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Temperature-modulated synchronization transition in coupled neuronal oscillators
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We study two firing properties to characterize the activities of a neuron: frequency-current (f -I ) curves and
phase response curves (PRCs), with variation in the intrinsic temperature scaling parameter (μ) controlling the
opening and closing of ionic channels. We show a peak of the firing frequency for small μ in a class I neuron with
the I value immediately after the saddle-node bifurcation, which is entirely different from previous experimental
reports as well as model studies. The PRC takes a type II form on a logarithmic f -I curve when μ is small. Then,
we analyze the synchronization phenomena in a two-neuron network using the phase-reduction method. We find
common μ-dependent transition and bifurcation of synchronizations, regardless of the values of I . Such results
give us helpful insight into synchronizations tuned with a sinusoidal-wave temperature modulation on neurons.
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I. INTRODUCTION

Temperature is one of the most significant physical vari-
ables in neuronal dynamics. In particular, neuronal activities
as representatives of oscillatory or nonlinear dynamics are
very sensitive to the temperature through ionic channel gating
kinetics [1,2]. The variation in temperature also has a crucial
impact on the maximum ionic channel conductance [3,4]. The
Hodgkin-Huxley (HH) type model [5] describes the temporal
evolution of the membrane potential, where time courses of the
ion-channel activations were scaled with the commonly used
equation μ = Q

(T −T0)/10
10 , with temperature T (◦C), Q10(≈3),

and T0(=6.3 ◦C) [6]. To obtain the membrane potential
dynamics with respect to temperature, T , all activations and
inactivations of the channel need to be scaled by μ. Kuang
et al. [7] have investigated the thermal influence on spiking
properties by numerically calculating the thermal dependence
of the spiking threshold in the HH model.

However, little is known about temperature dependence
of spike synchrony in the nervous system. Prior and Grega
experimentally demonstrated increased synchrony between
two bursting neurons at low temperatures [8]. Wang and
Buzsaki [9] have simulated a partial loss in synchrony with a
change of the temperature-scaling-factor value for a network
of globally all-to-all coupled identical neurons. They showed
that the neurons were dynamically broken into two clusters;
the neurons fired synchronously within each cluster and the
spike timings of the two clusters alternated in time. They
did not discuss how such partial desynchronization occurred
with a decrease in temperature. Therefore, it would be very
interesting to study temperature-dependent synchronization of
neurons.

For this purpose, we need to develop a so-called phase
response curve (PRC) for the neuron in question. The PRC
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describes the transient change in the cycle period induced by
a small stimulus as a function of the phase at which it has
been received [10–13]. In general, the PRC can be classified
into two types. A type I PRC has almost all positive values
(which means the phase advances) while a type II PRC has
negative values, meaning phase delays as well. These values
are dependent on the phase at which a stimulus is applied. Two
excitatory neurons with a type I PRC become synchronized
more smoothly than the type II neurons [14]. Thus far, no
one has demonstrated the effects of temperature on the PRC
and its related synchronous behavior in mutual excitation or
inhibition.

Also, we may have to study a frequency-current (f -I ) curve
for measuring neuronal activity character [15–17]. The curve
can be classified into two classes: Class I shows that when
I is slowly increased, the neuronal voltage dynamics changes
from stationary to oscillatory with zero frequency. Meanwhile,
class II means that the onset occurs with nonzero frequency.
To find mechanisms for such repetitive firing generation,
the stabilities of dynamical states as well as the bifurcation
structures in the neuron model were analyzed well [18–20],
but the frequency-temperature relation is still unclear.

In experiments [21–23] and model studies [24], only a
monotonic frequency increment was observed with increas-
ing temperature. It is thus important to not only study
the frequency-temperature-relation-dependent spiking model
types but also to investigate how such frequency-temperature
relations affect synchronization transition.

We focus on the temperature μ in the ionic channel
mechanisms in a neuron, in order to study its effects on the
membrane potential dynamics, as well as synchronicity in the
two neurons that interact with excitatory chemical synapses,
in terms of the current and the synaptic time constant. The
two-neuron system is based on the Morris-Lecar (ML) model
[25,26]. The ML type, taking a well-known type I PRC, has
a common structure with two-dimensional excitability models
such as the (V,n)-reduced HH equations [27]. It is modeled by
two voltage-sensitive conductances of calcium and potassium.
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The chemical synapses employed here are modeled by an α

function [28,29].
We investigate the μ dependencies of f itself as well as

the f -I curve by analyzing trajectories of the ML model
dynamics. We show how firing frequency variations can be
related to the shape of the PRC derived together with phase
equations by the phase-reduction method [30–32]. By using
the phase equation, stabilities of synchronized solutions of the
paired system are analyzed in terms of I , μ, and the time
constant of excitatory synapses. We find noteworthy bifurca-
tion and transition phenomena of synchronizations. Results
of temperature-modulated synchronization transition allow us
to explain mechanisms of synchronization-desynchronization
transition modulated with sinusoidal-wave temperature. We
will give a brief discussion and a conclusion.

