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Network reciprocity by coexisting learning and teaching strategies
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We propose a network reciprocity model in which an agent probabilistically adopts learning or teaching
strategies. In the learning adaptation mechanism, an agent may copy a neighbor’s strategy through Fermi
pairwise comparison. The teaching adaptation mechanism involves an agent imposing its strategy on a neighbor.
Our simulations reveal that the reciprocity is significantly affected by the frequency with which learning and
teaching agents coexist in a network and by the structure of the network itself.
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I. INTRODUCTION

In most previous network game models, strategy adaptation
is a process where a focal agent copies a neighbor’s strategy,
i.e., either cooperates (C) or defects (D). Copying is akin
to learning a neighbor’s methods. Szolnoki and Szabo [1]
proposed a strategy adaptation called teaching in which an
agent tries to impose its C or D strategy on a neighbor.
This then inspired scholars to investigate learning as well as
teaching [1–9]. In human social systems, learning and teaching
are common activities that enable adaptation strategies to
spread throughout a population. Note that a situation in which
everyone unanimously adopts either learning or teaching is
unrealistic. In addition, sometimes people learn from others
and try to impose what they learned on others.

This study investigates the effects of learning and teaching
agents coexisting on a network involving a prisoner dilemma
(PD) game and an agent chooses its pairwise opponent in a
probabilistically skewed manner [10] instead of in a random
fashion.

II. MODEL CONSTRUCTION

At every time step, agents on a time-constant network play
PD games with their neighbors and synchronously update their
strategy based on their accumulated payoffs. In this model we
regard accumulated payoff as a fitness for strategy adaptation
instead of payoff per an interaction [11]. In a PD game, a
player receives a reward R for mutual C’s and a punishment P

for mutual D’s. If one player chooses C and the other chooses
D, the latter obtains a temptation payoff T and the former is
labeled a saint S. Without loss of generality, we can define a
PD game space by presuming R = 1 and P = 0 as follows:

(
R S

T P

)
=

(
1 −Dr

1 + Dg 0

)
, (1)

where Dg = T − R and Dr = P − S imply a chicken-type
and stag-hunt dilemma, respectively [12]. We limit the PD
game class by assuming 0 � Dg � 1 and 0 � Dr � 1.

When updating its strategy, an agent selects an opponent for
pairwise comparison by random selection or skewed selection.
In the latter method, focal agent x selects one neighbor y based

on the following probability [10]:

pPW for x
y = exp(w�y)∑

i∈{�x } exp(w�i)
, (2)

where �x is the focal agent’s neighbor set and � is the
accumulated payoff of each agent. The parameter w implies
that a positive (negative) value favors a situation where a
neighbor with a relatively large (small) payoff would be
selected. After choosing an opponent for pairwise comparison,
the focal agent adopts either a learning or a teaching strategy,
which are defined in the following.

A. Learning model

Focal agent x may or may not copy the strategy of a pairwise
opponent y based on a Fermi pairwise process. The decision
is based on the difference in payoff between its strategy and
its neighbor’s strategy:

px←y
copy = 1

1 + exp
(�x−�y

κ

) .

Again, we emphasize that learning is a common concept
[13,14].

B. Teaching model

Focal agent x may or may not choose to impose its strategy
on a pairwise opponent y based on a Fermi pairwise process.
The decision is based on the payoff difference

px→y
impose = 1

1 + exp
(−�x+�y

κ

) .

If several neighbors try to impose their strategy on a certain
agent simultaneously, each imposing trial that is randomly
ordered among those teaching neighbors would be considered
one after another. We assume that κ = 0.2 throughout our
simulations, based on previous studies [15].

At the beginning of each simulation episode, we randomly
designate half of the total number of agents N on a network as
cooperative and half as defectors. We assume that 1 − λ of the
total agents adopt learning and λ adopt teaching. At each time
step we randomly determine who adopts learning or teaching
to meet the coexisting frequency λ. Accordingly, an agent’s
adaptation choice, whether it is learning or teaching, is never
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fixed. When skewed pairwise opponent selection is assumed,
we assign w = 1 for learning and w = −1 for teaching agents.

We presumed synchronous strategy updating even if learn-
ing and teaching agents coexist. Assume agent A has teaching
neighbors B, C, and D. When all three neighbors attempt to
impose their strategies on A simultaneously, A copies from the
last agent among B, C, and D, which are randomly ordered.
At first, A is imposed on to copy D’s strategy. Next, C tries
to impose its strategy on A. Finally, A adopts the strategy of
B, who is the last agent in the random order. Assume another
example in which learner A has learner B and teacher C as
neighbors. If A wants to learn from B and C wants to teach
A, then A will experience the later event: learning from B and
thrusting by C, which are randomly ordered.

