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Critical condition of the water-retention model
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We study how much water can be retained without leaking through boundaries when each unit square of a
two-dimensional lattice is randomly assigned a block of unit bottom area but with different heights from zero
to n − 1. As more blocks are put into the system, there exists a phase transition beyond which the system
retains a macroscopic volume of water. We locate the critical points and verify that the criticality belongs to the
two-dimensional percolation universality class. If the height distribution can be approximated as continuous for
large n, the system is always close to a critical point and the fraction of the area below the resulting water level is
given by the percolation threshold. This provides a universal upper bound of areas that can be covered by water
in a random landscape.
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Percolation is a simple yet powerful model used to
understand geometric critical phenomena [1,2]. Studies of
gelation [3] and fluid in a porous media [4] go back more than
half a century ago. Since then, percolation has been studied in a
variety of contexts such as epidemiology [5], ferromagnetism
[6], and even microprocessor manufacturing [7]. Recently, it
has been pointed out that percolation also may be studied in
a geographic context, that is, in determining how much water
can be retained without leaking through boundaries on a given
rugged landscape [8]. If the landscape has only two levels,
the connection to percolation is straightforward. Suppose that
we have a square lattice of a certain size. We may define
this initial state as level zero. It is more intuitive to start with
level one, however, by filling every square site with a cubic
block of the unit height. Then we randomly remove a certain
fraction of the cubic blocks, say, p0, so that we have small
ponds here and there where water is retained. As p0 grows,
the ponds merge into large clusters and when one of these
clusters touches the boundary, a large amount of water drains
out of the system all at once. Obviously, this crisis happens
when p0 reaches the site-percolation threshold of the square
lattice, which has been estimated as psite

c ≈ 0.592 746 02(4)
[9]; in terms of p1, the fraction of blocks with height 1, this
corresponds to p1 = 1 − psite

c = 0.407 253 98(4), which we
simply denote as pc throughout this work. Beyond this direct
connection, the water-retention model allows the number of
levels to be larger than 2, so we may ask ourselves how these
different heights can affect the critical behavior of the system.
The distribution of different heights extends the parameter
space of the original percolation problem to higher dimensions
and thus literally adds a new dimension to percolation, even
though these new parameters turn out to be irrelevant in the
renormalization-group sense (see below). It is also notable
that the analogy of a random landscape can be found in
surface roughening [10] as well as in the concept called a
rugged energy landscape used in spin glasses and protein
dynamics [11,12].
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In the present work we consider this water-retention
problem for a general n-level case where the system may
have blocks with heights from 0 to n − 1. The fraction pi of
blocks of the height i should satisfy

∑n−1
i=0 pi = 1 (pi � 0),

which makes us deal with an (n − 1)-dimensional parameter
space. A site occupied by a zero-height block is an empty
site. We locate critical points in this parameter space and give
numerical evidence that the criticality always belongs to the
two-dimensional (2D) percolation universality class described
by critical exponents β = 5/36 and ν = 4/3 [13]. The critical
condition implies that one can find a universal feature in
any random landscape with very large n, which is largely
independent of the distribution of blocks {pi}.

Our simulation code is based on the burning algorithm. Let
us begin with the two-level case for ease of explanation. We
have an (L + 2) × (L + 2) square lattice, where we assign the
boundary state to the outermost squares while the level-zero
state is assigned to the other interior sites. At each of these
L × L interior sites, we replace its state with a level-one state
with probability p1. This step determines the configuration of
blocks that we are going to examine in the following way.
We pick up a level-zero site from which we run the burning
algorithm. The fire can neither penetrate level-one sites nor
propagate back. If this fire touches any boundary-state site,
the water will drain out. If the burning stops before touching
the boundary by being surrounded by level-one blocks, this
burned area is added to the amount of water retained by this
block configuration. Then we move to another level-zero site
that is not burned yet, which we call available, and repeat
the same procedure until there are no more such available
sites left. One can choose either the depth-first search and the
breadth-first search for the burning algorithm. Although the
former exhausts memory faster, it is simpler to implement and
turns out to have little difficulty in simulating L ∼ 6 × 103

using Intel Core2 Duo CPU E8400 with 3.00 GHz and 2.0 GB
memory. The breadth-first search is reserved for very-large-n
cases (see below). Solving a system with blocks of height 0, 1,
and 2 requires the system to be burned twice: one occurs at
level 1 and the other at level 2. The first burning fills level-zero
sites with water up to height 1 precisely as in the previous
two-level case. After the first burning, consequently, we are
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FIG. 1. (Color online) Results of the two-level case. (a) Water
volume per area w as a function of p1, the fraction of blocks with
height 1. The vertical dotted line means pc ≈ 0.407 253 98 and the
other line from the top left to the bottom right is for comparing w

with 1 − p1. (b) w1L
β/ν at pc as a function of L, based on Eq. (1),

where the number of sample averages is O(105) for each data point.
Error bars are shown, but they are comparable to the symbol size.

left with sites with levels one and two. The level-two sites
must be occupied by blocks of height 2, while the level-one
sites can be either occupied by blocks of height 1 or filled with
water of that height. When we start the second burning, all
these level-one sites should appear available so that we can
fill these sites with water of that height. In other words, only
blocks with height 2 are of our interest at this second burning.
It is straightforward to extend the same procedure to higher
levels by raising the water level one by one. Note that we count
only such water that does not touch the boundary as retained
by the given block configuration every time we run the burning
algorithm.

