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Spiral waves in excitable biological media are associated with pathological situations. In the heart an
action potential vortex pinned by an obstacle has to be removed through defibrillation protocols fine-tuned
theoretically by using electrophysiological nonlinear mathematical models. Cardiac tissue, however, is an
electroelastic medium whose electrical properties are strongly affected by large deformations. In this paper
we specifically investigate the electroelastic pinning-unpinning mechanism in order to include cardiac
contraction in the preexisting theoretically modeled defibrillation scenarios. Based on a two-dimensional minimal
electromechanical model, we show numerically the existence of an unpinning band characterized by the size
of the obstacle, the pacing site, and the frequency. Similar numerical simulations, performed in the absence of
elastic coupling, show small differences in comparison with the electroelastic studies, suggesting for this specific
scenario of pinning-unpinning dynamics a nonprominent role of elasticity.

DOI: 10.1103/PhysRevE.85.031915 PACS number(s): 87.19.Hh, 05.45.−a, 87.10.Pq, 46.25.Hf

I. INTRODUCTION

A wide range of spiral wave behaviors can be recognized in
many different natural systems [1–7]. Such a phenomenon has
relevance in particular in heart dynamics in association with
dangerous and even lethal pathologies [8–10]. Spiral control
is mandatory then, but while such an action can easily be
achieved in homogeneous active media (cell cultures typically
[11–13]), it becomes an extremely complicated problem in
heterogeneous systems. The so-called pinning regions (for
example, scar in heart tissue or large vessels) in fact represent
spatial obstacles, characterized by altered electrophysiological
properties, which tend to attach a propagating spiral wave in a
persistent manner.

A pinned spiral in the heart muscle can be removed by a
weak electric pulse delivered at the boundary of the obstacle
[14–16]. Advanced techniques have been proposed however,
in order to use wave trains for sudden termination of pinned
systems [5,17–19]. The low-energy defibrillation procedures
proposed to remove spiral reentries both in vitro and in vivo
appear to be even more complicated [20]. Many of these studies
adopt mathematical models fine-tuned with experiments in
order to give predictions for applications. Most of these
analyses, however, neglect mechanical deformations induced
by electrical activity. The main reason for this is that continuum
mechanics is a complicated nonlinear physical theory and
there is little experimental data in comparison with the cases
(nondeformable) in which contraction is blocked through
calcium or gating blockers [21,22]. While in excitable media
such as nerves elastic deformations due to voltage passage
are very small [23,24], cardiac tissue undergoes very large
deformations (a myocite can change its elongation up to 20%
of its rest length [25–30]), requiring finite elasticity theory.

The heart is an electrically driven mechanical pump.
Studies on isolated tissues and whole hearts have shown that
mechanical stimuli can affect both cardiac electrical excitation
and wave spread due to the presence of mechanosensitive
ion channels. Such a behavior has been specifically termed
mechanoelectric feedback [31–33] and its effects range from

physiological heart rate modulation to the mechanical in-
duction of heart rhythm disturbances or to their mechanical
termination (see Refs. [34,35] and references therein). The
necessity to include and understand the effects of mechanical
deformations on the delicate problem of spiral wave pinning
and unpinning thus appears to be mandatory.

This point is discussed theoretically in this paper using a
minimal mechanical model that has been fine-tuned to quali-
tatively fit electrophysiological experiments. The main reason
for this choice is the exiguity of mechanoelectrical experimen-
tal studies in comparison with the very large amount of electro-
physiological ones. The main outcome of the present analysis
in particular consists in exploring the role of elasticity during
electrical defibrillation of a pathologic portion of cardiac
tissue. An important point addressed here, relevant for both
experimental and clinical arrhythmia studies [35,36], is the
theoretical existence of an unpinning band, i.e., the full range
of defibrillation pacing periods that enable the detachment
(unpinning) of an action potential wave (pinned spiral) rotating
in a persistent manner around a circular heterogeneity of the
medium (obstacle). This mathematical tool can be defined in
both the presence and absence of elastic coupling. In both of
these cases this band has been quantified in its variability with
respect to the size of the obstacle, the pacing period, and po-
sition of external stimulation current on the lines of the purely
electrical (i.e., rigid) analysis reported in Ref. [17]. The main
outcome of the analyses performed here is the fact that the pres-
ence of elastic coupling does not seem to change the pinning-
unpinning dynamics dramatically in comparison with nonelas-
tic situations. This is somewhat an unexpected result due to the
strong nonlinear nature of all the physical equations involved,
although electroelastic coupling may in any case still play an
important role in other situations such as free spiral dynamics
in large domains and generation of turbulent cardiac regimes.

The paper is organized as follows. After the Introduction,
in Sec. II we describe the conventions adopted to formu-
late the model, reporting the continuum mechanics balance
equations with associated constitutive prescriptions for both
the passive and active deformation schemes [37]. We then
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present the three-variable phenomenological Fenton-Karma
model of cardiac action potential [38], here coupled with
an additional basic nondiffusive calcium dynamics and finite
elasticity equations along the lines of Refs. [39,40]. In Sec. III
we discuss a set of numerical simulations reporting the
successful electrical defibrillation events on a two-dimensional
electroelastic medium, in which an action potential spiral wave
is pinned by a circular nonexcitable portion of tissue located
at the center of the domain. In Sec. IV we analyze the physical
implications of our study and the possible future extensions of
our work.