II. SPIKING PROPERTIES OF A NEURON MODEL

In this study, we investigate thermal effects on neuronal
firing properties of the ML model defined as

Cm

dV

dt
= −gL(V − VL) − gKW (V − VK )

− gCam∞(V )(V − VCa) + I, (1)

dW

dt
= μ

τw(V )
(w∞(V ) − W ) , (2)

with

m∞(V ) = {1 + tanh[(V − V1)/V2]}/2,

w∞(V ) = {1 + tanh[(V − V3)/V4]}/2,

τw(V ) = 1/{15.0 cosh[(V − V3)/(2V4)]},
where V (mV) and W represent the membrane potential and
the gating variable of the K+ channel, respectively. VCa , VK ,
and VL represent equilibrium potentials of Ca2+, K+, and
leak currents, respectively. gCa , gK , and gL are the maximum
conductances of corresponding ionic currents. Values of these
parameters are set as Cm = 20 μF/cm2, VK = −80 mV, VL =
−60 mV, VCa = 120 mV, gL = 2 μS/cm2, gK = 8 μS/cm2,
gCa = 4.0 μS/cm2, V1 = −1.2 mV, V2 = 18 mV, V3 =
12 mV, and V4 = 17.4 mV (see [33]). This parameter setting
establishes a nonlinear dynamical structure that saddle-node
bifurcation occurs by an upward shift of the cubic V -nullcline
with an increase of the current I . We see that increasing I past
the critical value Isn = 39.6935 results in annihilation of the
saddle and node equilibria. The channel kinetics is known to
depend on temperature through μ = Q

(T −T0)/10
10 appearing in

Eq. (2) [6,34].
The kinetics of the synaptic channels is also assumed to

have the same μ dependence, because there exist both ionic
and receptor channels at the same place on the neuron. The
synaptic kinetics is described as

ds

dt
= μ

τsyn
(−s + h), (3)

dh

dt
= μ

τsyn
[−h + �(V )], (4)

where the synaptic variable s is driven by the variable h,
which is in turn driven by V using a step function � with

FIG. 1. (Color online) Dynamics of the Morris-Lecar-type spik-
ing model and synaptic potential for V , W , and s. Here we used the
parameter set of μ = 0.25, I = 39.695 μA/cm2, and τsyn = 2.5 ms.

threshold Vth = 0.0 mV. τsyn (ms) is a synaptic time constant.
The dynamics for variables V , W , and s are shown in Fig. 1.

A. Temperature dependence of the membrane dynamics

Let us investigate how the temperature affects the mem-
brane potential dynamics of the ML model at I = 39.7, by ana-
lyzing the dynamics over the range 0 < μ � 1. The dynamical
trajectories in the W -V plane for μ = 1.0,0.5,0.15, and 0.05
[Fig. 2(a)] illustrate that, with small μ values, an upstroke of
V is faster and the depolarization is prolonged like a plateau
compared to the case with a large μ value, which is found
also with the corresponding voltage trajectories as shown in
Fig. 2(b). This is simply because smaller values of μ make
the potassium channels open more slowly, making for easier
depolarization. In either Figs. 2(a) or 2(b), the speed of the
dynamics is not explicitly represented. The former only shows
a pathway of the movement of (V,W ). Time information is
lost in the latter panel since the period of the oscillation is
normalized to be unity. As shown in Fig. 2(b), the action
potential duration is gradually extended with decreasing values
of μ. The simulation may be in agreement with various
experimental results for temperature-affected action potential
duration [23,35,36].

