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Rupture of a biomembrane under dynamic surface tension
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How long will a fluid membrane vesicle stressed with a steady ramp of micropipette last before rupture? Or
conversely, how high should the surface tension be to rupture such a membrane? To answer these challenging
questions we developed a theoretical framework that allows for the description and reproduction of dynamic
tension spectroscopy (DTS) observations. The kinetics of the membrane rupture under ramps of surface tension is
described as a succession of an initial pore formation followed by the Brownian process of the pore radius crossing
the time-dependent energy barrier. We present the formalism and a derive (formal) analytical expression of the
survival probability describing the fate of the membrane under DTS conditions. Using numerical simulations
for the membrane prepared in an initial state with a given distribution of times for pore nucleation, we study
the membrane lifetime (or inverse of rupture rate) and distribution of membrane surface tension at rupture
as a function of membrane characteristics like pore nucleation rate, the energy barrier to failure, and tension
loading rate. It is found that simulations reproduce the main features of DTS experiments, particularly the pore
nucleation and pore-size diffusion-controlled limits of membrane rupture dynamics. This approach can be adapted
and applied to processes of permeation and pore opening in membranes (electroporation, membrane disruption

by antimicrobial peptides, vesicle fusion).
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I. INTRODUCTION

Many aspects of biological life crucially depend on the
stability of cell membranes for which several properties are
not understood yet. Fluid lipid bilayers are the building
blocks of biological membranes. Pores in such systems
play an important role in the diffusion of small molecules
across biomembranes [1]. In addition, pore formation is a
possible mechanism for vesicle fusion [2]. In order for any
vesicle to be useful it must be relatively stable. Yet to
undergo fusion, long-lived holes must occur during the fusion
transformation. How membranes actually manage to exhibit
these two conflicting properties is not completely clear, but this
can likely be realized only dynamically. Dynamical properties
are especially important for biological membranes because
their static characteristics describe a dead structure whereas
life and biological functions are associated with molecular
motions. Thus the desire to understand the dynamics of
biomembrane rupture, which is the main aim of this paper,
is hardly surprising.

On a microscopic level, pores are formed owing to the
thermal motion of lipid molecules and, in principle, various
types of pores can be distinguished. It is usually assumed
that nucleated pores have hydrophobic edges; the so-called
hydrophobic pores [3] which are spontaneously formed in
the lipid matrix. The probability for the existence of such
hydrophobic pores is determined by the free energy of a
pore as a function of a pore radius (see Secs. II and III
below), and, when the hydrophobic pore exceeds a critical
size, a reorientation of the lipids takes place converting the
pore into an hydrophilic one where the head groups form
the pore walls. As discussed by the authors of Ref. [4],
these reorientation processes can occur at the very early
stages of pore formation so that nucleation is the crucial
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step in the rupture process. Note that thermal fluctuations can
also lead to transient unstable pores, often termed prepores
[5]. In what follows, we will be interested in a single
stable pore and head group reorientation mechanisms will
be disregarded. All details on hydrophobic and hydrophilic
pores will be lumped into the effective model parameters
like line tension, (unstressed) membrane surface tension, and
the pore-size diffusion coefficient. The electric breakdown
method provides information on pore size, which can be drawn
from the dependence of membrane conductivity on applied
voltage [3], but dynamical pore characteristics can hardly be
found by this technique. One of the most relevant material
parameters controlling pore dynamics is membrane surface
tension. Surface tension suppressing thermal fluctuations and
promoting membrane adhesive properties can induce adhesion
of a membrane onto a substrate or to another membrane
and other tension-induced morphological transitions including
membrane rupture.

A closed vesicle without pores can survive for a very long
period of time. Pores can form and grow in the fluid-lipid
membrane in response to thermal fluctuations and external
influences. Several innovative techniques are available for
observing the transient permeation and opening of pores.
These include mechanical stress, strong electric fields (elec-
troporation), optical tweezers, imploding bubbles, adhesion at
a substrate, and puncturing by a sharp tip. In all instances,
the resulting transient pore is usually unstable and leads to
membrane rupture for some level of the surface tension. Using
the rupturing of biomembranes under ramps of surface tension,
the challenge of dynamic tension spectroscopy (DTS) is to
identify and quantify the relevant parameters that govern the
dynamics of membrane rupture and thereby characterize the
membrane mechanical strength.
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FIG. 1. Image of a 20-mm bilayer vesicle aspirated in a
micropipette (from Ref. [6]).

As a demonstration of the DTS technique, Evans et al. [6]
conducted experiments of rupturing fluid membrane vesicles
with a steady ramp of micropipette suction (Fig. 1). Rupture
tests on different types of giant phosphatidychlorine lipid
vesicles over loading rate (tension/time) from 0.01 and up
to 100 mN/m/s produce distributions of breakage tensions
governed by the kinetic process of membrane failure. One
might naively expect that lipid membranes will rupture at
tensions close to the hydrocarbon—water surface tension as
lipids are held together by hydrophobic interactions. However,
biomembranes rupture at a much lower tension. As pointed
out by Evans et al., the rupture strength of a biomembrane
is a dynamical property and the level of strength depends
on the time frame for breakage [6]. Energy barriers along
the tension-driven pathway are determinants of membrane
strength, and the relative heights of these barriers lead to
time-dependent changes in strength. To describe the dynamic
tension spectra they observed, Evans er al. modeled the
membrane breakage as a sequence of two successive thermally
activated transitions (dependent of loading rates) limited either
by a specific defect (prepore) formation or by passage over
the cavitation barrier (or evolution to an unstable pore).
Accordingly, this description was formalized into a three-state
kinetic model for the membrane: the defect-free ground state,
the defect or metastable state, and the ruptured membrane
state [6].