II. MODEL

Mechanoelectric feedback can be modeled by assuming
that when cardiac muscle fibers are stimulated, these generate
contractile forces that, at the macroscopic scale of the tissue,
are described by an active stress tensor constitutively related
to the tissue’s electrophysiological activity. The overall stress
in the tissue is then recovered by adding a passive one to the
active stress, depending on the mechanical properties of the
myocardium [41–44]. While the distribution of muscle fibers
influences the active response of the tissue, the spatial variation
in collagen distribution is related to the material constitutive
parameters and determines the nonlinear anisotropic passive
response of the tissue. Here we adopt the point of view
presented in Ref. [37], which introduces the notion of active
deformation as alternative to that of active stress motivated
by the wide range of constitutive theories based on this
approach [45]. We assume that, at the macroscopic scale,
the activation of a cardiac muscle fiber is described by the
change in its rest length; then the stress state in the activated
tissue is due to the difference between its actual configuration
and its rest state. The active deformation is in turn related to
the electrophysiological activity of the tissue. As suggested
by many experiments, calcium concentration is the main
factor driving the variation in the rest length of muscles.
In this study the electromechanical model of myocardium
proposed in Ref. [39] has been generalized by adopting
the three-variable electrophysiological model of Fenton and
Karma [38]. The high degree of deformability of the medium
makes it mandatory to set the diffusion process in a moving
deformable domain, thereby producing a direct influence of
the deformation on the electrical activity. We now give the
various ingredients of the model just described.

(a) Conventions. The model equations are defined using
a general curvilinear coordinate system relating a reference
(material or undeformed) domain with a current (spatial or de-
formed) one. From standard continuum mechanics we denote
XI (I = 1,2,3) as the coordinates in the reference domain B

with boundary ∂B and xi (i = 1,2,3) as the coordinates in the
current domain B0 with boundary ∂B0. An uppercase subscript
refers to the reference configuration while lowercase refers
to the current one. The relation between the two coordinate
systems is geometrically defined by the deformation gradient
tensor FiJ = (∂xi/∂XJ ), from which J = det(FiJ ) = (ρo/ρ)
can be defined, representing the volume change (density ratio)
during motion [46].

We assume a multiplicative decomposition [32] of the
deformation gradient tensor into a passive and an active

part FiJ = Fe
iKF a

KJ , leading to the implicit definition of
the elastic deformation tensor Fe

iK = FiJ (Fa
JK )−1. Such an

assumption splits the elastic and active responses on Fe
iJ and

Fa
IJ , respectively. We assume the right Cauchy-Green strain

tensor Ce
IJ = Fe

kIF
e
kJ as the elastic deformation measure of the

body. In our modeling the medium is treated as incompressible
in only the elastic (passive) behavior, with the corresponding
incompressibility kinematic constraint given by det(Ce

IJ ) = 1.
Taking the strain energy function ψ = ψ(Ce

IJ ) and applying
the standard variational method [47] with respect to the
elastic measure of deformation Ce

IJ , we define the second
Piola-Kirchhoff stress tensor SIJ as

SIJ = 2
∂ψ

∂Ce
IJ

− pCe
IJ

−1
. (1)

In this relation p represents the hydrostatic pressure (a
Lagrange multiplier) necessary to satisfy the incompressibility
constraint. In order to adopt the balance equation we introduce
the first Piola-Kirchoof stress tensor PiJ = FiKSKJ .

(b) Continuum mechanics balance equations. Imposing the
conservation of linear momentum in the reference configu-
ration and neglecting inertial terms, we get Eq. (2) in the
reference domain B and Eq. (3) on its boundary ∂B:

0 = ∂

∂XI

PIJ in B, (2)

tI = NJ PIJ on ∂B. (3)

Equation (3) introduces the normal NJ in the reference
domain, which can be derived from its current (deformed)
representation using Nanson’s formula relating the sur-
face area elements between the two configurations (nids =
JF−1

I i NIdS [47]).
(c) Constitutive prescriptions. The nature of cardiac tissue

is extremely complex in the passive mechanical response [48].
Here we focus mainly on the coupling between mechanical
deformation and electrophysiological aspects, treating the
myocardium as a homogeneous, elastic, isotropic, and in-
compressible tissue. Adopting a neo-Hookean incompressible
material representation (with all the mechanical quantities
normalized by the elastic modulus α1; see [40] for details),
the elastic strain energy ψ depends only on the first invariant
of the right Cauchy-Green elastic strain tensor I1 = tr(CIJ

e),
so we can write

ψ (I1) = α1

2
(I1 − 3). (4)

This is a classical choice because Ce
IJ collects the complete

information on the stretches experienced in any of the three
orthogonal directions.

In our minimal model we assume a planar, isotropic
muscle fiber distribution defined by the unit vector hI . At
the macroscopic scale the activation of the muscle fibers is
prescribed by the active deformation field expressed by

Fa
IJ = γ0(c)(δIJ − hIhJ ). (5)

The active stretch γ0(c) measures the amount of active
contraction of any fiber and accounts for the relation between
calcium c dynamics and deformation.
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The constitutive characterization of the boundaries aims to
mimic the tissue surrounding the patch, i.e.,

tI = −kbδIJ UJ . (6)

We assume that the reference traction density tI depends
linearly on the boundary displacement UJ through an isotropic
stiffness tensor KIJ = kbδIJ , where kb is a dimensionless
parameter mimicking the stiffness of the surrounding tissue.