We start from the two-level case of the water-retention
problem [8]. As discussed above, it is easier to understand
this problem if we start from p1 = 1 and decrease it by adding
level-zero sites. One may expect that the amount of water will
be roughly proportional to p0, especially for p0 � psite

c , as
shown in Fig. 1(a). As the system size grows, the linear
proportionality becomes more and more accurate because
the majority of ponds are centrally located away from the
boundary. In Fig. 1(a) the vertical axis means water volume
divided by the total interior area L × L and we denote this
observable as w. When p0 reaches psite

c or, equivalently, when
p1 reaches pc, percolation occurs and a large amount of
water drains out through the boundary. In terms of percolation
theory, the observable w corresponds to the sum of sizes of all
nonpercolating clusters of level-zero sites in bulk, which will
converge to psite

c in the thermodynamic limit [1]. According to
the theory of finite-size scaling [1], the largest amount of water
in a single pond, denoted by w1, is expected to be described
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FIG. 2. (Color online) Results of the three-level case. (a) w as a
function of p1 and p2 at L + 2 = 512. (b) Difference in w between
L + 2 = 256 and 512. Cross section A, depicted as a slanting arrow,
means p1 = p2, and cross section B, depicted as a vertical arrow,
means p1 = pc/2. (c) w1L

β/ν measured at p1 = p2 = pc/2, the
critical point along A, and also at p1 = p2/2 = pc/2, the critical
point along B. The 2D percolation result β/ν = 5/48 is used in
common.

by the following form:

w1 = L−β/νf [(p1 − pc)L1/ν], (1)

with β = 5/36 and ν = 4/3 near criticality [13]. This is readily
confirmed by Fig. 1(b), where we plot w1L

β/ν → const at
p1 = pc.

In the three-level case the result can be depicted in a
triangular area restricted by p1 + p2 � 1, as shown in
Fig. 2(a), since the fraction of level-zero sites is obviously
p0 = 1 − p1 − p2 and p0 � 0. At each of the three boundaries
of this triangle, we are back to the two-level case. First, if
p2 = 0, we move along the low horizontal boundary and
the result is exactly Fig. 1(a). Second, if p2 = 1 − p1, we
move along the hypotenuse of the triangle and it is again the
two-level problem with level-one and level-two sites because
p0 = 0. Finally, if p1 = 0, we move along the left vertical
boundary. It is the same pattern as in the two-level case but
with double amounts of water since the block height is doubled.
The question is then what happens inside these boundaries;
Fig. 2(a) gives the answer.

Let us locate critical points inside the triangle. For this
purpose we compare two different system sizes in Fig. 2(b).
The motivation is as follows. When there are only small ponds
around us, one hardly needs to care about how large the system
is because everything is local. If the system is close to the
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FIG. 3. (Color online) Results of the four-level case. The calcu-
lation is the same as Fig. 2(b) except that p3 = 0.1.

critical point so that a large amount of water is about to drain
out, however, the correlation length becomes so large that the
behavior is essentially constrained by the finite size of the
system. In other words, it is around the critical point that our
observable w becomes the most sensitive to the system size,
as can be seen in Fig. 1(a) for the two-level case. Figure 2(b)
indicates that there are two lines of critical points, which can
be written as

p1 + p2 = pc, (2)

p2 = pc. (3)

We can argue that these are exact expressions for the following
reason: Eq. (2) implies that blocks with height 2 can be
substituted for those with height 1, while Eq. (3) implies that
the blocks with height 2 have their own critical point without
being affected by the presence of level-one blocks.

Another important question is whether the critical property
remains the same along these critical lines. The above
argument on exactness of Eqs. (2) and (3) implies that this
will be the case. We examine two cross sections represented
as A and B in Fig. 2(b) and show the results in Fig. 2(c). In
both these cases w1 follows the scaling form of Eq. (1) with
β/ν = 5/48. We have also observed that the critical region
of w scales as L−1/ν with ν = 4/3 (not shown here). These
results strongly suggest that the criticality always belongs to
the 2D percolation universality class.

