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How to obtain extreme multistability in coupled dynamical systems
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We present a method for designing an appropriate coupling scheme for two dynamical systems in order
to realize extreme multistability. We achieve the coexistence of infinitely many attractors for a given set of
parameters by using the concept of partial synchronization based on Lyapunov function stability. We show that
the method is very general and allows a great flexibility in choosing the coupling. Furthermore, we demonstrate
its applicability in different models, such as the Rössler system and a chemical oscillator. Finally we show that
extreme multistability is robust with respect to parameter mismatch and, hence, a very general phenomenon in
coupled systems.
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The study of the coexistence of a large number of
asymptotic stable states in a dynamical system for a given
set of parameters and their control is an important topic
of research in nonlinear science. This phenomenon, called
multistability, can be observed in a large variety of systems
in many areas of science [1], namely, nonlinear optics [2],
population dynamics [3], neuroscience [4], climate dynamics
[5], condensed-matter physics [6], laser physics [7], and
electronic oscillators [8]. Three classes of systems have been
studied where multistability is commonly found: weakly
dissipative systems [9,10], systems involving a delay [11], and
coupled systems [12]. A common property of these systems
is their large sensitivity to initial conditions because of the
complex structure of the basins of attraction of the different
attractors [13]. Besides extended theoretical studies on the
coexistence of a multitude of attractors and its consequences
for the dynamics of the system, experimental observations
have revealed multistability in optical systems [2] in which
the intrinsic delay plays the key role.

On the other hand, an extreme kind of multistability,
where the number of coexisting attractors is infinite, has
been reported in a coupled system by Sun et al. [14]. In that
system a particular choice of the coupling plays the key role.
Their work [14] was inspired by experimental observations
of chemical reactions in which the outcome is uncertain
despite the special care taken to ensure always the same
experimental conditions [15]. This type of multistability has
been explored in coupled systems [14,16] where the temporal
evolution of the coupled system has a strong dependence
on initial conditions while the uncoupled system does not
show any multistability. The appearance of infinitely many
attractors in those coupled systems is related to generalized
synchronization [17]. Moreover, it is important to note that the
coupling needed to obtain this extreme kind of multistability
is rather unusual and in any case nonlinear. Recently it has
been shown that the reason for the emergence of infinitely
many attractors lies in the appearance of a conserved quantity
in the long-term limit [18]. In particular cases, this conserved
quantity can be considered as a unique emergent parameter
which governs the dynamics of the system in the long-term
limit and, hence, allows for a reduction of the dimension
of the system. Furthermore, it was conjectured that at least

two variables need to be coupled to obtain infinitely many
attractors. However, in these studies of extreme multistability
in coupled systems, it was not possible to find a systematic
definition of the coupling type. In the example systems, such
as the Lorenz system or the coupled chemical oscillators,
the coupling was particularly chosen to create an infinity of
attractors. The question arises if there is a general principle of
designing the coupling, leading to infinitely many attractors in
coupled systems. In this Rapid Communication, we address
this issue of finding such a general principle of defining
the coupling for extreme multistability. The coupling is
defined in a systematic way by using the principle of partial
synchronization based on the Lyapunov function stability [19].
The method is very general in its applicability to any dynamical
system and allows many alternative design options. As a result,
it provides flexibility in the physical realization of extreme
multistability in dynamical systems. This phenomenon is also
found to be robust with respect to parameter mismatch.

To demonstrate the general applicability of our method
we use two examples: the Rössler oscillator as well as a
chemical autocatalator model [18]. Before outlining the design
principle of the coupling we briefly recall the emergence of
extreme multistability in the first studied example, the coupled
Lorenz systems [14]. Two Lorenz systems described by xi

and yi (i = 1,2,3) are coupled in a highly nonlinear way.
They exhibit infinitely many coexisting attractors, but do not
possess multistability when uncoupled. In the coupled state
the systems show partial synchronization in the sense that they
are completely synchronized in two of the variables, while
the third pair of the variables keep a certain distance one
from another. This property can be expressed in terms of error
variables ei = xi − yi , i = 1,2,3, measuring the distance from
the synchronization manifold of complete synchronization.
The error dynamics of the coupled Lorenz system was given
there by ė1 = σe2, ė2 = −e2 − x1e3, and ė3 = x1e2 − be3.
It was shown that this error dynamics possesses a fixed
point (e∗