(d) Electrophysiological equations. The adopted nondimen-
sional model of cardiac action potential propagation [38] in the
reference configuration assumes the form

∂u

∂t
= 1

J

∂

∂XJ

(
JDIJ

∂u

∂XI

)
+ Iion, (7)

∂v

∂t
= θc

(
1 − v

τ−
v

)
− (1 − θc)

v

τ+
v

, (8)

∂w

∂t
= θc

(
1 − w

τ−
w

)
− (1 − θc)

w

τ+
w

. (9)

It consists of three variables: the membrane potential u plus
a fast and a slow transmembrane ionic gate, v and w, re-
spectively; θc = θc(u − uc) is the standard Heaviside function
and DIJ is the diffusion tensor expressed in the reference
coordinates and mapped via FiJ (pullback) from its current
representation Dij following the geometric transformation
DIJ = F−1

jJ DijF
−1
I i . Assuming tissue isotropy, we have Dij =

doIij , with Iij the unit tensor and do the constant intensity
in the three orthogonal directions; Iion = Ifi + Iso + Isi is the
total transmembrane density current, which is the sum of a
fast inward inactivation current Ifi, a slow time-independent
rectifying outward current Iso, and a slow inward inactivation
current Isi. Their expressions are given by

Ifi = − v

τd

θc(1 − u)(u − uc), (10)

Iso = u

τo

(1 − θc) + 1

τr

θc, (11)

Isi = − w

2τsi

{
1 + tanh

[
k
(
u − usi

c

)]}
. (12)

The time constant governing the reactivation of the fast inward
current is given by

τ−
v (u) = θvτ

−
v1 + (1 − θv)τ−

v2 (13)

and is defined over two voltage ranges (uv < u < uc and u <

uv) ruled by the Heaviside function θv .
We have adopted a parametric setup fitted for a mod-

ified version of the Beeler-Reuter model, giving a circu-
lar meandering for a free spiral on a homogeneous and
isotropic domain. Equations (7)–(9) describe a normalized
dimensionless membrane potential, ranging from 0 to 1, while
the mapping u = (Vm − V0) / (Vfi − V0) recovers the physical
quantity measured in millivolts (see Ref. [38] for details).
Here Vm stands for transmembrane potential, V0 is the resting
membrane potential, and Vfi is the Nernst potential of the fast
inward current (model parameters are reported in Table I).

(e) Electro-mechanical coupling. Here we assume the
role of free Ca2+ ions in the activation mechanism of the
contraction process as well as the sensitivity of cardiac tissue

TABLE I. Adopted model parameters for the modified
Beeler-Reuter electric setup [38] and finite elasticity [39] (M stands
for mol/l).

uc = 0.13 uv = 0.055

usi
c = 0.85 ḡfi = 4

τr = 50 ms τsi = 45 ms

τ0 = 8.3 ms τ+
v = 3.33 ms

τ0 = 8.3 ms τ−
v1 = 1000 ms

τ−
v2 = 19.6 ms τ+

w = 667 ms

τ−
w = 11 ms k = 8

do = 10−3 cm2/ms V0 = −85 mV

Vf i = 15 mV VCa = 300 mV

c0 = 3.2 × 10−7M c∗ = 10−7M

γ0(c∗) = 1 γ max
0 = 0.8

β = 6 qCa = 2 × 10−6

kCa = 3256 ms−1 kb = 0.1

to Ca2+ modeled by
∂c

∂t
= qCa (u + VCa) − kCac, (14)

where c is the scalar field describing calcium concentration. A
linear coupling is assumed between membrane voltage u and
calcium concentration c. The proposed mass balance equation
is a nondiffusive version of more general reaction-diffusion
systems needed for a realistic handling of calcium dynamics
[49,50]. This minimal choice has been motivated by the main
aim of this paper, which is to explore the most basic nature
of the anatomic reentry defibrillation scheme on a deformable
isotropic excitable medium.

The remaining expressions for electromechanical coupling
are

γ0(c) = λCa

1 + fCa(c)(λCa − 1)
γ max

0 , (15)

λCa = fCa(c∗) − 1

fCa(c∗) − γ max
0

, (16)

fCa(c) = 1

2
+ 1

π
arctan

(
βcln

c

c0

)
, (17)

along the lines of Ref. [39]. Here γ0(c) rules the active
deformation scheme entering the definition of Fa

IJ [Eq. (5)],
while λCa and fCa are ad hoc functions necessary to induce the
active contraction following calcium variations.

III. RESULTS

The electromechanical model (7)–(17) has been integrated
numerically through a direct PARDISO finite-element method
scheme [51,52] with a nested dissection preordering algorithm
on the COMSOL MULTIPHYSICS 3.5a software [53]. Different
square areas (side lengths L = 5,6,7 cm) have been adopted as
the simulation domain. Each simulation has been run for T =
3000 ms of model time. An adaptive time-stepping procedure
with a tolerance of 10−5 has been adopted, limiting the
maximum time step to 0.2 ms. The complete set of simulations
consisted of more than 500 distinct runs for a computational
time of several months on a multiprocessor machine.
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FIG. 1. Conduction velocity (CV) versus mesh size restitution graphs. Action potential (AP), elastic, and calcium (Ca) (kinematic) waves
are compared to set the right mesh size for numerical solution purposes. The plane-wave traveling front timing has been taken at the 35%
of its upstroke at two consecutive mesh positions nodes in order to evaluate the resulting velocity (several mesh nodes sequences have
been tested). (a) Purely electric AP conduction velocities are compared between one-dimensional (1D) (black) and 2D (gray) simulation
domains; (b) AP (gray circles), Ca (black triangles), and EL (gray triangles) conduction velocities are compared for a 2D simulation domain
where the electric mesh has been kept fixed at dx = 0.5 cm. Estimated velocities for mesh sizes lower than dx = 0.1 cm present similar
values.