A four-level system requires consideration of the volume
inside a tetrahedron, written as p1 + p2 + p3 � 1. Since it is
not easy to visualize such a three-dimensional object, we plot
differences in w between two system sizes as before, but now
fixing p3 at 10% in Fig. 3. Comparing this with Fig. 2(b), we
immediately see that the new critical surfaces can be written
as

p1 + p2 + p3 = pc, p2 + p3 = pc, p3 = pc. (4)

Note that we had p1 = pc as the critical condition for the
two-level case and Eqs. (2) and (3) for the three-level case.

Comparing Eq. (4) with these previous cases, we can now
generalize the critical condition for the n-level case as

P (1) = pc,

P (2) = pc,

...

P (n − 1) = pc, (5)

where P (i) ≡ ∑n−1
j=i pj . Note that the system is critical when

any of the conditions is satisfied. Let us assume that P (i) can
be approximated by a continuous function of i as n gets large. It
implies that pi can be made arbitrarily small by dividing levels
(n → ∞), which is true for most natural landscapes where
contour lines do not occupy a finite area fraction. Then one can
argue from the intermediate-value theorem that there exists a
certain i = i∗ that satisfies one of the critical conditions above.
In other words, the system is almost always close to a certain
critical surface so that the correlation length is found to be very
large at a certain water level i∗. Consider a system where a large
amount of water is poured onto the model and the excess water
is allowed to drain off. For i � i∗, water will flow out of the
system, so the water level should be kept slightly below i∗ in a
stable situation. Still, P (i∗) is close to pc and the typical length
scale will be very large, which shapes observed ponds and lakes
into fractal objects like 2D percolating clusters. In this sense,
one may connect this finding to the idea of self-organized
criticality [14], although our finding originates from gradual
variations in P (i), not from any dynamic process (see also
Ref. [15] on self-organizied behavior in invasion percolation).

Another implication of Eq. (5) is that the fraction of the area
above the observed water level i∗ should be always the same for
infinitely many (p1,p2,p3, . . . ,pn−1). The fraction of the area
below the water level is given by psite

c = 0.592 746 02(4) in our
case, but the numeric value depends on the square geometry
we have chosen, so actual field observations may well give
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FIG. 4. (Color online) Retained water as a function of n, the
number of levels, where pi = 1/n for every i. (a) As L → ∞,
w/n, with n 	 1, approaches a constant. (b) For finite n, w is not
monotonic: n = 3 contains a smaller amount than n = 2, for example,
and such nonmonotonic behavior becomes more visible with larger L.
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a different value. The important point is that there can be a
universal upper limit of how much area can be covered by
water at any length scale. Since we have considered randomly
distributed blocks, if a landscape contains more water than
this upper limit, it indicates the existence of nonrandom
processes with correlation lengths comparable to the scale
of our observation.

As a simple example, let us assume that pi’s are equally dis-
tributed, i.e., pi = 1/n for every i [8]. When n is very large, we
have P (i) ≈ 1 − i/n and thus P (i∗) = 1 − i∗/n = pc. Water
retained in this system roughly amounts to w = ∑i∗

i=0(i∗ −
i)pi ≈ (1 − pc)2n/2 ≈ 0.175 673 9n. In fact, this is an un-
derestimate since there can be ponds with water higher than
i∗ [16]. The point is that w is asymptotically proportional to n

[Fig. 4(a)]. However, w might not be a monotonic function of n

when n is finite [Fig. 4(b)]. The reason can be found by recall-
ing Eq. (5): The question is how close one can get to a critical
condition at each given n while keeping P (i) larger than pc. For
example, one can get P (1) = 1/2 for n = 2, which differs from
pc by 0.09. For n = 3, the minimal difference gets larger be-
cause P (2) − pc ≈ 2/3 − 0.4 ≈ 0.26. It explains the increas-
ing value of w(n = 2) − w(n = 3) with increasing L and the
same explanation holds true for larger n’s as well in Fig. 4(b).

In summary, we have considered the general n-level water-
retention problem. Specifically, we have found the critical
conditions in the (n − 1)-dimensional parameter space and
provided numerical evidence that the critical property always
belongs to the 2D percolation universality class. The critical

condition implies that there are universal features in the large-n
limit: First, the system is very likely to be close to a critical
point and second, the area below water is not significantly
dependent on the distribution of block heights. This tells us
how the percolation threshold can be related to the upper
limit of water retained by a random landscape and used as a
quantitative measure for detecting a geophysical process on a
certain length scale when its existence is called into question.1
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from the Swedish Research Council with Grant No. 621-
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Sungkyunkwan University. This research was conducted using
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1It is interesting to recall that 70.9% of the Earth is covered by
water [17]. This fraction is higher than site-percolation thresholds
of the triangular [18], square [9], and honeycomb lattices [19] and
also higher than critical area fractions of 2D continuum percolation
models [20,21]. If we assume that every geophysical process has a
short length scale compared to the size of the Earth, so that the global
landscape on the Earth can be roughly regarded as random, we may
retrospectively understand that too much of the Earth is covered by
water to be believed to be a flat disk with steep cliffs at the boundary
as once believed.
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