1,e
∗
2,e

∗
3) = (e∗

1,0,0), where e∗
1 obeys a constant value

K which depends on the initial condition. The stability of
this fixed point can be derived using a Lyapunov function
V = e2

2 + e2
3 [14]. The constant K turns out to be a conserved

quantity according to the analysis in Ref. [18] and can take any
real value from −∞ to ∞. To each of these values belongs
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one attractor which resides in a synchronization manifold
characterized by a particular value of the conserved quantity
K . Consequently, the whole state space is sliced into infinitely
many synchronization manifolds, each of them given by the
value of K . This resembles the situation of conservative
systems where for each value of the conserved quantity another
marginal stable dynamics is given. However, it is important
to note that the conserved quantity in the case of extreme
multistability is not necessarily given from the beginning
but evolves temporally and emerges in the long-term limit
only. Based on the observations above we formulate one
precondition for the emergence of extreme multistability: The
coexistence of infinitely many attractors in an m-dimensional
coupled system will be possible if m − 1 of the variables
of the two systems are completely synchronized and one of
them obeys a constant difference between them. Therefore
we develop a method that makes the m − 1 variables of two
coupled systems completely synchronize. In order to achieve
this goal we employ the stability theory using a Lyapunov
function. Let an m-dimensional system be governed by the
equation ẋ = F(x), where F(x) is the dynamics of the system;
F : Rm → Rm and x = [xi ; i = 1,2, . . . ,m]. Consider now the
same dynamical system but with different initial conditions
and denote its dynamical variables by y so that ẏ = F(y),
y = [yi ; i = 1,2, . . . ,m]. When these two systems are coupled,
they can synchronize completely under certain conditions [19].
This synchronized dynamics takes place on a synchronization
manifold which is defined by x = y and the deviation from
the synchronization manifold is described by the error e =
x − y. The time evolution of these deviations is given by the
error dynamics ė = G(x,y) = F(x) − F(y), G : Rm → Rm.
As stated above, one way to achieve extreme multistability is
that m − 1 of the dynamical variables synchronize completely
while one of them keeps a certain distance K . To fulfill these
conditions the error dynamics has to obey a specific form,
which we denote by G̃(x,y). This desired error dynamics is
the basis for designing specific controllers u1(x,y) and u2(x,y)
for coupling two dynamical systems in such a way that extreme
multistability originates. Now the desired governing equation
ė = ẋ − ẏ = G̃(x,y) will imply that G̃(x,y) − F(x) + F(y) =
u1(x,y) − u2(x,y). This last equation enables us to find the
proper construction of the controllers u1,2 which yield the
appropriate coupling terms of the two systems, and ensures
that they exhibit extreme multistability.

To illustrate the construction of coupled systems possessing
infinitely many attractors, we start with the Rössler system
as a generic example. The parameters of the uncoupled
Rössler system are chosen for a chaotic regime. A coupling
scheme based on Lyapunov function stability yielding com-
plete synchronization between identical Rössler systems was
described earlier [19]. By contrast, we attempt to realize partial
synchronization using a bidirectional coupling that will induce
in the coupled system a different property: the coexistence of
infinitely many attractors dependent on the initial conditions.

Consider two Rössler systems coupled through bidirec-
tional controllers u1i and u2i , i = 1,2,3:

ẋ1 = −x2 − x3 + u11, (1a)

ẋ2 = x1 + ax2 + u12, (1b)

ẋ3 = b + x3(x1 − c) + u13, (1c)

ẏ1 = −y2 − y3 + u21, (1d)

ẏ2 = y1 + ay2 + u22, (1e)

ẏ3 = b + y3(y1 − c) + u23. (1f)

The dynamics of the synchronization errors ė = G(x,y) are
derived as ė1 = −e2 − e3, ė2 = e1 + ae2, and ė3 = x3(x1 −
c) − y3(y1 − c). To realize infinitely many coexisting attrac-
tors, we have to fulfill a goal error dynamics ė = G̃(x,y). As
a simplest goal error dynamics G̃ we can choose ė1 = −e1,
ė2 = e1, and ė3 = −ce3. This error dynamics possesses a
fixed point (e∗

1,e
∗
2,e

∗
3) = (0,e∗

2,0), where e∗
2 can take any real

value from −∞ to ∞ depending on the initial conditions.
As we approach an attractor, we find a constant K = e∗

2
which characterizes a synchronization manifold and which
can be considered as the conserved quantity emerging in
the long-term limit. The corresponding Lyapunov function
V = e2