The numerics has been fine-tuned upon several different
simulation protocols. The mesh size has been explored for
both the purely electric or rigid and coupled electromechanical
models, as reported in Fig. 1. The procedure consisted in
evaluating the conduction velocity of action potential (AP)
and elastic waves, as well as calcium (kinematic waves
[54]), for different regular square meshes adopting Lagrange
quadratic elements until we reached stable flat curves. The
electric problem results mesh independently for mesh sizes
dx � 0.07 cm in both one and two dimensions [Fig. 1(a)]. In
order to evaluate the minimal electromechanical mesh size
we solved the two-dimensional coupled problem adopting
different grids for the AP and Ca elastic waves, respectively.
For a fixed AP grid dx = 0.05 cm, we obtained flat Ca elastic
wave conduction velocities for a mesh size dx � 0.1 cm. On
this basis, we finally chose a unique mesh size dx = 0.067 cm
for the complete coupled model; we further subdivided each
square mesh element into triangles in order to increase the
accuracy and convergence of the numerical solution. The
main results of this article (i.e., the unpinning band) are thus
insensitive to the mesh size.

Zero-flux boundary conditions on the current (deformed)
border have been imposed for AP variables while the mechan-
ical boundaries, as anticipated, have been modeled as spring
dynamics (analogous to rubber sample experiments [55]).
Tissue heterogeneity has been introduced in the center of
the domain and modeled as a nonexcitable circular obstacle
with altered mechanical properties. Therein no action potential
can generate or propagate, i.e., no diffusion d0 = 0 cm2/ms
static ion dynamics, and the patch is considered stiffer than the
surrounding tissue, i.e., the Young modulus has been lowered

to 10%. The obstacle radius is in the range 0.35 cm � Rob �
1.4 cm, in which discrete values have been selected with a
finite step of 1.0 cm. An intermediate radius Rob = 0.75 cm
has been tested too in order to verify the resulting trend. The
lower limit Rob = 0.35 cm is forced by the choice of electric
parameters whereby spiral pinning is no longer possible for
smaller obstacles. The upper limit Rob = 1.4 cm is forced
by both the domain size (which has to fit the anatomy of a
large mammal ventricle such as a pig, dog, or human) and
the unpinning trend band (discussed in the following), which
tends to shrink, meaning that a purely electrical defibrillation
is no longer possible at any stimulation period. This result is
in accordance with the nondeformable numerical simulations
reported in Ref. [17].

Tissue stimulation has been electrically induced as a
circular electrode centered on the upper-left corner of the
domain and characterized by a radius Rp = 0.4 cm. The pulse
duration has been fixed at τ = 2 ms with a dimensionless
amplitude of 1.5. The stimulation protocol consisted in
delivering regular sequences of squared waves at constant
periods and for 3000 ms of simulation time or until spiral
unpinning occurs. For each tested obstacle radius and starting
from the same initial conditions, the stimulation period has
been varied in the range 90–120 ms with a finite time step of
2 ms, for a total amount of 15 simulations.

Our numerical results show that the electroelastic medium
is characterized by small differences with respect to the rigid
one. Figure 2(a) shows the spiraling period around the circular
obstacle comparing the rigid with the elastic cases. The two
periods are separated following an almost linear interpolated
trend and reaching the largest difference of 34 ms for the largest
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(a) (b)

elastic
rigid

SE
SR

S

FIG. 2. Overall results from the explored simulations set. (a) Spiral rotational period compared for purely electric or rigid (gray) and
electromechanic or elastic (black) simulations versus obstacle radius. The superimposed histogram shows the difference between the two cases
highlighting a divergence trend that reaches its maximum value of 34 ms for the higher radii analyzed. (b) Comparison of the unpinning bands
(upper and lower defibrillation limits) for the purely electric (gray) and the electromechanic (black) cases. The vertical axis reports the lowest
and highest successful stimulation periods (in milliseconds), i.e., the ones for which the unpinning has been reached, having explored the
range of periods 90–120 ms with a finite time step of 2 ms. The horizontal axis reports the discrete simulated obstacle radii ranging between
3.5 and 1.4 cm with a spatial step of 1 cm. The intermedium case Rob = 0.75 cm has been tested in order to verify the resulting trend. The
superimposed histogram shows the absolute difference of the band ranges between the two models. Both trends are highly nonlinear and reach
their minimum range of frequencies for the larger obstacle radii analyzed.

obstacle radius we analyzed, R = 1.4 cm. The superimposed
histogram enhances this difference plotting S = SE − SR ,
where SE and SR are the spiral rotational periods in the elastic
and rigid cases, respectively.

Despite such an elastic separation effect, the resulting
unpinning trends are very similar in both shape and period
as reported in Fig. 2(b), even if they present a strong
nonlinearity, and become almost flat for larger obstacles. The
graph indicates on the vertical axis the lowest and highest
stimulation periods, respectively, which are able to detach the

rotating spiral away from the obstacle. The horizontal axis
shows the discrete radius values tested. The superimposed
curves (black for elastic, gray for rigid) reveal that the elastic
case can be defibrillated for stimulation periods greater than
(or at least equal to) the rigid one. The matching of the two
lines can be motivated by the changes of rate adopted to
increase the stimulation period, i.e., 2 ms (which gives the
graph resolution on the y axis). The overimposed histogram
shows the difference between the two modeling bands as
ER = (T elastic

max − T elastic
min ) − (T rigid

max − T
rigid

min ), where the T are

(b)(a) (c)

SR

rigid -5 
rigid -6 
rigid-7 

SR
SE
SR
SE

 -6 
 -6 

 -7 
 -7 

SE
 -5 

 -5 

elastic -5 
elastic -6 
elastic -7 

FIG. 3. (Color online) Comparison of the spiral rotation and successful defibrillation periods for three different domain sizes L = 5,6,7
cm for both rigid and elastic modeling versus obstacle radius. The spiral rotational periods (a) seem to be unaffected by changing the domain
size, following the same behavior as reported in the previous case. In the purely electric case (b) the boundary effects induce a reduction of the
unpinning band when the ratio Rob/L � 0.2, while the electroelastic model (c) shows a better robustness to this effect.
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FIG. 4. (Color online) Sequences of defibrillation scenarios with no elasticity (top row, rigid) and contraction activated (bottom row, elastic).
Both sequences refer to a domain size L = 6 cm, an obstacle radius Rob = 1.2 cm, and a stimulation period T = 100 ms. The timing reported
in the panels shows a shifting in the unpinning event between the two cases. The color map referred to is the normalized action potential of the
Fenton-Karma model [38].

