results are averaged over 100
independent realizations. Note that the curves for EB are not shown
as the respective AUC values are too low. The same holds for PA in
panel (c).
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values and measure the accuracy of the method in identifying
spurious interactions by the AUC (Fig. 2). Generally, we
observe that the similarity-based methods perform better than
the centrality-based ones. Among the first category, Katz and
LP [34] perform slightly better than CN and RA as they take
advantage of using more information. Among the second,
EB is the worst performing, with AUC even lower than 0.5.
Instead, the performance of the hybrid method is very close
to that of the pure similarity-based indices. Hence, having a
contribution from EB in the hybridization does not result in
worse spurious link detection (as one might expect).

We already argued that accuracy is not the only criterion to
assess the performance of these methods. The other important
aspect is that the removal of putative spurious links should not
alter the GC’s size as well as other properties of the networks.
To investigate this aspect, we remove the fraction f’ of the
bottom-ranked links from A° to obtain the reconstructed
networks A", whose features we compare with the ones of
the relative true networks A’. We start with the simple case
f' = f, and we first focus on the GC’s size, which is of
great relevance in many contexts. As shown in Fig. 3, the
GC’s size significantly decreases with f’ when using any
similarity-based method (as well as PA): In these cases, many
nodes become disconnected from the networks’ core and end
up losing their function. On the contrary, EB always keeps the
networks connected. This is not surprising as it has already
been pointed out [35] that similarity indices and EB are highly
anticorrelated, meaning that removing links between nonsimi-
lar nodes causes links with high betweenness to be cut and vice
versa. What is remarkable is that the hybrid method also can
effectively preserve the connectedness of the original networks
in most of the cases and, in general, much better than any other
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FIG. 3. (Color online) Relative size of the GC in A" with respect
to the one in A’ when various indices are used to build A" (here,
f' = f) and for different f. The true networks are (a) CE, (b) Email,
(c) SC, (d) PB, (e) PPI, and (f) USAir. Results are averaged over 100
independent realizations. Refer to Appendix A for the nonmonotonic
trend in the RA case.
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FIG. 4. (Color online) Relative errors of clustering coefficient [(a)
and (b)], average shortest path length [(c) and (d)], and transportation
congestability [(e) and (f)] for different f. The different lines
correspond to the errors in A’ and in the two A" built by the CN
and hybrid methods, respectively, with f' = f. Left plots refer to
PB, whereas, right plots refer to USAir. Results are averaged over
100 independent realizations.

similarity-based method, despite the small contribution it
receives from EB. Hence, it is sufficient to modestly increase
the reliability of central and important links to avoid removing
them.

We move further by considering other network properties.
In order to compare the true and the reconstructed networks
under a given property X, we compute the relative error
of X as [X(A") — X(A")]/X(A"). As a benchmark, we also
compute the relative error of X in the observed networks
as [X(A°%) — X(A"]/X(A"). For an effective spurious link
removal method, which is able to reproduce the properties
of the true network, the absolute value of the relative error for
A" should be smaller than the absolute value of the relative
error for A° (meaning that A" is a better estimate of A’ than
A°) and as close as possible to zero (meaning that X has
approximately the same value in A" and A”). Figure 4 shows
the relative errors made by the CN and hybrid methods for the
clustering coefficient, average shortest path length, and traffic
congestability (i.e., the maximum betweenness centrality in the
network) in the GC. We only report the results for the PB and
USAir networks as these are the cases in which the GC’s size
is relatively more affected when using pure similarity-based
methods (Fig. 3). We observe that, in these cases, the hybrid
method is always able to restore the properties of the true
network with respect to the observations, whereas, this is not
always true for the CN. Moreover, the hybrid method always
preserves the networks’ properties better than the CN, at the
small cost of achieving smaller AUC values. This is because the
CN and other similarity-based methods alter the GC, which is
much more harmful for the networks’ properties and functions
than keeping fewer more spurious links. Note, however, that,
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FIG. 5. (Color online) Relative size of the GC when different
fractions of links f’ are removed from A° by the CN, hybrid, and EB
methods. The true networks are (a) CE, (b) Email, (c¢) SC, (d) PB,
(e) PPI, and (f) USAir. Results are averaged over 100 independent
realizations.

if the CN method does not cause serious enough damage to
the GC—as happens for the CE and SC networks—then, the
situation may be reversed: The CN can preserve some of the
network properties better than the hybrid method due to its
higher accuracy (see Figs. 8 and 9 in Appendix B).

