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Computer modeling of multicellular systems has been a valuable tool for interpreting and guiding in vitro
experiments relevant to embryonic morphogenesis, tumor growth, angiogenesis and, lately, structure formation
following the printing of cell aggregates as bioink particles. Here we formulate two computer simulation methods:
(1) a kinetic Monte Carlo (KMC) and (2) a cellular particle dynamics (CPD) method, which are capable of
describing and predicting the shape evolution in time of three-dimensional multicellular systems during their
biomechanical relaxation. Our work is motivated by the need of developing quantitative methods for optimizing
postprinting structure formation in bioprinting-assisted tissue engineering. The KMC and CPD model parameters
are determined and calibrated by using an original computational-theoretical-experimental framework applied to
the fusion of two spherical cell aggregates. The two methods are used to predict the (1) formation of a toroidal
structure through fusion of spherical aggregates and (2) cell sorting within an aggregate formed by two types of
cells with different adhesivities.
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I. INTRODUCTION

Understanding how living cells form tissues and organs is
a fundamental problem of developmental biology [1,2] and is
important for the rapidly expanding field of tissue engineering,
which aims at building functional tissue substitutes in vitro [3].
Tissue engineered structures may be used for drug testing
and to restore or replace damaged tissues and organs [4]. An
emerging tissue engineering technique is bioprinting [5–11]
via the automated layer-by-layer deposition of multicellular
aggregates (the bioink). Subsequent postprinting fusion of the
contiguous aggregates gives rise to the desired tissue construct.
Predicting the result of postprinting tissue formation is a task
for theoretical modeling.

In general, existing theoretical and computational models
of multicellular systems have been restricted to interpret
specific shape-forming morphogenetic or other developmental
processes. As examples, Odell and coworkers represented the
cell as a collection of coupled viscoelastic elements to model
gastrulation [12]. Drasdo and Forgacs used the interplay of
genetic and generic, physical mechanisms to model blastula
formation and gastrulation [13]. Glazier and Graner built a
cell as a collection of contiguous spins, defined on a discrete
lattice (Cellular Potts Model), and were able to give an account
of cell sorting [14,15]. Palsson and Othmer considered cells
as deformable viscoelastic ellipsoids and studied how the
motion of individual cells leads to the collective motion
of an aggregate of cells [16]. Brodland and coworkers
introduced a cell-level finite element method for modeling the
forces and the resulting dynamics in three-dimensional (3D)
multicellular systems [17–19]. Recently Newman introduced a
subcellular element model [20] to study cell division, adaptive
cellular shape deformations, and primitive streak formation
[21–24].
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A guiding principle for most models of cell rearrangement
in cell aggregates is the differential adhesion hypothesis (DAH)
proposed by Steinberg [25,26]. DAH states that structure for-
mation in multicellular systems occurs due to (1) differences
in cell-to-cell adhesion of different types of cells and (2) cell
motility. Cells seek positions with the largest number of strong
bonds. For example, in a random mixture of two cell types of
different cohesivities the more cohesive cell population sorts
out and occupies the central region surrounded by the less
cohesive population, in analogy with two immiscible liquids of
different surface tension. Based on DAH, Steinberg introduced
the concept of tissue surface tension, a quantity that was used
to provide a quantitative characterization of cell sorting [27].
Recently it has been proposed that tissue surface tension results
from the interplay of differential adhesion and differential
tension [17,28–32].

The purpose of this paper is to formulate two computer
simulation methods: (1) a kinetic Monte Carlo (KMC) and (2)
a cellular particle dynamics (CPD) method, which are capable
of describing and predicting the shape evolution in time of 3D
multicellular systems during their biomechanical relaxation.
Our work is motivated by the need of developing quantitative
methods for optimizing postprinting structure formation in
bioprinting-assisted tissue engineering. In the KMC method
the configuration of the multicellular system is propagated in
time through a standard rejection-free kinetic Monte Carlo
algorithm. This approach should provide a more accurate
description of the time evolution of a multicellular system
than other grid-based methods, such as the Metropolis Monte
Carlo (MMC) model [6,33] or the widely used cellular Potts
model (CPM). The latter uses a modified MMC algorithm to
update the configuration of the simulated system and postulates
that time is proportional to the number of MC steps, which in
general is not the case [34]. In the CPD method [34] individual
cells are modeled as an ensemble of cellular particles (CPs) that
interact via short-range contact interactions, characterized by
an attractive (adhesive interaction) and a repulsive (excluded
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FIG. 1. (Color online) (a) The shape of two fusing spherical
cell aggregates can be quantified by the angle θ (t) and radius R(t).
(b) Throughout the fusion of two identical spherical cushion tissue
aggregates [35] the system has the shape of two connected spherical
caps. The numbers indicate the time (in minutes) elapsed from the
start of the fusion.

volume interaction) component. CPs in a cell are held together
by an additional confining potential that mimics the role of the
cell membrane. The time evolution of the spatial conformation
of the multicellular system is determined directly by recording
the trajectories of all CPs by integrating their equations
of motion. What sets apart CPD from the other similar
off-grid particle methods, such as Newman’s subcellular
element method (SEM) [20,21,23,24], is the employed force
field (especially the confining potential) and its parametriza-
tion that makes the system behave as a complex viscous
liquid.