the maximum and minimum successful stimulation unpinning
periods. This result reveals that major differences can be found
for the smaller as well as for the higher radii analyzed. In
these extreme cases the explanation can be found respectively
in weak attaching of the AP waves for small obstacles and
in boundary effects for larger ones. Our results seem to
confirm the work presented in Ref. [17], where a maximum
obstacle size for unpinning is reached depending on the
spiral meandering radius Rs . In fact, as reported in Fig. 2(b),
we find a minimum band amplitude at R = 1.4 cm. Our
choice of parameters gives a free rigid spiral meandering
with rotation period T R

s = 147 ms and radius RR
s ∼ 0.35 cm,

while for the elastic one T E
s = 176 ms and RE

s ∼ 0.4 cm.
The small increase of the electroelastic free spiral meandering
is consistent with the results shown and underlines the im-
portance of the nonlinear mechanical feedback on the overall
dynamics.

We also tested our results for different domain sizes L =
5,6,7 cm in order to minimize the boundary effects and to make
the unpinning band discussion independent of the pacing site.
In Fig. 3 we show the comparison between the unpinning and
the spiraling rotation periods for both the rigid and the elastic
cases and for three different sizes of the simulation domain. As
shown by these curves, the spiraling rotation period [Fig. 3(a)]
is not affected by a change of size of the simulation domain
for both situations. In contrast, the unpinning bands [Figs. 3(b)
and 3(c)] behave differently. In fact, whereas the electroelastic
trend always seems to follow the same defibrillation points,
the rigid case reduces the unpinning periods as the ratio
between the obstacle radius and the domain size increases,
specifically when Rob/L � 0.2. This result is in agreement
with the recent work of Cherry and Fenton [56] where no-flux
boundary conditions effects have been criticized for purely
electric physiological models.

In Fig. 4 we report a comprehensive sequence for defib-
rillation events, both rigid and elastic, for R = 1.2 cm and
L = 6 cm with the same pacing period T = 100 ms. The figure
enhances the mechanical effects on the unpinning dynamics
in both shape propagating waves and timing. In fact, starting
from the same initial conditions, the AP shape sequence is very
similar, in accordance with the similar unpinning bands found,

FIG. 5. (Color online) Differences induced by (a) pacing site and
(b) elasticity. (a) Defibrillation sequence in the case of the pacing elec-
trode inside the tissue (top left), confirming that the unpinning dynam-
ics are similar to those observed with the pacing at the corner of the
domain (L = 5 cm and T = 98 ms). (b) Three different domain sizes
L = 5,6,7 cm with different obstacle sizes Rob = 0.6,1.2,1.4 cm
reporting an example of the distorted obstacle shapes varying in time
due to the presence of elastic effects. The color map referred to is the
normalized action potential of the Fenton-Karma model [38].
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while the successful unpinning events occur for the elastic case
before the rigid one, which is consistent with the separation of
rotational periods shown before.

In Fig. 5 we show the differences induced by both
pacing site and elasticity. A defibrillation sequence is reported
in Fig. 5(a) for the case of the pacing electrode inside
the tissue. The defibrillation dynamics is similar to the
previous cases, reported in Fig. 4, suggesting that for the
simplest scenario we modeled, differences in pacing sites
seem to not affect the overall dynamics. In Fig. 5(b) three
domains (L = 5,6,7 cm) with different obstacle sizes (Rob =
0.6,1.2,1.4 cm) are reported to show the different shapes
induced on the obstacle geometry by propagating AP waves.
The obstacle gets distorted from a circle toward a sort of
ellipse, evidencing the strong nonlinearity introduced by finite
elasticity.

IV. DISCUSSION

The study carried out in this paper is relevant for the
clinical necessity of obtaining the highest efficiency for low-
energy implantable defibrillation devices [20]. The problem to
identify, both theoretically and experimentally, is the correct
periods of the electrical stimuli necessary to detach and remove
the electrical reentries [17] (a procedure here denoted as
the unpinning band search), which should possibly take into
account the electromechanical properties of a real pulsing
heart. Concretely, lower pacing rates would save the tissue
from a further induction of arrhythmia and, by using a smaller
amount of delivered energy, would also save the mean life of
the implantable device itself.

Here we have initiated such an analysis. In a first approx-
imation, we have specifically limited our numerical study to
a simple mechanoelectric electrophysiological model, i.e., a
two-dimensional heterogeneous, isotropic medium where a
circular heterogeneity in the domain has been modeled as a
nonexcitable area and capable of attaching action potential
waves in a persistent manner (pinning), thus comparing the
same stimulation protocol for both a purely electric (rigid) and
electromechanic (elastic) model.