There are plenty of other network static and dynamical
properties that can be considered, such as synchronization,
spreading threshold, and so on. As these dynamics can only
take place in the GC, similarity-based methods, which break
the network into pieces, alter them seriously. For example, the
nodes out of the GC can never reach the global synchronized
state, and the signal from the GC can never spread to these
nodes. Again, these methods eventually destroy the system’s
functions.

As in real applications of spurious link removal where one
does not know the exact number of spurious links in a network,
we finally consider the case f’ # f. To do so, we fix the num-
ber of random connections added to A" at f = 10%. We then
study the properties of networks A" reconstructed by different
methods by removing different fractions f’ of links from A°.

Figure 5 shows the GC'’s size for varying f’. We observe
that the GC’s size naturally decreases with the fraction of
removed links. Such a decrease is very fast when using the
CN and very slow when using the EB—in the latter case, the
GC’s size is preserved in any network even when half the
links are removed. The hybrid method lies between these two,
and remarkably, it performs like the EB when the fraction of
removed links is not too big (in many cases, the GC’s size has a
plateau that may last up to large f”). Another interesting aspect
would be to investigate how many of the original f spurious
links are left in the networks for various f’. Results are shown
in Fig. 6. We again observe that the more we remove links, the
higher the probability to remove a spurious link. Due to its low
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FIG. 6. (Color online) The residual fraction of spurious links in
A" when different fractions of links f’ are removed from A° by the
CN, hybrid, and EB methods. The true networks are (a) CE, (b) Email,
(c) SC, (d) PB, (e) PP and (f) USAir. Results are averaged over 100
independent realizations.

accuracy, the EB must remove almost all links in order to get
rid of the spurious ones. On the contrary, the CN can eliminate
all the spurious links quite soon (f’ >~ 25%). Interestingly, the
hybrid performs as well as the CN, and their curves almost
overlap. These results again indicate that the hybrid method
represents an effective approach to both preserve the GC’s size
and to achieve high accuracy. Moreover, it is also more robust
than other methods when considering the intrinsic uncertainty
of the number of spurious interactions in a system.

VI. THE HYBRIDIZATION PARAMETER

At last, we show how the hybrid index behaves by varying
the value of the parameter A. In order to do that, we consider the
particular case in which the observed networks A° are obtained
from the true networks A’ with the addition of f = 20%
of spurious links. Figure 7 shows the AUC and GC size of
networks A" reconstructed by the hybrid method (with f' =
f) for different values of . We observe that, whereas, the AUC
decreases for decreasing A (but this decrease is always slower
at the beginning), the GC remains almost in one piece except
when A becomes too close to 1. Therefore, it is sufficient to
have a small contribution from the EB in the hybrid method to
keep the network connected at the cost of being slightly less ac-
curate. This is the reason why we have previously set A = 0.9.
Note that one can use a bigger value of A if accuracy is the main
goal or a smaller value if the GC’s integrity is a major issue.

VII. DISCUSSION

How to detect and to remove spurious interactions in
networks is a significant problem, which may find applications
in almost any field of complex science. Still, it has not yet
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over 100 independent realizations.

attracted much attention as the consequences of a removal
error can heavily harm the system under investigation. In the
literature, many similarity-based methods, for the purpose of
link prediction, have been proposed. In this paper, we showed
that, when applied to spurious link detection, all these methods
achieved high accuracy but suffered from the important
drawback of decreasing the size of the GC and distorting other
static and dynamic properties of the network. This harmful
effect may cause a system to lose its functions as nodes that
are disconnected from the GC cannot communicate with the
network’s core. In order to overcome these flaws, we proposed
a hybrid method that combined the similarity-based CN’s
index with EB centrality. We showed that this approach can
effectively eliminate the spurious links and, at the same time,
keep the network connected. Moreover, important properties,
such as clustering coefficient, average shortest path length,
and traffic congestability can be generally preserved better.
This method is still more advantageous when the number of
spurious interactions within a system is unknown.

In the literature, there are other important examples of
spurious link detection approaches (e.g., hierarchical random
graph [5] and stochastic block model [36]), which, however,
do not focus on preserving the GC’s size. Moreover, these
methods are based on global algorithms that can be prohibitive
to use for large-scale systems. Instead, our method would
be easily applicable for large networks. This is because it
combines the CN index, which requires only local information
of a link and EB centrality, whose computational complexity
is now as low as O(N E), where N and E are respectively the
number of nodes and edges in the network [37].