The KMC and CPD model parameters are determined
and calibrated by using an original computational-theoretical-
experimental framework applied to the fusion of two spherical
cell aggregates. In particular, the CPD model parameters are
determined such that the shape of two fusing spherical aggre-
gates in the CPD simulation match as closely as possible the
one observed experimentally, i.e., two attached spherical caps
[see Fig. 1] [35]. For the theoretical description of the fusion of
two identical spherical aggregates we use a simple continuum
model introduced by Frenkel [36] and further developed by
others working in the field of rheology [37,38]. It is this
theoretical continuum model that provides the link between the
time scales of simulations and the time scales of experiments.
Once this link is established, the KMC and CPD simulations
are used to quantitatively predict the time evolution of complex
postprinted structures whose description using a continuum
hydrodynamics approach is impractical. After calibration, the
KMC and CPD models are applied to predict the (1) formation
of a toroidal structure through fusion of spherical aggregates

[39] and (2) cell sorting within an aggregate formed by two
types of cells with different adhesivities, two morphogenetic
processes [40] driving postprinting structure formation.

The remainder of the paper is organized as follows.
Section II describes the KMC (Sec. II A) and the CPD
(Sec. II B) methods, as well as the theoretical aspects of the
continuum approach of aggregate fusion (Sec. II C). Section III
contains the results and discussion of our KMC and CPD
simulations, i.e., fusion of identical spherical multicellular ag-
gregates (Sec. III A) and cell sorting (Sec. III B). Conclusions
are presented in Sec. IV.

II. COMPUTER AND THEORETICAL MODELING

A. Kinetic Monte Carlo for multicellular systems

The Kinetic Monte Carlo method (KMC) was proposed as
an alternative to the MMC method for simulating the evolution
of Ising models [41]. When a system approaches equilibrium,
or is in a metastable state, the Metropolis algorithm rejects
most trial moves because the acceptance probability is small. A
main feature of the KMC algorithm is that it is “rejection-free.”
In each step one calculates the transition rates for all possible
changes compatible with the current configuration and then
chooses a new configuration with a probability proportional to
the rate of the corresponding transition.

We designed and implemented a KMC algorithm to
simulate the time evolution of a lattice model of multicellular
systems. Aggregates of cells in cell culture medium are repre-
sented on a 3D hexagonal close-packed lattice by associating
each site to either a cell or to a similar sized volume element
of medium. Thus, the lattice spacing is equal to one cell
diameter. We assume that each cell interacts with its 12 nearest
neighbors located at a distance of one lattice spacing from the
given cell. Interactions are expressed in terms of works of
cohesion and adhesion [42,43], defined as the work needed to
break up the contact between two neighbors of respectively
similar or differing types of cells. For example, in the case of
a multicellular aggregate composed of a single cell type, the
work needed to extract a cell from the aggregate (i.e., model
tissue) is the work of cohesion εcc multiplied by the number of
the cell’s nearest neighbor. The interaction between cells and
the cell culture medium is set to zero. The movement of cells
is described by assigning rates to swapping cells with adjacent
cells of different type and/or with medium elements. These
elementary moves occur with rates given by

k = w0e
−Eb/ET , (1)

where the factor w0 is the frequency of attempts to cross
the energy barrier of height Eb, and ET is the energy of
biological fluctuations [44], the analog of the energy of
thermal fluctuations kBT (kB is Boltzmann’s constant and T

is the absolute temperature). It has been argued that ET is a
characteristic measure of cell motility: The higher is ET in
comparison to the energies of cohesion or adhesion, the higher
is the motility of the cell [44].

Due to the complexity of the cytoskeletal machinery
responsible for cell movement, there is no unique way to assign
a barrier height to the swapping of two cells. Any reasonable
choice, however, needs to be consistent with the following
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set of experimental observations of cell movement in three
dimensions:

(1) Relocation of cells in embryonic tissues and in some
engineered tissues (such as cell aggregates) occurs according
to DAH [26,45]: Cells take advantage of their motility to
establish the maximum number of strong bonds with their
neighbors.

(2) Anchorage-dependent cells do not spontaneously disso-
ciate from the cell aggregate they are part of [26].

(3) The speed of cell movement in 3D matrices has a
particular dependence on the strength of cell-matrix adhesion:
Cell movement is fastest at an optimal strength of binding. Too
weak or too strong binding hampers cell movement [46,47].

Consider a binary particle model for a multicellular system
formed by two cell types, t = 1,2 (for a multicellular aggregate
composed of one cell type, t = 1, surrounded by tissue
culture medium, t = 2 represents the medium particle). The
configurational energy (or total interaction energy) E is
expressed as [6]

E = γ12N12 + const, (2)

where γ12 = (ε11 + ε22)/2 − ε12, with ε11 and ε22 being the
energies of cohesion, respectively, for cell type 1 and 2, and ε12

is the energy of adhesion. N12 = ∑NI
1

i=1 ni2 = ∑NII
2

i=1 ni1 is the
total number of nearest-neighbor pairs of different cell types
cells, ni2 (ni1) the number of nearest neighbors of cell i of type
1(2), which are of type 2(1), and NI

1 (NII
2 ) the total number of

cells of type 1(2), which have at least one (nearest) neighbor
of type 2(1). (As the const is irrelevant for the evolution of the
system, we set it to zero [6].)

Consider two nearest-neighbor cells i and j of different
types (without loss of generality we can set i = 1 and
j = 2). The system evolves in time toward configurations of
decreasing energy E, i.e., for γ12 > 0 (γ12 < 0) N12 decreases
(increases). For γ12 > 0 and γ12 < 0 cells, respectively, phase
separate (cell sorting) and mix (cell mixing). Elementary KMC
moves consist of swapping two neighbors of different types
(swapping cells of same type does not change the energy). The
contribution of two such cells i and j to E is