The associated feedback has been implemented by directly
connecting the voltage conductivity tensor to the deformation
and not taking into account other more biologically accurate
feedback mechanisms such as stretch activated currents (see
Refs. [39,40] and references therein for a discussion). The

authors are well aware that this work has only touched
the surface of an extremely complicated phenomenon. Even
providing these simplifying assumptions, however, the pres-
ence of an active stress tensor, coming from a multiplicative
decomposition procedure, has made the modeling nontrivial
from both the theoretical and numerical points of view.
Comparing the rigid and elastic models, in fact, we observed
separating spiral rotational periods for increasing obstacle radii
and similar unpinning band shapes. These results appear to
be insensitive to the location of the pacing stimulus in both
cases. We stress again that the mechanical coupling does not
seem, for this specific situation studied at least, to play a major
role in the pinning-unpinning dynamics. The nature of the
equations involved in both the elastic and mechanical cases,
however, does not mean that in other different scenarios, such
as studies of free spiral dynamics on large domains, the role
of the elastic coupling could be minor. We point out moreover
that a more biologically accurate contractile heart model [50]
could better reveal these differences in comparison with the
nonelastic case. For this purpose it will be necessary to extend
the proposed model to a NMR imported three-dimensional
cardiac domain with tissue heterogeneity and fiber anisotropy,
possibly revealing more complex dynamics, in analogy with
already existing purely electrical studies (see Refs. [57,58] for
an example).

The complex dynamic behavior of three-dimensional struc-
tures in excitable systems represents a current topic research
in many related fields [59–63], where pinning, drifting, and
detaching effects are being explored. This aspect thus plays a
key role in further increasing the defibrillation efficiency men-
tioned, starting with simplified theoretical analysis [49,64–68].

The final goal in any case will be to increase the existing data
on defibrillation efficiency even more by reducing the energy
dispersion in the tissue by taking into account the complete
phenomenology of the tissue. In this spirit, the evidence of
a remarkable electromechanic role in pinning phenomena
suggests the necessity of planning more advanced experiments
to be performed in order to fine-tune the electrophysiological
and biomechanical experimental data of the nonlinear cardiac
tissue dynamics.

ACKNOWLEDGMENTS

Two of the authors (C.C. and S.F.) acknowledge the
International Center for Relativistic Astropyhsics Network
(ICRAnet) for partial support of this work.

[1] A. T. Winfree, When Time Breaks Down: The Three-
Dimensional Dynamics of Electrochemical Waves and Cardiac
Arrhythmias (Princeton University Press, Princeton, 1987).

[2] A. T. Winfree, The Geometry of Biological Time, 2nd ed.
(Springer, Berlin, 2001).

[3] M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys. 65, 851
(1993).

[4] S. Sinha, A. Pande, and R. Pandit, Phys. Rev. Lett. 86, 3678
(2001).

[5] S. Takagi, A. Pumir, D. Pazo, I. Efimov, V. Nikolski, and
V. Krinsky, Phys. Rev. Lett. 93, 058101 (2004).

[6] H. Zhang, Z. Cao, N. J. Wu, H. P. Ying, and G. Hu, Phys. Rev.
Lett. 94, 188301 (2005).

[7] G. Blatter, M. V. Feigel’man, V. B. Geshkenbein, A. I.
Larkin, and V. M. Vinokur, Rev. Mod. Phys. 66, 1125
(1994).

[8] J. M. Davidenko, A. V. Pertsov, R. Salomonsz, W. Baxter, and.
J. Jalife, Nature (London) 355, 349 (1992).

031915-7

http://dx.doi.org/10.1103/RevModPhys.65.851
http://dx.doi.org/10.1103/RevModPhys.65.851
http://dx.doi.org/10.1103/PhysRevLett.86.3678
http://dx.doi.org/10.1103/PhysRevLett.86.3678
http://dx.doi.org/10.1103/PhysRevLett.93.058101
http://dx.doi.org/10.1103/PhysRevLett.94.188301
http://dx.doi.org/10.1103/PhysRevLett.94.188301
http://dx.doi.org/10.1103/RevModPhys.66.1125
http://dx.doi.org/10.1103/RevModPhys.66.1125
http://dx.doi.org/10.1038/355349a0


C. CHERUBINI, S. FILIPPI, AND A. GIZZI PHYSICAL REVIEW E 85, 031915 (2012)

[9] S. Alonso, F. Sagues, and A. S. Mikhailov, Science 299, 1126
(2003).

[10] J. Keener and J. Sneyd, Mathematical Physiology (Springer,
Berlin, 2001).

[11] V. Krinsky and K. Agladze, Physica D 8, 50 (1983).
[12] K. Agladze, M. W. Kay, V. Krinsky, and N. Sarvazyan, Am. J.

Physiol. Heart Circ. Physiol. 293, H503 (2007).
[13] G. Gottwald, A. Pumir, and V. Krinsky, Chaos 11, 487 (2001).
[14] V. I. Krinsky, V. N. Biktashev, and A. M. Pertsov, Ann. NY

Acad. Sci. 591, 232 (1990).
[15] L. Glass and M. E. Josephson, Phys. Rev. Lett. 75, 2059 (1995).
[16] A. Pumir, V. Nikolski, M. Horning, A. Isomura, K. Agladze,

K. Yoshikawa, R. Gilmour, E. Bodenschatz, and V. Krinsky,
Phys. Rev. Lett. 99, 208101 (2007).

[17] A. Pumir, S. Sinha, S. Sridhar, M. Argentina, M. Horning,
S. Filippi, C. Cherubini, S. Luther, and V. Krinsky, Phys. Rev. E
81, 010901(R) (2010).

[18] A. M. Pertsov, E. A. Ermakova, and A. V. Panfilov, Physica D
14, 117 (1984).

[19] Z. Y. Lim, B. Maskara, F. Aguel, R. J. Emokpae, and l. Tung,
Circulation 114, 2113 (2006).

[20] S. Luther, F. H. Fenton, B. G. Kornreich, A. Squires, P. Bittihn,
D. Hornung, M. Zabel, J. Flanders, A. Gladuli, L. Campoy,
E. M. Cherry, G. Luther, G. Hasenfuss, V. I. Krinsky, A. Pumir,
R. F. J. Gilmour, and E. Bodenschatz, Nature (London) 475, 235
(2011).