Each simulation runs as follows. Initially, an equal per-
centage of strategies is distributed randomly among the
players allocated on different network vertices. Then several
generations are run until the frequency of cooperation reaches
a certain quasiequilibrium where the difference between the
average cooperation fraction for the last 100 generations and
that for the previous 100 generations becomes less than 1% of
the average cooperation fraction for the last 100 generations. If
the frequency of cooperation continues fluctuating, we obtain
the frequency of cooperation for the last 100 generations
over a 6000-generation run. We conduct this procedure at
11 × 11 points of the PD area (0 � Dg � 1 and 0 �
Dr � 1) 300 times to draw those 121 (=11 × 11) ensemble
averages. We investigate two types of network structures: the
Barabási-Albert (BA) scale-free (SF) network [16] and the
two-dimensional (2D) lattice with the assumptions N = 4900

and 〈k〉 = 8. To run 300 realizations, we prepared 20 BA
SF networks derived from 20 random seeds. This implies
that each BA SF network runs 15 realizations starting from
different randomly distributed initial allocations. Concerning
the underlying network topology, we adopted the 2D lattice and
BA SF network as representative graphs for the homogeneous
and heterogeneous networks, although the graph should be
chosen more carefully [17]. For example, networks with a
different assortment of coefficients might be interesting to
investigate despite having the same degree distribution.

III. RESULTS AND DISCUSSION

Figure 1 shows cooperative fractions with different teaching
frequencies covering an entire PD area with an assumed BA SF
network. The cooperation decays as the number of teaching
agents increases, while skewed pairwise opponent selection
substantially enhances cooperation.

We specifically define three subclasses of PD to evaluate
cooperation within 0 � Dg � 1 and 0 � Dr � 1. The first is
the average cooperation fraction covering the entire PD area
(APD) and derived from the data of all 121 points. The second
is the average of game structures featuring Dg = Dr, which is
the donor and recipient (DR) game, derived from the 11 point
average. The last is the average collected from the region of
Dr = 0, which consists of boundary games between the PD
and chicken games without the stag-hunt dilemma (BPDC),
also derived from the 11 point average. Many previous studies
postulate the BPDC for representing the PD because it can be
characterized by the single dilemma parameter Dg . However,

FIG. 1. Average cooperation fraction within 0 � Dr � 1 and 0 � Dg � 1 obtained from 100 independent simulation episodes. We assumed
N = 4900 and BA SF networks with an average degree of 〈k〉 = 8. Results with (a) λ = 0, (b) λ = 0.5, and (c) λ = 1 based on random pairwise
opponent selection. (d)λ = 0.5 with skewed pairwise opponent selection. (a) Customary network reciprocity on SF networks with 〈k〉 = 8 is
implied, when Fermi pairwise synchronous updating is assumed [16].
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FIG. 2. (Color online) Average cooperation fractions of APD, DR, and BPDC games with random (closed symbols) and skewed (open
symbols) pairwise opponent selection on SF networks assuming (a) 〈k〉 = 8 and N = 4900 and (b) regular network with k = 8 and N = 4900,
obtained from 300 realizations. Error bars indicate standard deviation of 300 realizations.

as indicated by Yamauchi et al. [18], the network reciprocity
[19] of SF networks would be overestimated if we consider
only the cooperation fraction for the BPDC. Therefore, we
show the average cooperation fractions of both the APD and
DR subclasses as well as the BPDC subclass in Fig. 2. Those
three average cooperation fractions can, at a glance, give a
holistic evaluation as indices of how each of the assumed
models enhances cooperation, covering a range of different
dilemma strengths. Several physicists have used rc for this
purpose, which means a threshold dilemma strength absorbed
by the entire defection phase when increasing the dilemma
strength. We rely on the average cooperation fraction this time
because rc for the BPDC cannot be observed in 0 � Dg � 1,

as shown in Fig. 1(d).
With regard to the results of random pairwise selection, it

is noteworthy that cooperation in the SF case degrades rapidly
as λ increases, whereas on a regular network, cooperation
shows a slightly opposite tendency. The underlying reason
might be that when a high teaching frequency is assumed for
a SF network, the hub agents, having a higher degree than
others, are more exposed to a neighbor’s strategy. A higher
degree implies more frequent opportunities to be imposed
on by neighbors. Thus, if this hub agent is a hub-C agent
and suffers the imposition of D instead of C, the C cluster it
leads could be damaged. However, on the regular graph, this
drawback for the teaching adaptation can work in the opposite
direction. Let us assume the two extreme cases of λ = 0 (all
agents adopt learning) and λ = 1 (all agents adopt teaching).
In the former case, every agent has a chance to update its
strategy at each time step, irrespective of whether it actually
does so. However, in the latter case, a considerable number of
agents might have no chance to update their strategy because
other agents are imposed on by several neighbors simultane-
ously. This fact enhances cooperation only on homogeneous
networks.