Eij = 1
2 (ni2 + nj1), (3)

and E = ∑NI
1

i=1

∑NII
2

j=1Eij . Furthermore, the larger is Eij the
more likely is the KMC move to swap cells i and j . Thus it
is reasonable to define the energy barrier E

ij

b in Eq. (1), for a
transition involving the swapping of two cells i and j , as

0 � E
ij

b = Emax
ij − Eij , (4)

where Emax
ij is the maximum possible value of Eij . For γ12 > 0,

Emax
ij is obtained when the number of neighbors of differing

type surrounding cells i and j is maximal.
Now we can formulate the steps of our KMC algorithm

for simulating the time evolution of multicellular systems:
(S1) Set t = 0. (S2) Find all interfacial cells (i.e., cells in
contact with cell culture medium or with cells of different
type) and compute the rates km, 1 � m � M , corresponding
to all possible M transitions involving these cells. (S3)
Calculate the cumulative rates: Km = ∑m

n=1 kn, 1 � m � M .
(S4) Generate a uniform random number u between 0 and 1
and carry out event “m” for which Km−1 < uKM � Km. (S5)

Generate another uniform random number u′ between 0 and
1, and increment the time variable (i.e., t → t + �t) by the
nonuniform time step

�t = −K−1
M ln(u′). (5)

(S6) Update all rates kn that may have changed due to the
previous transition “m.” (S7) Return to step S2 and repeat the
process until the time variable reaches the desired target value.

B. Cellular particle dynamics method for multicellular systems

The cellular particle dynamics (CPD) method is an off-
lattice, particle-based computer simulation method that can
describe and predict the time evolution of 3D multicellular sys-
tems during shape-changing biomechanical transformations
[34]. Within the CPD formalism cells, regarded as continuous
objects with self-adaptive shape, are coarse-grained into a
finite number NCP of equal-volume elements. Each volume
element is represented by a pointlike cellular particle (CP)
situated at its center of mass. CPs interact via short-range
contact interactions, characterized by an attractive (adhesive
interaction) and a repulsive (excluded volume interaction)
component. In addition, CPs within a given cell are subject to
a confining potential that assures the integrity of the cell. The
time evolution of the spatial conformation of the multicellular
system is determined directly by calculating the trajectories
of all CPs (and, therefore, cells) through integration of their
overdamped Langevin equations of motion. This minimalist
model, when properly parametrized, has the features of a
complex viscous liquid, and it is suitable for describing the
time evolution of multicellular aggregates and soft-tissue
constructs.

For the nth CP in cell α, the equation of motion is

μṙαn
(t) = −∇αn

U + f αn
(t), (6)

where rαn
(t) is the position vector, U is the potential

energy function describing the interaction of the CPs, μ is
the friction coefficient, f αn

(t) is a random force, and the
dot denotes time derivative. The random force is modeled
as a Gaussian white noise with zero mean and variance
〈fi(t)fj (0)〉 = 2Dμ2δ(t)δij , where D is the sort-time self-
diffusion coefficient of the CPs. The CPD parameters D and μ

are related to the previously introduced biological fluctuation
energy ET by the Einstein relation Dμ = ET . The CP potential
energy U has an intracellular and an intercellular component
corresponding to CPs belonging, respectively, to the same cell
and to different cells, i.e.,

U = 1

2

∑
α

∑
n=1
m�=n

U intra(|rαn
− rαm

|)

+ 1

2

∑
α

β �=α

∑
n,m

U inter(|rαn
− rβm

|), (7)

where αn (βm) labels the cellular particle n (m) in cell α

(β). We model the short-range contact inter- and intracellular
interactions between CPs through

U inter(r) = VLJ(r; εinter,σ inter), (8a)

U intra(r) = VLJ(r; εintra,σ intra) + k

2
(r − ξ )2�(r − ξ ), (8b)

031907-3



FLENNER, JANOSI, BARZ, NEAGU, FORGACS, AND KOSZTIN PHYSICAL REVIEW E 85, 031907 (2012)

where

VLJ(r; ε,σ ) = 4ε

[(
σ

r

)12

−
(

σ

r

)6]
(8c)

is the standard Lennard-Jones potential, and �(r) is the
Heaviside step function. Note that instead of VLJ one could use
any other potential that has a repulsive core and a short-range
attractive part. For example, in SEM [20] a Morse potential
is used to describe the interaction between two subcellular
elements. However, the important addition in CPD is the
second quadratic term in U intra that, for r > ξ , represents an
elastic confining potential used to maintain the integrity of
the cell. This term, characterized by the elastic constant k,
guarantees that the CPs within a cell remain confined inside
the boundary of the cell. The time evolution of the multicellular
system within the CPD approach is determined by numerically
integrating the equations of motion (6) for all CPs. We have
accomplished this by implementing the intra- and intercellular
interaction forces Eqs. (7) and (8) and a Langevin dynamics
integrator in the freely available massively parallel molecular
dynamics package LAMMPS [48].

For a multicellular system of a single cell type there are
nine CPD model parameters that need to be determined: NCP

(the number of CPs per cell), D, μ, σ intra, εintra, k, ξ , σ inter, and
εinter. The choice of NCP is determined by the degree of detail
we want to describe individual cells. Since we are interested
in the time evolution of the shape of an aggregate formed by
a large number of cells and not in the detailed description
of the surface dynamics of individual cells, in the present
work we make the reasonable choice of NCP = 10. Because
σ in (8c) determines the size of the interacting CPs, we can
set σ ≡ σ intra = σ inter. The length ξ in (8b) represents the size
(diameter) of a cell, which comprises NCP tightly packed CPs
of size σ . Thus, one can estimate ξ ≈ σN

1/3
CP .

Next, we define convenient CPD (or computer) length, time,
and energy units according to


0 = σ, t0 = σ 2

D
, E0 = ET = μD. (9)

In these units all CPD parameters are pure numbers, and in
particular σ = D = μ = 1. We set the confining potential
parameters as ξ = 2.5 (∼101/3) and k = 5. A larger (smaller)
value for k makes the cell more rigid (soft) when subjected to
deformations. The chosen value, for which kσ 2/2 = 2.5ET ,
is suitable when cells in the aggregate are exposed only to
adhesion and surface tension forces. By choosing εintra = 1
(i.e., the same as the biological fluctuation energy ET )
the dynamics of the CPs inside a cell will have sufficient
randomness to produce cell surface fluctuations that play an
important role in cell motility [49].