[21] V. V. Fedorov, I. T. Lozinsky, E. A. Sosunov, E. P. Anyukhovsky,
M. R. Rosen, C. W. Balke, and I. R. Efimov, Heart Rhythm 4,
619e26 (2007).

[22] T. L. Riemer, E. A. Sobie, and L. Tung, Am. J. Physiol. Heart.
Circ. Physiol. 44 275, H431 (1998).

[23] T. Heimburg and A. D. Jackson, Proc. Natl. Acad. Sci. USA
102, 9790 (2005).

[24] D. Bini, C. Cherubini, and S. Filippi, Phys. Rev. E 72, 041929
(2005).

[25] L. L. Demer and F. C. P. Yin, J. Physiol. 339, 615 (1983).
[26] H. A. Spurgeon, M. D. Stern, G. Baartz, S. Raffaeli, R. G.

Hansford, A. Talo, E. G. Lakatta, and M. C. Capogrossi, Am. J.
Physiol. Heart Circ. Physiol. 258, H574 (1990).

[27] M. S. Sacks and C. J. Chuong, J. Biomech. Eng. 115, 202
(1993).

[28] G. C. J. Engelmayr, M. Cheng, C. J. Bettinger, J. T. Borenstein,
R. Langer, and L. E. Freed, Nature Mater. 7, 1003 (2008).

[29] S. Langeland, J. Dhooge, P. F. Wouters, H. A. Leather, P. Claus,
B. Bijnens, and G. R. Sutherland, Circulation 112, 2157 (2005).

[30] T. Edvardsen, B. L. Gerber, J. Garot, D. A. Bluemke, J. A. C.
Lima, and O. A. Smiseth, Circulation 106, 50 (2002).

[31] P. Kohl and F. Sachs, Philos. Trans. R. Soc. London Ser. B 359,
1173 (2001).

[32] Mechanosensitivity Ion Channels, edited by A. Kamkin and
I. Kiseleva (Springer, Dordrecht, 2010).

[33] R. Kaufmann and U. Theophile, Pflugers Arch. Gesamte Physiol.
Menschen Tiere 297, 174 (1967).

[34] P. Kohl, C. Bollensdorff, and A. Garny, Exp. Physiol. 91, 307
(2006).

[35] P. Kohl and D. Noble, Prog. Biophys. Mol. Biol. 97, 159 (2008).
[36] M. R. Franz, R. Cima, D. Wang, D. Profitt, and R. Kurz,

Circulation 86, 968 (1992).

[37] P. Nardinocchi and L. Teresi, J. Elast. 88, 27 (2007).
[38] F. Fenton and A. Karma, Chaos 8, 1054 (1998).
[39] C. Cherubini, S. Filippi, P. Nardinocchi, and L. Teresi, Prog.

Biophys. Mol. Biol. 97, 562 (2008).
[40] C. Cherubini, S. Filippi, P. Nardinocchi, and L. Teresi, in

Mechanosensitivity of the Heart: Mechanosensitivity in Cells
and Tissues , edited by A. Kamkin and I. Kiseleva (Springer,
Berlin, 2009), Vol. 3, p. 12.

[41] P. J. Hunter, A. D. McCulloch, and H. E. D. J. ter Keurs, Prog.
Biophys. Mol. Biol. 69, 289 (1998).

[42] M. P. Nash and A. V. Panfilov, Prog. Biophys. Mol. Biol. 85,
501 (2004).

[43] A. V. Panfilov, R. H. Keldermann, and M. P. Nash, Phys. Rev.
Lett. 95, 258104 (2005).

[44] A. V. Panfilov, R. H. Keldermann, and M. P. Nash, Proc. Natl.
Acad. Sci. USA 104, 7922 (2007); 104, 20142(E) (2007).

[45] V. A. Lubarda, Appl. Mech. Rev. 57, 95 (2004).
[46] A. L. M. Spencer, Continuum Mechanics (Dover, New York,

2004).
[47] G. A. Holzapfel, Nonlinear Solid Mechanics: A Continuum

Approach for Engineering (Wiley, Chichester, 2000).
[48] M. P. Nash and P. Hunter, J. Elast. 61, 113 (2000).
[49] P. Pelce, J. Sun, and C. Langeveld, Chaos Solitons Fractals 5,

383 (1995).
[50] Mathematically Modeling the Electrical Activity of the Heart:

From Cell to Body Surface and Back Again, edited by A. J.
Pullan, M. L. Buist, and L. K. Cheng (World Scientific,
Singapore, 2005).

[51] [http://www.pardiso-project.org/].
[52] F. E. Curtis, O. Schenk, and A. Wachter, SIAM J. Sci. Comput.

32, 3447 (2010).
[53] [http://www.comsol.com].
[54] Computational Cell Biology, edited by C. Fall, E. Marland, J.

Wagner, and J. Tyson (Springer, New York, 2002).
[55] R. J. Atkin and N. Fox, An Introduction of the Theory of Elasticity

(Dover, New York, 2005).
[56] E. M. Cherry and F. H. Fenton, J. Theor. Biol. 285, 164 (2011).
[57] A. V. Panfilov, Phys. Rev. E 59, R6251 (1999).
[58] R. H. Keldermann, M. P. Nash, and A. V. Panfilov, Physica D

238, 1000 (2009).
[59] Z. A. Jimenez, B. Marts, and O. Steinbock, Phys. Rev. Lett. 102,

244101 (2009).
[60] Z. A. Jimenez and O. Steinbock, Europhys. Lett. 91, 50002

(2010).
[61] S. Dutta and O. Steinbock, Phys. Rev. E 81, 055202(R) (2010).
[62] S. Dutta and O. Steinbock, Phys. Rev. E 83, 056213 (2011).
[63] S. Dutta and O. Steinbock, J. Phys. Chem. Lett. 2, 945 (2011).
[64] R. R. Aliev and A. V. Panfilov, Chaos Solitons Fractals 7, 293

(1996).
[65] V. N. Biktashev, A. V. Holden, M. A. Tsyganov, J. Brindley, and

N. A. Hill, Phys. Rev. Lett. 81, 2815 (1998).
[66] A. P. Munuzuri, C. Innocenti, J. M. Flesselles, J. M. Gilli,

K. I. Agladze, and V. I. Krinsky, Phys. Rev. E 50, R667
(1994).

[67] J. H. E. Cartwright, V. M. Eguiluz, E. H. Garcia, and O. Piro,
Int. J. Bif. Chaos 9, 2197 (1999).