Figures 2(a) and 2(b) enable us to find that membrane
potential dynamics immediately before depolarization for
larger μ is extraordinary slow, compared to when μ is
small (at least μ � 0.2). This is because the trajectory gets
closer to the neighborhood of the saddle-node equilibrium,
thereby leading to a significant phase delay. However, when
μ gradually becomes smaller, the trajectory becomes further
from the saddle-node bifurcation location to increase dV/dt

[Fig. 2(c)]. Indeed, when μ decreases from 1 to 0.1, dV/dt

increases together with the main term in Eq. (1), −ICa

[=−gCam∞(V )(V − VCa)], because dV/dt � dW/dt and
−ICa � −IK around W = 0.007 [Fig. 2(d)]. Since a firing
frequency is approximated as a function of dV/dt , it can be
expected that the frequency increases as well.
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FIG. 2. (Color online) Trajectories on V -W plane diagrams and time evolutions of membrane potential for the ML model with I = 39.7
influenced with a temperature scaling factor μ. (a) The whole nullclines of dV/dt = 0 (a solid line) and dV/dt = 0 (a broken line) depicted on
the V -W plane. In (b), the temporal duration between points indicates a velocity of V . The V motion on the active or inactive phases gradually
becomes slower. � is a variable normalized by periodicity. (c) The V -W plane (a) is scaled up toward the saddle-node bifurcation point.
(d) Plots of μ on dV/dt and −ICa .

Analyzing the membrane potential dynamics, in particular,
hyperplarization, we shall explain the thermal effects of a
firing frequency. In Fig. 3(a), the right-most intersection of
the two nullclines, (Ve,We) ∼ (5.47,0.32), is shown to analyze
its stability as μ changes in the range of [1,2]. The stability
analysis tells us that for μ = 2 the Jacobian calculated at this
unstable equilibrium has a complex eigenvalue, so that the
trajectory spirals away toward the stable limit cycle.

However, when μ = 0.1, the equilibrium changes from
an unstable spiral to an unstable node. The trajectory is
then quickly attracted to the limit cycle without any spiral
[Fig. 3(a)]. Physiologically, when the temperature is high,
the potassium channels can open and close very rapidly.
As soon as the voltage hyperpolarizes a little from its high
plateau value, the potassium channels close immediately,
which in turn allows the voltage to depolarize again. The
depolarization in turn rapidly opens the potassium channels,
which hyperpolarizes the voltage, resulting in the oscillation
as seen in Figs. 3(a) and 3(b). Such oscillation seems to
be inhibited for lower temperatures with slower potassium
channel openings. Nevertheless, the firing frequency is higher,
as shown in Fig. 3(b). In fact, the firing frequency around the

temperature corresponding to μ = 0.15 is highest and those for
other temperature values are lower, as we show explicitly later.

B. Frequency versus current relationship

We investigate a systematic distribution of the firing
frequency in terms of I and μ [Fig. 4(a)]. We then show the
f -I curves [Fig. 4(b)] as well as the frequency-temperature
relations [Fig. 4(c)]. This confirms an increased firing fre-
quency for smaller μ around the I value where the saddle-node
bifurcation occurs, as mentioned in the previous section.

Figure 4(a) shows a systematic scheme of firing frequencies
for both μ and I . We obtain typical class I f -I curves, at least
when μ > 0.2. When μ decreases from 0.2, the f -I curves
look like class II, but the firing frequency increases from 0
at Ic with the logarithmic approximation of 1/[− ln(I − Ic)]
[as shown in Fig. 4(b)] [18–20]. In Fig. 4(b), Ic represents
the critical point of I . The logarithmic curves may be class I,
but we will need to discuss more carefully whether the curves
are class I or class II, being mindful of the PRC analysis
described below.

Figure 4(c) shows changes of the firing frequency for μ

at a fixed value of I . When I is less than the saddle-node
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SATO, OKUMURA, ICHIKI, SHIINO, AND CÂTEAU PHYSICAL REVIEW E 85, 031910 (2012)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-60 -40 -20  0  20  40  60

W

V

dV/dt = 0
dW/dt = 0

μ = 2.0
μ = 1.0
μ = 0.1

(a)

-60

-40

-20

 0

 20

 40

 60

 0  500  1000  1500  2000  2500

 V
 

 t [ms]

μ = 2.0
μ = 1.0
μ = 0.1

(b)

FIG. 3. (Color online) Simulation results of the hyperpolarization
process in the ML model. (a) Trajectories, which are controlled with
three different temperature scaling factors μ = 2.0, 1.0, and 0.1, are
drawn when they start near an unstable fixed point on the V -W phase
plane. (b) Such hyperpolarization demonstrations also shown with
time evolutions of the membrane potential. Here I = 39.7.

bifurcation point Isn, the firing frequency is 0 for μ > μc, or it
increases for μ < μc. The mechanism for increasing the firing
frequency for μ below μc has already been mentioned in the
previous section.