Thus, out of the nine CPD parameters we are left with
only one, εinter, that needs to be determined such that the time
evolution of the shape of the multicellular system follows as
closely as possible the corresponding experimental one. For
this purpose we focus on the fusion of two identical spherical
aggregates, as described in the next section. Based on extensive
CPD simulations we have found that the best agreement with
experiment is obtained for 1 � εinter < 2, when the system
behaves as a viscous liquid. By increasing εinter above 2, the
fusing cellular aggregates show sign of solidification, and their

behavior deviate significantly from experiment. The results
reported in this paper are for εinter = 1. However, these are
similar to the ones obtained for any εinter < 2.

Furthermore, in all our CPD simulations we have used
an integration time step �t = 10−4 and used a cutoff radius
Rc = 2.5 for U inter(r).

C. Continuum description of the fusion
of two spherical cell aggregates

The fusion of two contiguous cell aggregates is driven
by surface tension γ and resisted by viscosity η. It is an
experimental fact that during the fusion of identical spherical
soft tissue aggregates the shape of the system is that of two
touching spherical caps [see Fig. 1] [35]. This observation
suggests that soft tissues behave like complex viscous liquids
whose description requires an a priori unknown hydrodynamic
constitutive model. However, the simplicity of the geometry al-
lows us to describe analytically the dynamics of the considered
fusion process by employing conservation laws as proposed by
Frenkel [36] and Eshelby [50] for the coalescence (sintering)
of highly viscous molten drops.

The fusing aggregates are modeled as two spherical caps
of radius R(θ ) with circular contact (“neck”) region of
radius r(θ ) = R(θ ) sin θ [see Fig. 1(a)]. Volume conservation
requires

R(θ ) = 22/3(1 + cos θ )−2/3(2 − cos θ )−1/3R0, (10)

with R0 = R(0). Thus, the time evolution of the fusion
process is parametrized by a single angle θ = θ (t), defined
in Fig. 1(a), that changes from θ (0) = 0 to θ (∞) = π/2.
The rate of the decrease in surface energy is Ẇs = γ dS/dt ,
where the free surface area S = S(θ ) = 4πR2(θ )(1 + cos θ ).
The equation of motion for θ (t) can be derived by equating
Ẇs with the rate of the energy dissipated by the viscous
flow Ẇη ≈ −4πR3

0ηα2 [36,38]. Assuming biaxial stretching
flow,

α = ∂vx

∂x
≈ − 1

R(θ )

d

dt
[R(θ ) cos θ ]. (11)

Inserting Eq. (11) into the energy balance equation Ẇs = Ẇη

leads to [38]

dθ

dt
= 1

τ

sin θ cos θ (2 − cos θ )1/3

25/3(1 − cos θ )(1 + cos θ )1/3
= 1

2τ

R0 cot θ

R(θ )
, (12)

where the characteristic fusion time is

τ = ηR0/γ. (13)

Equation (12) can be solved numerically for θ = θ (t).
However, one can derive a simple and accurate analytical
approximation for θ (t) by setting R(θ ) = R0 in Eq. (12).
Indeed, throughout the fusion process 1 � R(θ )/R0 � 21/3 ≈
1.26 holds. With this approximation, Eq. (12) can be easily
integrated with the result

cos θ = exp(−t/2τ ). (14)

Note that according to Eqs. (12) and (14) the dynamics of
the fusion process, described by θ (t) as a function of t/τ , is
independent of the size (i.e., R0) of the fusing spheres. R0

appears only in the characteristic fusion time τ [Eq. (13)].
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Finally, using Eq. (14), the square of the radius of the
circular neck region of the fusing spherical caps can be
expressed as

(
r

R0

)2

≈ A(t)[1 − exp(−t/τ )], (15a)

with
A(t) = 24/3(1 + e−t/2τ )−4/3(2 − e−t/2τ )−2/3. (15b)

For short times, t � τ , Eq. (15) yield the familiar linear-
in-time expression, (r/R0)2 ≈ t/τ , obtained by Frenkel [36]
and Eshelby [50].

However, it turns out that instead of Eq. (15) a more
appropriate quantity for describing the shape evolution of the
spherical aggregates during the entire fusion process is

(
r

R

)2

= sin2 θ = 1 − exp(−t/τ ). (16)

Indeed, Eq. (16), just like Eq. (14) and unlike Eq. (15),
remains valid even if volume conservation is violated during
the fusion process [i.e., when Eq. (10) does not hold]. While
in CPD and KMC simulations the volume of the system
is conserved, in the fusion experiments the volume of the
aggregates may change. For example, if the cell cycle time is
shorter than the characteristic fusion time τ , one expects the
volume of the cell aggregates to increase in the course of fusion
due to cell division. As shown in Fig. 1(b), during the fusion of
cushion tissue aggregates reported in Ref. [35], it appears that
R(t) ≈ R0 = const., indicating that the volume of the system
shrinks, most likely due to cell necrosis. Thus, in this case too,
the correct way to determine τ from the experimental data is
by employing Eq. (16) instead of Eq. (15) (see Sec. III A 2).