[68] V. S. Zykov, G. Bordiougov, H. Brandtstadter, I. Gerdes, and
H. Engel, Phys. Rev. Lett. 92, 018304 (2004).

031915-8

http://dx.doi.org/10.1126/science.1080207
http://dx.doi.org/10.1126/science.1080207
http://dx.doi.org/10.1016/0167-2789(83)90310-X
http://dx.doi.org/10.1152/ajpheart.01060.2006
http://dx.doi.org/10.1152/ajpheart.01060.2006
http://dx.doi.org/10.1063/1.1395624
http://dx.doi.org/10.1111/j.1749-6632.1990.tb15092.x
http://dx.doi.org/10.1111/j.1749-6632.1990.tb15092.x
http://dx.doi.org/10.1103/PhysRevLett.75.2059
http://dx.doi.org/10.1103/PhysRevLett.99.208101
http://dx.doi.org/10.1103/PhysRevE.81.010901
http://dx.doi.org/10.1103/PhysRevE.81.010901
http://dx.doi.org/10.1016/0167-2789(84)90008-3
http://dx.doi.org/10.1016/0167-2789(84)90008-3
http://dx.doi.org/10.1161/CIRCULATIONAHA.105.598631
http://dx.doi.org/10.1038/nature10216
http://dx.doi.org/10.1038/nature10216
http://dx.doi.org/10.1016/j.hrthm.2006.12.047
http://dx.doi.org/10.1016/j.hrthm.2006.12.047
http://dx.doi.org/10.1073/pnas.0503823102
http://dx.doi.org/10.1073/pnas.0503823102
http://dx.doi.org/10.1103/PhysRevE.72.041929
http://dx.doi.org/10.1103/PhysRevE.72.041929
http://dx.doi.org/10.1115/1.2894122
http://dx.doi.org/10.1115/1.2894122
http://dx.doi.org/10.1038/nmat2316
http://dx.doi.org/10.1161/CIRCULATIONAHA.105.554006
http://dx.doi.org/10.1161/01.CIR.0000019907.77526.75
http://dx.doi.org/10.1098/rsta.2001.0824
http://dx.doi.org/10.1098/rsta.2001.0824
http://dx.doi.org/10.1007/BF00362710
http://dx.doi.org/10.1007/BF00362710
http://dx.doi.org/10.1113/expphysiol.2005.031062
http://dx.doi.org/10.1113/expphysiol.2005.031062
http://dx.doi.org/10.1016/j.pbiomolbio.2008.02.025
http://dx.doi.org/10.1007/s10659-007-9111-7
http://dx.doi.org/10.1016/j.pbiomolbio.2008.02.001
http://dx.doi.org/10.1016/j.pbiomolbio.2008.02.001
http://dx.doi.org/10.1016/S0079-6107(98)00013-3
http://dx.doi.org/10.1016/S0079-6107(98)00013-3
http://dx.doi.org/10.1016/j.pbiomolbio.2004.01.016
http://dx.doi.org/10.1016/j.pbiomolbio.2004.01.016
http://dx.doi.org/10.1103/PhysRevLett.95.258104
http://dx.doi.org/10.1103/PhysRevLett.95.258104
http://dx.doi.org/10.1073/pnas.0701895104
http://dx.doi.org/10.1073/pnas.0701895104
http://dx.doi.org/10.1073/pnas.0701895104
http://dx.doi.org/10.1115/1.1591000
http://dx.doi.org/10.1023/A:1011084330767
http://dx.doi.org/10.1016/0960-0779(93)E0030-F
http://dx.doi.org/10.1016/0960-0779(93)E0030-F
http://www.pardiso-project.org/
http://dx.doi.org/10.1137/090747634
http://dx.doi.org/10.1137/090747634
http://www.comsol.com
http://dx.doi.org/10.1016/j.jtbi.2011.06.039
http://dx.doi.org/10.1103/PhysRevE.59.R6251
http://dx.doi.org/10.1016/j.physd.2008.08.017
http://dx.doi.org/10.1016/j.physd.2008.08.017
http://dx.doi.org/10.1103/PhysRevLett.102.244101
http://dx.doi.org/10.1103/PhysRevLett.102.244101
http://dx.doi.org/10.1209/0295-5075/91/50002
http://dx.doi.org/10.1209/0295-5075/91/50002
http://dx.doi.org/10.1103/PhysRevE.81.055202
http://dx.doi.org/10.1103/PhysRevE.83.056213
http://dx.doi.org/10.1021/jz2003183
http://dx.doi.org/10.1016/0960-0779(95)00089-5
http://dx.doi.org/10.1016/0960-0779(95)00089-5
http://dx.doi.org/10.1103/PhysRevLett.81.2815
http://dx.doi.org/10.1103/PhysRevE.50.R667
http://dx.doi.org/10.1103/PhysRevE.50.R667
http://dx.doi.org/10.1142/S0218127499001620
http://dx.doi.org/10.1103/PhysRevLett.92.018304