Skewed pairwise opponent selection enhances more co-
operation than random pairwise opponent selection, irrespec-
tive of the underlying network topology. Again, we should
remember that when random pairwise opponent selection
occurs on a SF network, the λ = 0 case is superior to the
λ = 0.5 case. Nevertheless, in the case of skewed pairwise
opponent selection, the most cooperative situation is realized
when one half of the agents adopt teaching and the other
half adopt learning. One possible reason for this is that the
assumption of w = 1 for learning agents and w = −1 for
teaching agents stimulates cooperation because both imitate
stronger agents and killing (overwriting) weaker agents seems
to diffuse cooperation among defectors. Alternatively, this can
be justified as follows. In the case of λ = 0 learning agents
always tend to learn from hub agents and in the case of
λ = 1 teaching agents tend to teach lower-degree agents. This
amplifies cooperation up to some λ. If λ becomes too large
it becomes hard to remove defectors who have been initially
allocated to hub nodes.

To confirm our hypothesis, we observed the initial 100
time steps in a specific simulation episode to examine whether
the game’s early evolutionary stages crucially affect whether
cooperators survive, perish, or coexist with defectors. Those
episodes shown Fig. 3 are typical among 300 realizations
except for episodes showing an all-defector equilibrium. When
a dilemma is imposed on any simulation that starts with
half the agents who offer C being dispersed randomly on
a network, the initial C clusters are immediately invaded
by defectors. Therefore, the cooperation fraction declines. If
network reciprocity were effective, cooperators who form C
clusters could endure this initial D invasion and thereafter
would be able to extend C clusters among defectors. Figure 3
shows a time series for the following: (i) the fraction of
agents whose strategy is not updated (they are teachers and
their teaching neighbors never select those focal teachers to
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FIG. 3. (Color online) Time series reflecting (i) the agent fraction that does not update (no learning and no teaching by neighbors) (Pnon-PW),
(ii) the agent fraction that retains its strategy (trying to learn or be taught but not adopting the neighbor’s strategy) (Pnon-up D), (iii) the agent
fraction that changes strategy from D to C (PD to C), (iv) the agent fraction that switches strategy from C to D (PC to D), and (v) the cooperation
fraction during the initial 100 time steps of a specific simulation episode when Dg = Dr = 0.1 (DR game). In (a) all agents adopt learning and
in (b) all agents adopt teaching on a regular network (k = 8) with random pairwise opponent selection. The cooperation fraction at equilibrium
for each episode is denoted by Pc|eq.

impose on) (Pnon-PW), (ii) the fraction of agents who retain
their previous strategy [i.e., (a) if the focal agent is a learner,
it decides not to copy from one of its neighbors and (b) if
it has teaching neighbors, they select the focal agent as an
opponent to impose on, but can fail to impose on it because
of the pairwise comparisons] (Pnon-up D), (iii) the fraction of
agents who switch strategy from D to C (PD to C), (iv) the
agent fraction that switches from C to D (PC to D), and (v)
the cooperation fraction (Pc) when all agents adopt learning
and all agents adopt teaching on a regular network. Strictly
speaking, there are two more groups other than (i)–(iv), i.e.,
PC to C and PD to D. Both of these are the fractions of agents
who copy their own strategy (C or D) from one of their
neighbors through either learning or teaching. Thus the total
summation of Pnon-PW, Pnon-up D, PD to C, PC to D, PD to D, and
PC to C is equal to 1. Obviously, the 100% teaching case has
a larger Pnon-PW and Pnon-up D than the 100% learning case.
In other words, teaching could retard the spread of a strategy
throughout the population by increasing the number of agents
that are insensitive to strategy updating. This is consistent with
the fact that the 100% teaching case has fewer agents who
revise their current strategy than the 100% learning case. This
situation prevents defectors from invading C clusters. To that
end, this particular episode of 100% teaching realizes greater
cooperative equilibrium than the 100% learning episode. In

summary, larger teaching frequencies decrease the speed of a
strategy spread in the initial time steps, thus making it easier
for clusters of cooperators to survive the initial onslaught of
defectors.

Although the figures are not shown, we confirmed that
how slowly a defection spreads on a SF network is no
longer attributable to a higher cooperation at equilibrium. On
a SF network, the defectors’ invasion of C clusters is not
so severe vis à vis the regular network case because more
effective network reciprocity is derived from its heterogeneity.
Therefore, the cooperation fraction is determined by how
quickly cooperation spreads among surrounding defectors
after the initial defectors’ invasion.

IV. CONCLUSION

The extent of network reciprocity differs greatly, depending
on the frequency with which learning or teaching is adopted
and on the underlying network structure. On heterogeneous
networks, teaching tends to degrade cooperation because an
instance in which plural neighbors try to overwrite a hub
agent’s strategy implies that a hub-C agent rarely survives
the defectors’ initial attack. However, on regular networks,
teaching slightly enhances cooperation.
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