While the short time limit of Eq. (15) has been applied
previously to estimate the capillary velocity vc = γ /η = R0/τ

of soft tissues [35,49], we are not aware of any previous
study that followed the time evolution of the shape and of
[r(t)/R(t)]2 throughout the fusion process of two spherical
tissue aggregates. First, we have determined the dimensionless
CPD parameters (i.e., expressed in CPD units; see Sec. II B)
such that the shape of the fusing aggregates during CPD
simulation resemble as close as possible to spherical caps.
Second, we have determined the characteristic fusion time
τ by fitting the data for [r(t)/R(t)]2, obtained, respectively,
from experiment, CPD, and KMC simulations, to Eq. (16).
Finally, the CPD time unit can be calculated as t0 = τexp/τCPD.
Once t0 is known, one can predict through CPD simulation
the time evolution of an arbitrary 3D tissue construct built
from the same type of cells for which the time calibration was
performed through the above method (i.e., fusion of spherical
aggregates). Clearly a similar calibration strategy can be used
for the KMC method.

III. RESULTS AND DISCUSSION

To test and compare the KMC and CPD methods described
in Sec. II, we have applied them to simulate two important
morphogenetic processes: (1) tissue fusion (the fusion of
two identical spherical multicellular aggregates) and (2) cell
sorting (within a spherical multicellular aggregate formed by
two types of cells with different adhesivities).

A. Fusion of two spherical cell aggregates

As described in Sec. II C, the fusion of two identical
spherical aggregates can quantitatively be characterized by the
time dependence of the radius, r(t), of their circular contact
region. According to Eq. (16), r(t), obtained from experiment
and from KMC and CPD simulations, can be used to determine
the characteristic fusion time τ [Eq. (13)]. Thus, for a given
cell type, by comparing the experimental τ with that obtained
from computer simulations one can calibrate the time scale of
the corresponding computer model. Once such a calibration
is done, one can make quantitative in silico predictions of the
time evolution of various multicellular processes that involve
the same cell type [34].

In this section we present KMC and CPD simulation
results for the fusion of two identical spherical aggregates.
We show that in both cases the computed (r/R)2 versus
t/τ dependence can be reasonably well fitted by Eq. (16).
Then, using experimental results for aggregate fusion [35],
the calibration of the KMC and CPD simulation time scales
is exemplified for the case of cardiac cushion tissue (CT).
Finally, KMC and CPD simulations are used to predict the
formation of a toroidal structure by cell aggregate fusion,
an important structure in the engineering of tubular tissue
constructs [8].

1. KMC simulations

The initial radius of the two identical fusing aggregates
used in our KMC simulation was R0 = 10 cell diameters.
Each aggregate contained 5927 cells, with a cell-cell work
of cohesion εcc = 0.9. The medium-medium (cell-medium)
work of cohesion (adhesion), εmm (εcm), was considered to be
negligibly small. A total of 10 KMC simulations of the same
fusion process were carried out, each time using a different
seed of the random number generator. Each simulation was
run for 105 KMC time steps.

Representative snapshots during the KMC fusion simula-
tion are shown in Fig. 2. The sought (r/R)2 versus t/τ depen-
dence, obtained by averaging over the 10 KMC simulations,
is shown in Fig. 3 (dashed curve). The corresponding standard
deviation �[(r/R)2] was less than 0.04 at all times.

Apart from the beginning of the fusion process (i.e.,
t < τ ) the KMC result appears to match rather well both
the theoretical prediction (thick-solid curve) [Eq. (16)] and
the experimental results corresponding to the fusion of CT
aggregates (open circles) [35].

The fusion time in KMC time unit, t0 = w−1
0 , obtained

by fitting (r/R)2, averaged over the 10 KMC trajectories,
to Eq. (16), was τ0 = 1.1 × 109. Since the experimental
characteristic fusion time for CT aggregates τexp ≈ 5h [35],
it follows that the KMC time unit (for CT aggregates used
in Ref. [35]) has the calibrated value t0 = w−1

0 = τexp/τ0 =
1.6 × 10−5 s.

To estimate the relative error �τ0/τ0, first differentiate
both sides of Eq. (16) and then replace the differentials with
absolute errors, i.e., �[(r/R)2] = (t/τ ) exp(−t/τ )(�τ/τ ) �
e−1(�τ/τ ), where e ≈ 2.72 is the base of natural logarithm.
Thus, in general �τ/τ � e�[(r/R)2]. For our KMC fusion
simulations �τ0/τ0 � 10%.
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(a)

(b)

(c)

(d)

FIG. 2. Time evolution of the fusing aggregates in the KMC (left)
and CPD (right) simulations. The snapshots were taken at (a) t = 0,
(b) t = 0.19τ , (c) t = 2.8τ , and (d) t = 5.5τ . The solid-line contours
represent the theoretical shapes of the fusing aggregates determined
by Eq. (15).

2. CPD simulations

Each of the two spherical aggregates used in the CPD
simulation of aggregate fusion contained 2000 cells. The used
CPD parameters and integration time step, in CPD units, are
described in Sec. II B. The equilibrated aggregates were placed
within a distance of one σ before starting the fusion simulation.

Representative snapshots during the fusion process are
shown, and compared with the corresponding KMC simulation
results, in Fig. 2. While in both KMC and CPD simulations
the profiles of the fusing aggregates for intermediate stages of
the fusion process [Figs. 2(b)–2(c)] agree quite well, these

0 1 2 3 4 5 6
t/τ

0.0

0.2

0.4

0.6

0.8

1.0

(r
 / 

R
)2

KMC

CPD

Continuum Theory

Experiment

FIG. 3. (Color online) Comparison of (r/R)2 vs t/τ for the fusion
of two spherical aggregates obtained from KMC simulations (dashed
line), CPD simulations (thin solid line), continuum theory (thick
solid line), and experiment (circles) using cardiac cushion tissue (CT)
aggregates [35].

show noticeable differences with respect to the theoretical
prediction, Eq. (16), shown as solid-line contours in Fig. 2.

The (r/R)2 versus t/τ dependence in the CPD simulation
is also shown in Fig. 3. The CPD and KMC simulation results
are similar. Apart from short times (t < τ ) they agree quite
well with both the theoretical prediction Eq. (16) and the
experimental results for CT [35].