C. Phase response curve

In Sec. II-B, f -I and f -μ relations have been revealed
with the ML model in the saddle-node (SN) bifurcation with
changes of I . Also, let us survey systematic changes of
the PRC, ZV , to find their relation to the frequency curve
[Fig. 5(a)]. In such a survey, the logarithmic f -I curve for
small μ [see Figs. 5(b) and 5(c)] and the f -μ curve at I

around the SN bifurcation point [Figs. 5(d) and 5(b)] must be
fascinating, particularly because the PRC shift of type I to type
II on the class I f -I curve [Figs. 5(d) to 5(e)] or the type II PRC
maintained on the class II f -I have so far been studied [37].
The PRCs are computed using a phase-reduction method (see
Appendix).

We study how I affects the phase response curve, referring
to the f -I curve for μ = 0.2 in Fig. 5(b). When I is just a
little larger than Ic, the PRC takes a type-I-like type II. Its
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FIG. 4. (Color online) Temperature-scaling-factor-dependent fir-
ing frequency f vs current (I ) relationship for the ML model. (a) An
I -μ diagram for f . (b) Different f -I curves with μ = 1.0, 0.25, and
0.20. Broken lines show functions of f as I − Ib, where Ib is near
the bifurcation. (c) f -μ curves at fixed I .

PRC is slightly different from the well-known type II form
so that the positive peak of the PRC is extremely high but
the negative region is also apparently visible. When μ = 0.2
and I is far from Ic, the peak is drastically reduced; corre-
spondingly, the action potential duration is gradually extended
[Fig. 5(f)], and one obtains the typical type II form as shown
in Fig. 5(c). This is independent of I for further smaller values
of μ.
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FIG. 5. (Color online) (μ,I )-dependent PRCs for the class I type ML model, corresponding to the membrane potential dynamics.
(a) represents a color map for a firing frequency, in terms of I and μ. (b) to (e) show PRCs and membrane potential dynamics. (b) I = 39.6732
and μ = 0.2. (c) I = 45.0 and μ = 0.2. (d) I = 39.694 and μ = 2.0. (e) I = 45.0 and μ = 2.0. (f) to (h) demonstrate continuous changes of
PRCs and membrane potentials (V ) with I and/or μ in the class I type ML model. (f) and (g) show PRCs and V at different values of I when
μ = 0.2 and =2.0, respectively. (h) PRCs and V vary with changes of both I and μ. Here the solid lines are the PRC curves while the broken
lines are for membrane potential dynamics.

For f -I curves for μ = 2.0, we simulate changes of the
PRC in a gradual increase of I from the SN bifurcation Isn.
The typical type I PRC around I = Isn [Fig. 5(d)] is obtained.
However, as shown in Fig. 5(g), the positive peak goes down
while the spike duration is longer to expand the negative PRC
region, giving the PRC at I = 45.0 [Fig. 5(e)], which is slightly
different from that for a typical type II PRC. In Fig. 5(h), we
show PRC shifts from the typical type I to the typical type II
form with changes of both I and μ.

We show an additional result for μ-modulated PRC shape
changes, which is drawn as a color map in Fig. 6. The PRC
is potentially related to derivations of synchronized solutions
found in a pair of coupled neuronal oscillators. Especially,
depending on the dynamical influence of the synapses, we can
easily predict which type of synchronization is obtained: for
example, completely simultaneous or out-of-phase firings of
the two neurons. In Fig. 6(a) for I = 39.7, we can see that the
PRC takes almost positive values for larger μ. However, when
μ is significantly less than 0.2, it can have a region showing
obvious negative values as well, which is widely extended with
an increase of I to 45.0 as shown in Figs. 6(b)–6(d).

In this brief conclusion, we have shown the following:
(1) Around the SN bifurcation of I , the firing frequency for
smaller μ is higher, compared to the ones for larger μ. Being
far from the SN bifurcation point (at least I > 40.0), the
firing frequency is monotonically higher in increments of μ.
(2) Around the critical value of I in a logarithmic f -I curve for
small μ, we have obtained a type II PRC, although some type I
partially remains. For much smaller μ, the PRC becomes type
II independent of values of I .

III. COMPUTATIONAL ANALYSIS OF
SYNCHRONIZATION TRANSITION

In the previous section, by systematically surveying f -I
curves and the PRCs, we have found some unique firing
properties. It may be very interesting and meaningful to
argue how such firing properties influence the synchronization
transition even in a pair of neurons.