1 + e2
3 � 0 obeys the dynamics V̇ = 2e1ė1 + 2e3ė3 =

−2(e2
1 + ce2

3) < 0 to make this fixed point stable. To achieve
this desired error dynamics, the components of the controllers
are to be selected as u11 − u21 = e2 + e3 − e1, u12 − u22 =
−ae2, and u13 − u23 = −x1x3 + y1y3. We can easily choose
u11 = 0, u22 = 0, and u23 = 0, and thereby three equations
[Eqs. (1a), (1e), and (1f)] remain unchanged, whereas the
other three will be changed by the additive controllers u21,
u12, and u13. The modified coupled Rössler system becomes
ẋ1 = −x2 − x3, ẋ2 = x1 + ay2, ẋ3 = b − cx3 + y1y3, ẏ1 =
x1 − y1 − x2 − x3, ẏ2 = y1 + ay2, and ẏ3 = b + y3(y1 − c).

To demonstrate the coexistence of infinitely many attractors
we fix the parameters of the two uncoupled Rössler systems
to a = 0.2, b = 0.2, and c = 5.7, and vary a single initial
condition y01 and determine the final state of the coupled
system by simulation. All the other initial conditions except
y01 are fixed. Figure 1 shows the coexistence of different
types of attractors in state space, such as period-3, period-4,
period-8, period 5, and chaos, which appear for different values
of y01, and this list is not exhaustive. Extreme multistability
under the variation of initial conditions is further illustrated in
Figs. 2(a) and 2(b). While Fig. 2(a) plots the largest Lyapunov
exponent in color coding, Fig. 2(b) depicts the corresponding
attractors along the black line drawn in Fig. 2(a). We find
several periodic and chaotic attractors for different initial
conditions and the whole picture resembles a bifurcation
diagram, though we emphasize that the abscissa is not a
control parameter but an initial condition of the coupled
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FIG. 1. (Color online) Multiple coexisting attractors for different
initial conditions: period 3 (y01 = −2.04), period-4 (y01 = 4.6),
period-8 (y01 = −7.9), and chaos (y01 = 7.6). Many other possible
dynamics are also shown. Other initial conditions are fixed (x01 =
−0.1, x02 = 0.01, x03 = 0.3, y02 = 0.2, y03 = 2.0).
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FIG. 2. (Color online) (a) Largest Lyapunov exponent λmax of the coexisting states of the coupled Rössler system for different y01 and y02.
Figure 1 shows details of initial conditions. (b) Maxima of x2 as a function of initial condition y01. (c) Maxima of x1 plotted against “parameter”
K of the reduced system (5).

system. The emergence of a conserved quantity K in the
long-term limit offers the opportunity to reduce the dimension
of the system under investigation. As mentioned above, two of
the variables of the coupled system synchronize completely
while the systems keep a constant distance from each
other in the third variable when an attractor is approached.
One can use this fact to describe the long-term dynamics of
the 2m-dimensional coupled system by an m-dimensional one
having an additional parameter K = e∗

2 which encodes the
synchronization manifold (cf. Ref. [18]). The corresponding
reduced system for our example reads ẋ1 = −x2 − x3, ẋ2 =
x1 + a(x2 + K), and ẋ3 = b + x3(x1 − c). This reduced sys-
tem is only valid as t → ∞. Figure 2(c) shows the qualitative
behavior of the reduced system as the parameter K is varied.
Now it is indeed a bifurcation diagram since the conserved
quantity K , which emerges in the full system in the long-term
limit, enters the reduced system as a parameter, and a closer
look shows close agreement with Fig. 2(b).

We emphasize here that the choice of the controllers is not
unique but rather flexible. We can always set m components
of the 2m controllers to zero (except for setting u1i : i = 1,2,3
or u2j : j = 1,2,3 to zero at the same time), while the other
m elements have to be nonzero. Moreover, the choice of
the Lyapunov function is also not unique and several other
such functions are possible to consider. This indicates that the
method introduced here is rather general and offers a large
flexibility in designing an appropriate coupling.