The characteristic CPD fusion time is determined to be
τ ≈ 540t0. By equating this with τexp ≈ 5 h, one finds that the
CPD time unit calibrated for CT aggregates is t0 ≈ 0.6 min.

To estimate the relative error of τ , we note that
�[(r/R)2] ≈ 2(r/R)2(�r/r + �R/R) � 2(�r/r + �R/R).
Thus, �τ/τ � 5.4 × (�r/r + �R/R). Assuming that both
r and R can be determined with a relative error of 1%, one
obtains �τ/τ � 11%, which is similar to the KMC result (see
Sec. III A 1).

The CPD simulations were preformed on 32 CPUs of a dual
core 2.8 GHz Intel Xeon EM64T cluster with a performance of
around 5 million time steps/day (which is equivalent to 500t0
and slightly less than 1τ ).

3. Toroidal structure formation

Once the KMC and CPD time scales have been calibrated
from the fusion of two spherical CT aggregates, one can
employ KMC and CPD simulations to describe and predict the
time evolution of more complex CT structures, which are not
tractable analytically. To exemplify this point, here we consider
the formation of a toroidal structure as a result of the fusion
of 10 identical CT spherical aggregates initially arranged in a
circular configuration as shown in Fig. 4(a). The corresponding
KMC and CPD simulations were carried out using the same
model parameters as in the fusion of two aggregates described
above. In both KMC and CPD simulation the fusion process
into a toroidal ring appeared to be completed in �t ≈ 2.5τ ≈
12.5 h, as shown in Fig. 4(b). This prediction can be tested ex-
perimentally by investigating the toroidal structure formation
through the fusion of ten spherical, cushion tissue aggregates.

While it seems that both KMC and CPD methods are
capable of providing a fairly good description of the shape
evolution of a multicellular system during its biomechanical
relaxation process, the actual cellular dynamics in the two
methods is quite different. Indeed, unlike in CPD simulations,
in KMC simulations the motion of individual cells is unre-
alistically fast. This point is manifest in Fig. 4. By the time
the toroidal ring structure is formed, in the KMC simulation,
cells from adjacent aggregates (colored differently) appear
to be completely mixed. This is clearly not the case in the
CPD simulations, where, similarly to existing experimental
results [8,35], there is little mixing between the cells of the
fused adjacent aggregates.

To further emphasize this point, we have quantified the
degree of cellular mixing during the fusion, along the x axis,
of two identical spherical aggregates [labeled as L (left) and R

(right)], with initial radius R0 (see Fig. 1), by calculating the
time-dependent mixing parameter

dmix(t) = 4

M

M∑
m=1

�NL
m(t)�NR

m (t)

[�Nm(t)]2
. (17)

031907-6



KINETIC MONTE CARLO AND CELLULAR PARTICLE . . . PHYSICAL REVIEW E 85, 031907 (2012)

KMC CPD

(a)

(b)

(c)

FIG. 4. KMC (left) and CPD (right) simulations of toroidal
structure formation through the fusion of 10 cell aggregates. Top
view of the fusing aggregates at (a) the beginning (t = 0) and (b) the
completion of fusion. (c) Cross section through the median plane of
the fused toroidal structure shown in (b). Otherwise identical cells,
initially located in adjacent aggregates, are colored differently to
emphasize the degree of mixing during fusion.

Here �NL
m(t) [�NR

m (t)] is the number of CPs situated initially
(at t = 0) in the L (R) aggregate and having, at time t ,
the x(t) coordinate in the interval {−2R0 + (m − 1)�x,

− 2R0 + m�x}, 1 � m � M , with M a properly chosen,
sufficiently large integer, �x = 4R0/M , and �Nm(t) =
�NL

m(t) + �NR
m (t). Clearly, dmix can take values between 0

(completely unmixed system) and 1 (uniformly mixed system).
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FIG. 5. Time evolution of the mixing parameter dmix calculated
for the fusion of two cellular aggregates from the CPD (solid line)
and KMC (dashed line) simulations.

The time evolution of dmix(t) is shown in Fig. 5. In the KMC
simulation cellular mixing is almost complete (dmix = 1)
after the characteristic fusion time τ , i.e., significantly
sooner than the completion of the fusion process (∼6τ ). By
contrast, in the CPD simulation even at the end of the fusion
dmix ∼ 0.2 � 1. Based on these results one may conclude
that (1) the cellular dynamics that drives aggregate fusion
in the KMC simulations is unrealistic (i.e., the system is too
liquid-like) and (2) the CPD model provides a more realistic
and attractive approach to describe biomechanical relaxation
processes of multicellular systems.

B. Cell sorting in two-component aggregates

When two populations of cells of different adhesivities are
randomly mixed within a multicellular aggregate, they sort
such that the more adhesive cells occupy the internal region
while being surrounded by the less adhesive cells. Cell sorting
has been extensively studied both in vitro [26,40,51,52] and
in silico [14,15,53].