To study such influence of the firing properties on synchro-
nization transition, the phase-reduction method is employed
for describing equations consisting of phase degrees of
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FIG. 6. (Color online) PRC (ZV ) shape shifts in a range of μ = 0.1 to 2.0. Red and blue represent, respectively, positive and negative
values of ZV . (a) I = 39.7, (b) I = 40.0, (c) I = 42.0, and (d) I = 45.0.

freedom from a pair of coupled ML neurons [Appendix]:

dxi

dt
= F(xi) + εsī , i = 1,2, (5)

where ī represents a counterpart of the ith neuron. xi =
(Vi,Wi,si,hi) ∈ R4. F(xi) is a baseline vector field represented
by Eqs. (1)–(4). The excitatory synaptic coupling εsī is weak
to give straightforward insight into the dynamical relation of
the synchronous behavior in the two neurons to their PRCs.
So, we have to notice that the synaptic couplings used here are
slightly different from the physiologically rigorous case with
the synaptic reversal potential term.

The phase equation gives us an explanation for how the
PRC is related to synchronized solutions φ as well as for the
stabilities (Fig. 7). Such stabilities of synchronized solutions
are analyzed in term of α, I , as well as μ (Figs. 8 and 9). Results
of bifurcations of φ for μ enable us to show an intriguing
phenomenon that a two-neuron system becomes synchronized
by sinusoidal temperature modulation (Figs. 10 and 11). We
will give brief discussions about the mechanisms regarding
how the specific firing properties mentioned in Sec. II affect
such sinusoidal-wave-tuned synchronization.

A. Linear stability analysis

In the phase-reduction method, phase equations are given
as follows:

dφ

dt
= H2(φ) − H1(−φ) ≡ �(φ), (6)

where φ = θ1 − θ2 denotes the phase difference between the
two neurons. �(φ) is expressed as an average interaction
function φ as defined in Appendix.

A linear stability analysis for Eq. (7) provides us with a
simple explanation for how the stationary synchronous states
arise in a two-neuron system. For instance, let us consider
the case α = 1/τsyn = 1, based on a theoretical assumption
that the PRC is a significant factor for converging to the
stationary synchronous states. We compute the relevant Hi(φ)
function to obtain �(φ) without a loss of PRC properties
[Figs. 7(a) and 7(b)]. Synchronized solutions are then rep-
resented as fixed points, φ0, being satisfied with the stationary
condition �(φ0) = 0. The in-phase and antiphase synchronized
solutions are defined, respectively, as φ0 = 0 or 1 and φ0 =
0.5. The synchronized solutions are stable if �′(φ0) < 0, while
they are unstable if �′(φ0) < 0 [Figs. 7(a) and 7(b)].

Now, we will show how a temperature-scaling factor
μ influences the scheme of synchronization of oscillations
with respect to α = 1/τsyn by a stability analysis for �(φ).
Numerical calculations are used for all results obtained using
the linear stability analysis for the phase equation. These
results are in agreement with numerical simulations, conducted
with a fourth-order Runge-Kutta method for the ML models
[Figs. 7(c) and 7(d)].

B. Synchronization transition

We analyze the stability of synchronization solutions, in
terms of α, μ, and I . The results of such a stability analysis
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FIG. 7. (Color online) Linear stability analysis for synchronous states between two neurons. H1(φ), H2(−φ), and �(φ) in Eq. (7) are
calculated with parameters of α = 1/τsyn = 1.0 and I = 45.0. (a) μ = 2.0 and (b) μ = 0.1. Filled circles designate stable solutions while open
circles designate unstable solutions. Two arrows show convergence directions to stable stationary synchronous states, which are demonstrated
on numerical simulations in (c) and (d).

are shown in Fig. 8, with I = 39.7, 40.0, 42.0, and 45.0 and
μ = 0.01, 0.05, 0.1, 0.5, 1.0, and 2.0. In Fig. 8, bifurcations of
φ are drawn in an α range of (0,1] where red and green lines,
respectively, mean unstable and stable states of φ. By finding
common dynamical properties for synchronization transition
in Fig. 8, we also show phase difference bifurcations in a μ