Next we present the example of the autocatalator model
which is a three-variable extension [20] of the two-variable
autocatalator model [21] that is widely used to describe
complex chemical oscillations and chaos. A precursor chem-
ical substance A is transformed into a product B via
three different intermediates. While the precursor chemi-
cal substance is held fixed, the intermediates follow the
equations ẋ1 = μ(κ + x3) − x1(1 + x2

2 ), σ ẋ2 = x1(1 + x2
2 ) −

x2, and δẋ3 = x2 − x3, where σ = 5 × 10−3, δ = 2 × 10−2,
and κ = 65 are reaction constants and μ is related to the
amount of precursor A and serves as a bifurcation parameter.
For μ = 0.145 the single autocatalator exhibits periodic
motion. It was shown in Ref. [18] that two bidirectionally
coupled autocatalators exhibit extreme multistability. The
error dynamics was given there by ė1 = μe3 − (1 + x2

2 )e1,
σ ė2 = (1 + x2

2 )e1, and δė3 = −e3, and depends on the state
variables in a complex manner. The corresponding Lyapunov

function V (e1,e2,e3) = (1 + x2
2 )δ + 1

2(δμ)2 e2
1 + 1

δμ
e1e3 + e2

3 was also

rather complicated. Here we show that one can choose a
much simpler Lyapunov function, leading again to extreme
multistability. We require the error dynamics G̃ to be ė1 = μe3,
σ ė2 = −e2, and δė3 = −e3. The fixed point corresponding to a
synchronization manifold is then given by (e∗

1,0,0) and proven
to be stable using the simple Lyapunov function V = e2

2 + e2
3.

Following a similar procedure as above and choosing the van-
ishing controller components as u11 = 0, u22 = 0, and u13 =
0, we arrive at the following coupled autocatalator system:

ẋ1 = μ(k + x3) − x1
(
1 + x2

2

)
,

σ ẋ2 = −x2 + y1
(
1 + y2

2

)
, δẋ3 = x2 − x3,

ẏ1 = μ(k + y3) − x1
(
1 + x2

2

)
,

σ ẏ2 = −y2 + y1
(
1 + y2

2

)
, δẏ3 = x2 − y3.

The corresponding dynamics depending on the initial
conditions is depicted in Fig. 3(a), together with the three
largest Lyapunov exponents in Fig. 3(b). They clearly reveal
the existence of multiple attractors.

In the real world, no two oscillators can be identical. Hence
we check the robustness of the extreme multistability in the
presence of parameter mismatch in two coupled systems. This
is important for the physical realization of the phenomenon.
The Lyapunov-function-based controller design has an inher-
ent property of nullifying the effect of parameter mismatch [19]
and it thereby provides a robustness of the extreme multista-
bility to parameter mismatch in the coupled systems. To reveal
this property, we take two mismatched Rössler oscillators
and redefine the error dynamics by ė1 = −e1, ė3 = −ce3,
and ė2 = (a2 − a1)e1, where (a2 − a1) = δa is the detuning
parameter of the coupled system. The Lyapunov function
V = e2

1 + e2
3 indicates that e3 and e1 tend to zero for t → ∞,
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FIG. 3. (Color online) (a) Maxima of x1 of coupled autocatalator
as a function of y03. Initial conditions: x01 = 0.01, x02 = 0.1, x03 =
0.1, y01 = 0.0, and y02 = 0.0. (b) Three largest Lyapunov exponents
plotted with y03.
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FIG. 4. (Color online) Largest Lyapunov exponent λmax for
±20% detuning of parameter a. The initial condition y02 is varied
from −4 to 4 when all others are fixed: x01 = −0.1, x02 = 0.01,
x03 = 0.3, y01 = −7.6, y03 = 2.0, and a = 0.2. δa = 0 represents
identical oscillators. Color codes correspond to different λmax values.

while e2 becomes constant (K) for any real values of δa .
Keeping a2 fixed at 0.2 and varying a1 from 0.16 to 0.24
(±20% detuning) extreme multistability is still maintained, as
shown in Fig. 4. The same applies for the detuning in other
parameters.

In summary, we proposed a systematic method of design-
ing the coupling for two m-dimensional dynamical systems
governed by the same dynamics to exhibit infinitely many
coexisting attractors when the isolated systems do not possess
multistability. The coupling establishes partial synchroniza-
tion in the two systems, leading to a conserved quantity that
characterizes a synchronization manifold. The value of the
conserved quantity is determined by the initial condition. This
coupling scheme is very general since many different choices
of Lyapunov functions are possible to consider and it incor-
porates a great flexibility in the design so that one can always
find an optimal coupling for the physical realization of extreme
multistability. Robustness of the extreme multistability with
respect to parameter mismatch is also ensured. We successfully
tested the coupling for extreme multistability in few systems,
especially a magnetized plasma model to be reported in the
future.
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