According to DAH, the outcome of cell sorting in a two-
component multicellular aggregate (composed of two types
of cells, labeled a and b) depends on the relative magnitude
of the corresponding works of cohesion (adhesion) needed to
separate cells of the same (different) types (i.e., εaa , εbb, and
εab), respectively [43]. Here we employ both KMC and CPD
simulations (described in Secs. II A and II B) to investigate
cell sorting in a spherical aggregate of two cell types a and
b, with εaa < εbb. We consider three cases, referred to as C1,
C2, and C3, that lead to qualitatively different experimental
outcomes [43]. C1: For intermediate adhesion between a and b

cells, i.e., εaa < εab < (εaa + εbb)/2, the less cohesive a cells
engulf the more cohesive b cells, thus leading to the complete
segregation [see Fig. 6(b)]. C2: For strong a-b adhesion, i.e.,
(εaa + εbb)/2 < εab, there is limited sorting, and the spherical
aggregate remains more or less homogeneously mixed [see
Fig. 6(c)]. C3: For weak a-b adhesion, i.e., εab < εaa < εbb,
the two types of cells completely separate by transforming
the initial spherical aggregate into two attached homogeneous
spheroidal caps (each containing either a or b cells) as shown in
Fig. 6(d). Thus, the degree of cell sorting is enhanced (reduced)
for small (large) values of the adhesion energy εab, compared
to the corresponding cohesion energies εaa and εbb. Note that
in terms of the interfacial tension γab [defined below Eq. (2),
for “1” = a and “2” = b], case C1 corresponds to γab > 0
and εab > εaa , while case C2 corresponds to γab < 0. The
inequalities defining case C3 also imply γab > 0. Thus, in a
multicellular aggregate with two types of cells, in order to have
cell sorting (segregation) the corresponding interfacial tension
must be positive (i.e., γab > 0). The larger this parameter the
more efficient and complete the sorting.

The results of our KMC and CPD simulations, presented
next, appear to be in good agreement with in vitro experimental
findings for these three cases [43].

1. KMC simulations

We have performed three KMC simulations of cell sorting
starting with a spherical aggregate composed of a random
mixture of Na = 3589 less cohesive cells of type a and Nb =
2362 more cohesive cells of type b (i.e., with εaa < εbb). Thus,
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KMC CPD

(a)

(b)

(c) 

(d)

FIG. 6. 3D snapshots from KMC (left) and CPD (right) simula-
tions of the cell sorting in an initially spherical aggregate composed
of two randomly mixed cell types (black and light gray). The
snapshots represent the (a) initial and (b)–(d) final configurations
of the simulated system. The latter correspond to (b) intermediate
(case C1), (c) strong (case C2), and (d) weak (case C3) cell adhesion
energy, as explained in the text. For better visualization of cell mixing
or sorting in (a)–(c) only half of the spherical aggregate is shown.
(Images rendered with VMD [54].)

the spherical aggregate had a total of N = 5951 cells and a
radius of about 10 cell diameters. The values of the model
parameters used in the three KMC simulations, corresponding
to cases C1, C2, and C3 described above, are listed in Table I.
Each KMC simulation was performed up to 105 (nonuniform)
time steps, given by Eq. (5), leading to the final configurations
shown in Figs. 6(b)–6(d).

To quantify the degree of cell sorting as a function of time
during the KMC simulations, we used a sorting parameter s

defined as [55]

s = 1

N

N∑
i=1

Nti

Ni

, (18)

TABLE I. Values of the model parameters (energies expressed in
units of ET ) used in the KMC and CPD simulations shown in Fig. 6.

Simulation εaa εab
εaa+εbb

2 γab Case Outcome

KMC 1.0 1.1 1.4 0.3 C1 Fig. 6(b), left
KMC 1.0 1.5 1.4 −0.1 C2 Fig. 6(c), left
KMC 1.0 0.3 1.4 1.1 C3 Fig. 6(d), left
CPD 0.8 0.9 1.0 0.2 C1 Fig. 6(b), right
CPD 0.8 1.1 1.0 −0.1 C2 Fig. 6(c), right
CPD 0.8 0.2 1.0 0.8 C3 Fig. 6(d), right

where N is the total number of cells in the system, and for a
given cell i, Ni (Nti ) is the number of nearest neighbor cells
regardless of their type (of the same type ti as the cell i).
The sum in Eq. (18) runs over all cells in the system. Clearly
0 < s < 1, and the larger s the more complete the sorting. Note
that even for completely sorted multicellular systems, built
from two (or more) different cell types, the presence of the
interface(s) between the segregated regions renders the max-
imum possible value smax of the sorting parameter smax < 1.
For example, in the above case C1, when at the end of sorting
Na cells of type a completely engulf Nb cells of type b,
one can estimate smax as follows. For simplicity, assume that
both cell types have spherical shape with the same diameter
d. Let �N be the number of cells (of either type a or b)
situated at the spherical interface, of mean radius Rb and
width �R, between the two segregated regions [see Fig. 6(b)],
and N = Na + Nb. Since for a cell i situated at the interface
Nti /Ni ≈ 1/2, according to Eq. (18),

smax ≈ 1

N

[
1

2
× �N + 1 × (N − �N )

]
= 1 − 1

2

�N

N
.

Furthermore, assuming that cells are distributed uniformly
within the aggregate, one has Nb(d/2)3 ≈ R3

b , i.e., Rb ≈
N

1/3
b d/2, and �N × (4π/3)(d/2)3 ≈ 4πR2

b�R, implying
�N ≈ 6N

2/3
b (�R/d). Finally, assuming that the thickness of

the interfacial layer, separating the segregated cell regions, is
�R = xd, where 2 < x < 3, one obtains

smax ≈ 1 − 3x
N

2/3
b

N
. (19)

Note that according to Eq. (19), as N → ∞, i.e., for large
aggregates, smax approaches unity as N−1/3 (assuming that Na

and Nb are of the same order of magnitude).
The time evolution of the sorting parameter, s = s(t), in our

KMC simulation corresponding to case C1 is shown in Fig. 7.
The insets represent snapshots of the sorting process taken at
times indicated by the arrows.

The sharp increase of s(t) at the beginning of the simulation
followed by a slow asymptotic approach to smax indicates that
there are at least two sorting time scales. Indeed, the entire
time evolution of the sorting parameter can be well fitted with
the double exponential

s(t) = smax − s1e
−t/τ1 − s2e

−t/τ2 , (20)

where smax = 0.76 is in very good agreement with the
theoretically estimated value 0.78 obtained from Eq. (19) for
x = 2.5. The other fitting parameters in Eq. (20) are τ1 = 1.4t0,
s1 = 0.27, τ2 = 58.5t0, and s2 = 0.11. The shorter time scale
τ1 corresponds to the local rearrangement (sorting) of cells
leading to small clusters of same types of cells, while the
longer time scale τ2 describes the much slower engulfment
process of the b cells by the a cells, a process that requires
large displacements by a finite number of cells.