range of (0,2] [Fig. 9].
We can figure out a common synchronization transition

when μ varies at a fixed amplitude of I , although Fig. 8
shows very complicated synchronization transitions appearing
in the bifurcation diagram. The case of I = 45.0 is the most
understandable simulation result. In this case, we find a super-
critical pitchfork bifurcation at φ = 0.5 as well as a subcritical
pitchfork bifurcation at φ = 0 redefined with φ = [−0.5,0.5]
when μ decreases from 2 to 1. The corresponding stable and
unstable branches are connected at arbitrary values of α and φ.
The subcritical pitchfork bifurcation at φ = 0 is annihilated so
that there is only a supercritical pitchfork bifurcation. When
μ decreases to 0.5, a new supercritical pitchfork bifurcation
appears at a smaller α. The two bifurcation points coalesce
(not shown here), so that each stable branch is combined with
the counterpart to shift the branches to φ = 0 or 1 as in the
cases of μ = 0.1 and 0.05. Finally, for μ = 0.01, we can see

a new subcritical pitchfork bifurcation at φ = 0.5 for large α,
with coexistence of φ = 0, 0.5, and 1. It is noticed here that the
subcritical pitchfork bifurcation does not rely on values of I .

The results of the μ-modulated synchronization transition
give another interpretation of the μ-modulated bifurcation of φ

in Fig. 9, where α = 1 and I = 45.0. In this case, a subcritical
pitchfork bifurcation is computed around μ = 0.1. When μ be-
come gradually larger, stable in-phase and unstable antiphase
synchronizations appear. Such synchronization transitions are
qualitatively independent of the value of I . Here we mention
the reason in the case of α = 1.0: PRC shapes are qualitatively
similar to their related H functions. It makes sense that the PRC
shape is directly related to the computation of synchronization
solutions. Also, Fig. 8 gives us straightforward expectations to
find another φ bifurcation diagram for μ, except for I = 45.0.

C. μ-sinusoidal tuned synchronization

We study effects of the following firing properties on syn-
chronization or desynchronization in a numerically simulated
two-neuron system: (1) subcritical pitchfork bifurcation of φ

for μ and (2) f -μ curves around the saddle-node bifurcation
point of I .
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FIG. 8. (Color online) (I,μ)-modulated change of the bifurcation diagram for phase differences φ in the range of α = (0,1]. Here I = 39.7,
40.0, 42.0, and 45.0 while μ = 2.0, 1.0, 0.5, 0.1, 0.05, and 0.01. Red and green lines, respectively, show that the phase differences are in the
unstable and stable states.

In such numerical simulations, μ in the ML model is given
by

μ(t) = 0.01 + μ1(t) [1 − cos(2πf1t)] + σξi(t), (7)

μ1(t) =
{

0.01, if t < ts,

h1, else, (8)

where i is the neuron index. ξi(t) is white Gaussian noise such
that 〈ξ (t)〉 = 0 and 〈ξi(t)ξj (t ′)〉 = 2δij δ(t − t ′), where 〈. . .〉
denotes averaging over ξ , and δ is the Dirac delta function. We
call the constant σ the noise intensity. Here σ = 0.01 is fixed in
all numerical simulations because the noise intensity does not
affect the synchronization-desynchronization process. h1 is the

amplitude of the sinusoidal wave. The frequency of the sine
wave, f1, is set with 2, 3, and 4 Hz. ts(=2.5) s is a switch time
for incrementing the amplitude. It should be noticed that we
add additional white Gaussian noise to the membrane potential
dynamics, whose intensity is 0.02. Let the initial states of two
neurons be in the antiphase synchronization state. The synaptic
time constant is 1 ms.

Let us simulate synchronous phenomena in two coupled
neurons, in which μ is a sine wave with f1 = 2 (or 3).
When I = 39.7, the two neurons become synchronized in
phase, unrelated to the sine-wave modulation at h1 = 0.02
(or 0.06) [Fig. 10(a)]. When h1 becomes gradually higher,
the two neurons become desynchronized once. However,
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FIG. 9. (Color online) A bifurcation diagram for φ in μ = (0,2].
We set up with α = 1.0 and I = 45.0.

for much higher h1, synchronization tuned with 1:1 to the
sinusoidal-wave period are regenerated [see Fig. 10(b)]. In the
case of f1 = 4, when the value of h1 is larger, an asynchronous
state is transited to simultaneous firings per 2f1 [Fig. 10(c)].