Finally, we remark that the problem of identifying spurious
interactions is much more difficult to deal with than predicting
missing interactions. We already pointed out how serious a
removal error may be. In addition, whereas, in link prediction
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studies, there is a true network from which some existing
links are removed to generate the observation and to test the
algorithm, for spurious link detection, how to add spurious
interactions to the true network is generally unknown. In this
paper, we explored the simplest situation in which spurious
links were just random connections between nodes. This
approach can be suitable for describing some systems (for
instance, biological networks obtained from measurements
prone to random errors or social networks in which some links
result from once in a lifetime interactions between people)
but may result inadequately for others (such as biological
systems when measurements are prone to systematic errors
or the WWW where spam hyperlinks always start from the
same set of pages). Hence, the effectiveness of a spurious link
detection method in these systems deserves further validation,
which will be the subject of future studies.
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APPENDIX A: NONMONOTONIC DECREASE IN GC’s SIZE

To explain the nonmonotonic trend of the GC’s size with
f when the RA index is used (Fig. 3), we use the following
argument. In the spurious link removal process by similarity-
based methods, the decrease in the GC'’s size is due to two
effects: (1) formation of communities separated from the GC
and (2) formation of isolated nodes (i.e., with no connections).
The first effect is caused by links between communities always
connecting node pairs with few common neighbors, which are
likely to be removed. The second effect is due to nodes with few
connections, which cannot have many neighbors in common
with any other node—take, for instance, the case of nodes with
IT]] = 1, for which the CN score with any other node is zero.
Again, the links connecting these nodes with the network’s
core are likely to be removed. Generally, the higher the fraction
of spurious links added and then removed to the true network,
the higher the chances for these effects to manifest and, thus,
the more serious the damage to the GC. However, when the
RA index is used, we observe a different behavior, which can
be explained as follows. When some spurious links randomly
are added to the true network, pairs of connected nodes may
eventually acquire new common neighbors. Because of the
broad degree distribution in the network, these new neighbors
are likely to have low degree. Since RA favors links between
node pairs with low-degree common neighbors, these links
are now unlikely to be removed also if one of the two nodes
in the pair has a small degree: In this case, the formation of
isolated nodes is hindered, and this effect is stronger when
many links are added to the true networks (more chances for
a node pair to obtain new common neighbors). This explains
the nonmonotonic trend of the GC’s size observed in this case.
We also remark that this phenomenon does not appear for
networks in which the node’s average degree is small (Email,
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FIG. 8. (Color online) Relative errors of clustering coefficient [(a)
and (b)], average shortest path length [(c) and (d)], and transportation
congestability [(e) and (f)] for different f’s. The different lines
correspond to the relative errors in A° and in the two A" built by
the CN and hybrid methods, respectively, with f = f. The left plots
refer to the CE, whereas, the right plots refer to Email. Results are
averaged over 100 independent realizations.

SC, and PPI—see Table I) because, in these cases, the number
of spurious links added is low as it is the chance for node pairs
to acquire new common neighbors.
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FIG. 9. (Color online) Relative errors of clustering coefficient [(a)
and (b)], average shortest path length [(c) and (d)], and transportation
congestability [(e) and (f)] for different f’s. The different lines
correspond to the relative errors in A° and in the two A” built by
the CN and hybrid methods, respectively with f' = f. The left plots
refer to the SC, whereas, the right plots refer to the PPI. Results are
averaged over 100 independent realizations.
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REMOVING SPURIOUS INTERACTIONS IN COMPLEX ...

APPENDIX B: NETWORK’S PROPERTIES WHEN THE GC
IS NOT HEAVILY HARMED

In this section, we report the relative errors made by the
CN and hybrid methods for the clustering coefficient, average
shortest path length, and traffic congestability for the networks
that were not discussed in Sec. V—namely, the CE, Email
(Fig. 8) and SC, PPI (Fig. 9). In these cases, the GC’s size is
not affected much when using pure similarity-based methods,
hence, the CN can restore some of the true network’s properties
better than the hybrid method. This happens, for instance,
for the average shortest path length in the GC. Contrary to
the hybrid method, the CN is likely to remove links between
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different communities, destroying many shortest paths in this
way but also decreasing the size of the GC. If such a decrease
is not dramatic, the two effects can balance out so that the
shortest path length may not change significantly from A’ to
A" . However, the CN is still disadvantageous for other features.
With respect to clustering, the CN hardly can cut a link that
belongs to a closed triangle, even if such a link is a spurious one
because its ending nodes have at least one common neighbors.
Hence, the number of closed link triangles (and, consequently,
the clustering coefficient) will be generally greater in A" than
in the original A’. In addition, the CN can rarely preserve
the links from A’ with the highest betweenness, causing a
significant decrease in traffic congestability from A’ to A”.
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