Although the results of our KMC simulations appear to be
in good qualitative agreement with experiments on cell sorting
[25,26,43], a quantitative comparison, e.g., in terms of the time
evolution of the sorting parameter, is complicated because s(t)
is difficult to measure experimentally [56]. Thus, there is no
simple way to reliably calibrate the time unit t0 (which is
related to the model parameter w0) used in the plot of s versus
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FIG. 7. (Color online) Time dependence of the cell sorting
parameter, s = s(t), corresponding to case C1 described in the text,
for both KMC (top) and CPD (bottom) simulations. The fits (red
curves) correspond to Eq. (20), with values of the fitting parameters
indicated in the text. The insets represent snapshots of half of the
spherical aggregate taken at times indicated by arrows.

t/t0 in Fig. 7. However, s(t) can also be determined from
CPD simulations, thus allowing for a quantitative comparison
between the two computer simulation methods.

2. CPD simulations

We have also used CPD simulations to investigate cell
sorting corresponding to the three cases C1, C2, and C3
described above. The initially spherical aggregate contained
a random mixture of equal number Na = Nb = 1000 cells
of type a and b. While the CPD parameters εaa ≡ εinter

a =
εintra
a = 0.8 and εbb ≡ εinter

b = εintra
b = 1.2 were kept the same

in all three simulations, the parameter εab ≡ εinter
ab had different

values (similar to the ones used in the KMC simulations) for
the three cases C1, C2, and C3 as listed in Table I. The cell-
sorting patterns obtained at the end of the corresponding CPD
simulations are shown in Fig. 6. As expected, these patterns
are similar to the ones obtained in the KMC simulations.

In order to quantify the degree of cell sorting in the CPD
simulations by employing the cell-sorting parameter s, defined
through Eq. (18), we determined the position of a cell by the
center of mass of the constituent CPs and considered two cells
to be neighbors if they were separated by a distance less than
3.25 σ . For the CPD simulation corresponding to case C1, s(t)
is shown Fig. 7. Similarly to the KMC result, s(t) can be fitted

well with the double exponential (20). Again, smax = 0.68 is in
good agreement with the theoretical prediction Eq. (19), i.e.,
0.67 for x = 2.2 (or 0.63 for x = 2.5). The other fitting param-
eters in Eq. (20) are τ1 = 0.68t0, τ2 = 103t0, s1 = 0.25, and
s2 = 0.1. Note that while s1 and s2 have essentially the same
values for both KMC and CPD simulations, the time constants
τ1 and τ2 are quite different, as the corresponding time units t0
are different in the two simulations. Moreover, the fact that, for
similar model parameters, τ2/τ1 = 41.8 in KMC is about twice
as large as τ2/τ1 = 21.7 in the corresponding CPD simulation
indicates that the self diffusive motion of cells in KMC occurs
much faster than in CPD. In other words, the multicellular
system is more liquid-like in KMC than in CPD simulations.

IV. CONCLUSIONS

We have formulated two computer simulation methods,
KMC and CPD, that are capable of describing and predicting
the shape evolution in time of 3D multicellular systems during
their biomechanical relaxation. The KMC and CPD model pa-
rameters were determined and calibrated by using an original
computational-theoretical-experimental framework applied to
the fusion of two spherical cell aggregates. Our study was
motivated by the need to quantify biomechanical properties
of engineered tissue constructs, composed of compact tissues
made of adhesive and motile cells and to predict their
time evolution. The growing interest in understanding shape
changes in such tissue constructs stems from their applications
in tissue engineering in general and in the emergent field of
3D bioprinting in particular [8].

The KMC method is based on a lattice representation of the
3D tissue construct and dynamics is described in terms of rates
associated with possible movements of cells. Similarly to pre-
viously employed MMC studies, the mixing pattern observed
in KMC simulations disagrees with experiments. In both meth-
ods an elementary move consists in cells swapping positions
with neighbors, which overestimates cell motility. However,
with proper time-scale calibration, KMC simulations can be
used to describe and predict reasonably well the time evolution
of the shape of the simulated multicellular system.

The CPD method is based on modeling individual cells
in a tissue construct as interacting CPs. The dynamics of
the multicellular system are determined by integrating the
equations of motion for each CP. The CPD force field
parameters are determined such that the time evolution of the
shape of the fusing spherical aggregates in the CPD simulation
matches as closely as possible the experimental one (i.e., two
touching spherical caps). Once the CPD model is calibrated,
this can be used to simulate the shape evolution of arbitrary
3D multicellular constructs. It should be emphasized that in
CPD (i.e., computer) units the calibrated CPD parameters (and
therefore the outcome of a CPD simulation) are independent
of the used cell type. However, the CPD units (9) have specific
values for different cell types. Thus, the CPD simulations
reported here can be applied as is to different cell types;
the corresponding CPD time unit t0 should be determined in
each case by equating τsim ≈ 540 t0 (see Sec. III A 2) with the
experimental fusion time τexp. The reported CPD simulations
provided a good description for both fusion and cell sorting
of multicellular spheroids. We found that CPD provides a
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more realistic description of complex multicellular structure
formation than KMC. Indeed, the behavior of the studied
multicellular systems in CPD simulations resembles to that of
complex visco-elastic materials while in KMC simulations to
that of viscous liquids. It is to be expected that by including
more realistic features into the interaction of the CPs the
accuracy of the CPD method can be further improved.
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