In the range of I , [40.0,45.0] (namely, far from the saddle-
node bifurcation point), we have found synchronization tuned
with 1:1 to the sine-wave period f1 in a colored area [see
Fig. 11(a)]. The two neurons are in the asynchronous state
outside the colored area, because increasing h1 makes dV/dt

become unadaptive to f1.
The sinusoidal μ-tuned synchronization can be explained

using the following dynamical mechanisms: (1) subcritical
pitchfork bifurcation of μ for φ and (2) a specific f -μ
curve around the SN bifurcation point. The first mechanism
gives a suitable reason for why synchronizations as shown
in Fig. 10 are simulated. When h1 = 0.02 for f1 = 2.0, μ is
larger than the bifurcation point so that the pair system is in a
simultaneous firing state without any difficulties, regardless of
the sine-wave period. In addition, the second mechanism gives
us a reasonable statement about f1-tuned synchronization: The
h1 range, observed in the f1-tuned synchronization, becomes
rapidly wider when I decreases [Fig. 11(a)]. This can be
considered to be because the firing frequency f remains
constant for small I , as seen in Fig. 4(c), so that the two neurons
can be synchronized easily with the period of the sine wave.
For larger I , a monotonic increase of f with an increment of
μ causes the difference with respect to f1 to be big. f1-tuned
synchronization can be observed but with great difficulty.

IV. DISCUSSION AND CONCLUSION

In this work, we studied the μ-dependent f -I curve
accompanied by continuous changes of the PRC shape
[Fig. 5]. We found two unique firing properties for small μ:
(1) a peak of firing frequency and (2) type II PRCs on a
logarithmic class I f -I curve. The firing properties could not
be shown, even though a mechanism for the onset of repetitive
firing in the f -I curve was revealed with analyses on stabilities
of equilibria and the relevant bifurcation structure [18–20].
However, to find two firing properties, a rigorous analysis of
the trajectories and PRC derivations by the phase-reduction
method is necessary.

FIG. 10. (Color online) Synchronization with or without sine
modulations of μ. (a) Simultaneous firings, not accompanying the μ

sine wave. Here f1 = 2 and h1 = 0.02. (b) Simultaneous firings tuned
with the sine wave, where h1 = 0.08 for f1 = 2. (c) Synchronization
occurring every two periods for f1 = 4 and h1 = 0.12.

The first firing property has not been reported thus far.
It is still unclear whether such a property has been ob-
served in experiment, because the experiments [21–23] and
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FIG. 11. (Color online) Synchronization with sine-wave mod-
ulations of μ. (a) h1-I diagrams for synchronization states.
(b) Synchronization at different values of h1 after switching the
sine-wave amplitude higher.

model studies [24] found only a monotonically descending
frequency for lower temperature. We will have to await
reporting of our observations of ascending frequency for lower
temperature.

However, if a constant low frequency for higher temperature
is observed, this may support partially an ascending frequency
for lower temperature. For this support, it is necessary to
confirm that neurons used in the experiments take the type
I PRC. As shown in Fig. 5(d), the type I PRC takes highly
positive values dominantly on the phase. This implies that
dV/dt is extremely small under the normalization condition
PRC and dV/dt (see the Appendix). Thus, we can easily
expect a low frequency for higher temperature. Since it
has already been shown in physiological experiments that
layer V pyramid cells in the rat motor cortex tend to
exhibit a type I [38,39] form, we may observe increased (or
decreased) frequencies for such neurons for lower (or higher)
temperature.

The second firing property, type II PRCs for smaller μ,
independent of I , indicates that the logarithmic class I f -I
curve would rather be class II. This is however no more than
an indication. To verify the I -independent PRCs of type II,
we will have to clarify some quantitative relationship of the
f -I curve to the PRC. Let us consider again a definition for a

phase equation derived with the phase-reduction method. The
H function involving the PRC in the phase equation presents
expansion and contraction of the firing frequency. This implies
that the PRC may be related to the slopes of the f -I curves.
In any case, if we can formulate a relationship between the
PRC and the f -I curve, we will be able to address whether
the logarithmic class I f -I curve is class II.

Reconsideration regarding how Q10 is dealt with is an
urgent task for observing two firing properties in a real physi-
ological experiment. Let us imagine neuronal activities in the
homoiotherm’s brain. We will have to realize dramatic changes
of neuronal activities with a narrow range of temperature. But,
as mentioned in Sec. I, Q10 has so far been set up as 3 or smaller.
The available environmental temperature range was also very
low. Neurons in cold-blooded animals were often employed
for physiological experiments on the effects of temperature on
neuronal activity.

In recent years, some researchers have recorded high Q10

(=19) for calcium-channel gating in experiments [40]. If high
temperature coefficients can be recorded for other channel
gates such as sodium and potassium, we can also expect to
discover a temperature dependence for firing properties, in
particular, increased frequency and a logarithmic frequency-
current relationship for small μ.

If we can control a narrow temperature range in a real
physiological experiment, observations of neuron activities
synchronized by temperature oscillatory stimulation may
also be realized. This is because experiments on Physarum
polycephalum have already shown that the activities can be
controlled with temperature oscillatory stimulation [41,42].
Since, in this work, mechanisms on temperature-sine-wave-
modulated synchronization were explained by another dynam-
ical property of f -μ curves and phase difference bifurcations
for μ, such studies are very computational. If such experiments
can be done using neurons in homoiotherms, our results are not
only computational but also more neuroscientific and provide
intriguing ideas for experiments.

In conclusion, we have systematically studied synchro-
nization transition in a pair of synaptically coupled neuronal
oscillators of the ML type, in terms of μ and I . This study
is based on phase-plane analysis for membrane potential
dynamics as well as on linear stability analysis using the
one-dimensional oscillator reconstructed by a phase-reduction
method. We then showed a specific temperature depen-
dence of the firing frequency and the phase-response curve.
We also found qualitatively common temperature-modulated
synchronization transitions, independent of I . Mechanisms
for such synchronization transitions give us explanations
for mechanisms on synchronization phenomenon tuned with
sinusoidal temperature modulation.
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APPENDIX: PHASE-REDUCTION METHOD

The phase-reduction method is briefly reviewed. For a
detailed derivation the reader is is referred to [43,44]. Suppose
we have a pair of coupled identical ML oscillators. When the
synaptic coupling is weak, this method should be applied to

dxi

dt
= F(xi) + εG (xi ,x ī) . (A1)

Let x(i)
p (t) denote a stable Tp-periodic solution for the

uncoupled dynamics,

dx(i)
p

dt
= F(x(i)

p ), (A2)

where x(i)
p (t + Tp) = x(i)

p (t). Then a stable solution for
Eq. (A1) is approximated as

xi(t) = x(i)
p [t + τi(t)] + εui[t + τi(t)] + O(ε2), (A3)

where τi(t) means a small perturbation in the phase direction
on the periodic orbit. εui[t + τi(t)] denotes the orbital devi-
ation to the periodic orbit x(i)

p (t). Substituting Eq. (A3) into
Eq. (A1) and expanding both sides into a Taylor series leads to[

τ̇i(t)
dx(i)

p (q)

dq
+ ε

d

dq
ui(q)

]
q=t+τi (t)

= ∂ F
(
x(i)

p [t + τi(t)]
)

∂x
ui[t + τi(t)]

+ εG
(
x(i)

p [t + τi(t)],xp
(ī)[t + τī(t)]

) + O(ε2). (A4)

Here we have used the fact that τ̇i(t) = O(ε). In the perturbed
oscillator, the orbital deviation vector ui(t) = xi(t) − x(i)

p (t)
evolves as

u̇i(t) = ∂ F
(
x(i)

p (t)
)

∂x
ui(t) + O(ε). (A5)

The vector Z(t) is tangent to the periodic orbit x(i)
p (t), which

is the unique solution to

d

dt
Z = −

[
∂ F(xp)

∂x

]T

Z, (A6)

where the normalization condition ZT · [dxp/dt] = 1 is
enough for every t and T means a transpose. Equation (A1) is
then reduced to the evolution equation for τi :

τ̇i(t) = Z[t + τi(t)]
T · G

(
x(i)

p (t + τi),x(ī)
p (t + τī)

)
. (A7)

Introducing phase variables defined by θi = (t + τi)/Tp, we
can rewrite Eq. (A7) as

dθi

dt
= 1

Tp

+ 1

Tp

Z̃(θi)
T · G

(
x̃(i)

p (θi),x̃(ī)
p (θī)

)
, (A8)

where x̃(i)
p (θi) = x(i)

p (t + τi) and Z̃(θi) = Z(t + τi). The phase
difference of the two oscillators, φ(t) = θ2(t) − θ1(t), obeys

dφ(t)

dt
= Ĥ2(θ2, − φ) − Ĥ1(θ1,φ), (A9)

where the function Ĥi(θi,φ) is defined by

Ĥi(θi,φ) = ε

Tp

Z̃(θi)
T · G

(
x̃(i)

p (θi),x̃(ī)
p (θi + φ)

)
. (A10)

The phase difference φ(t) becomes a slow variable, so that it
hardly changes during the period Tp. Then one can average
both sides of Eq. (A10) to obtain the closed form of the
evolution equation for φ(t) as

dφ

dt
= H2(−φ) − H1(φ) ≡ �(φ), (A11)

where

Hi(φ) =
∫ 1

0
dθĤi(θ,φ).
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