Motivated by these experimental and theoretical investiga-
tions and findings, our objective in this paper is to develop a
minimal theoretical framework of the DTS method to describe
the kinetic process of membrane breakage. Based on the
general framework of the Kramers reaction rate theory [7,8],
we develop in this paper a theoretical framework for DTS
to describe the pore growth and membrane rupture dynamics
as a Markovian stochastic process crossing a time-dependent
energy barrier. As mentioned, such a theoretical approach is
conceptually similar to that used by Evans et al. [6] (see also
Refs. [9,10]). However, our description is more general than
that presented in Ref. [6] as it characterizes and describes
both the primary nucleation event followed by the continuous
dynamics of pore growth and shrinking hence making it easy
to follow and adapt for further numerical treatments.

II. PROBLEM FORMULATION

In what follows we treat the membrane as a two-
dimensional continuum medium and we neglect shape fluctu-
ations [i.e., the parameter § = kT /4mk [11] is small (e.g.,
8 ~ 1073 for lipid bilayers)]. We will deal with thermal
fluctuations not related to shape fluctuations, but with the
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process of barrier crossing for pore formation characterized by
the parameter e = Vy/ kg T, where V) is the typical energy cost
for pore formation at the critical pore radius [see Eq. (5)]. Thus
our investigations will concern the regime § < 107! < &.

Within the framework of the DTS, we describe the kinetics
of membrane rupture as a succession of two processes: an
initial pore nucleation followed by a diffusion dynamics of the
pore size to membrane rupture.

A. Pore formation

For simplicity, we assume that the net process of pore
nucleation in a membrane can be described by an activated
process following a first-order kinetics with a rate g (i.e., the
distribution of times for the membrane to remain free of pores
is given by the exponential distribution with the rate g, which
is a function of membrane characteristics). For the purpose of
DTS, we will assume that the pore nucleation rate g(co’) is a
function of the membrane surface tension o.

B. Pore diffusion

Once the pore is already formed in the membrane, the net
energy V(r) of such a membrane of thickness / with a circular
pore of radius  consists of two opposed terms [12]: the surface
tension o, favoring the expansion, and the energy cost y of
forming a pore edge (line tension), favoring the closure

V(r)=2nyr—mnort. (D

Assuming thato > O and y > 0, and both are constant, Eq. (1)
predicts that for r < a, where a = y /o is the pore radius for
the maximum energy V(r), the radial force associated with a
change in radius tends to reseal the pore, and the membrane
remains stable against pore growth. On the other hand, a pore
with a radius larger than the critical value a will grow without
bound and, ultimately, will rupture the membrane. In DTS
experiments [6], the membrane is stressed such that (provided
that y remains constant) the surface tension grows linearly with
time as o0 = oy + F't, where oy is the unstressed membrane
tension and F is the loading rate constant. In this case, the
critical radius a(¢) becomes a decreasing function of time and
any pore initially with radius r < a(0) will ultimately lead to
membrane rupture at a time such that r > a(¢) as a result of
the decreasing of both the critical pore radius and associated
barrier energy. Now, incorporating thermal fluctuations in
this picture, one can view the rupture of the membrane as a
Brownian process crossing the time-dependent energy barrier
Via()].

To setup the equations of pore-size dynamics we consider
a membrane with a pore of radius » under mechanical stress
that changes its surface tension. In this description model of
DTS, the surface tension o in V(r) is a linear function of
time as defined above. Thus, neglecting inertial effects, the
dynamics of r is governed by the Langevin equation with the
time-dependent potential

dr _ dv(r,t)
E - = dr + f(t)v

V(rt)=2nyr—mn(oy+ Ft)r?,

@
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TABLE 1. Parameters and dimensionless variables. The index “0”
denotes quantities for the unstressed membrane.

Symbols Definition

y line tension (energy/length)

0o unstressed surface tension (energy/surface)

F tension loading rate (energy/surface/time)

D =kgT/C1 pore diffusion coefficient (length?/time)

ro =y/0o critical pore radius (length)

t=r2/D diffusing time scale of the critical pore (time)
Fy=o09/1 critical tension loading rate (energy/surface/time)

90 reduced unstressed pore nucleation rate
x=r/ry reduced pore radius
y =0/0y reduced membrane surface tension

& =my?JooksT reduced energy barrier for unstressed membrane
v=F/F v < 1: diffusing limit

reduced tension loading rate: { v > 1 drift limit

where ¢ = 4mn,, [ is the friction coefficient to radial circu-
lar fluctuations with 7, the internal two-dimenaional (2D)
membrane viscosity, and f(¢) is a Gaussian random force of
zero mean with correlation function given by the fluctuation-
dissipation relation { f(t) f(¢)) =2 ¢ kgT 8(t — t'), with kg T
being the thermal energy.

C. Dimensionless equations

To work with dimensionless variables we define in Table I
the scales of length, surface tension, and time by ry, 09, and t,
respectively, and we consider the following transformations:
x=r/rg, y=0/0p, and t — ¢/t (with x € [0,1] and y €
[1,00[). This operation leads us to define the control parameter

Fr diffusing time scale

vV=— = — : €)]
0o surface tension time scale

This parameter allows us to distinguish two regimes in the
dynamics of the membrane rupture: the diffusion-controlled
regime when v < 1 and the drift regime for v >> 1 limit. With
these transformations Eq. (2) can be rewritten as

dx dU(x,y)

— = —-——4+X@),

dt dx @

dy

dt

where X(¢) is a Gaussian random force of zero mean with
the correlation function given by (X)X (t')) =28 —t'),
and we have defined the potential (energy landscape for DTS
illustrated in Fig. 2)

“)

:])7

e V(ro) ny?
U = — 2 — 2 ; = = .
(x]y) 2[ x—yx7]; ¢ ksl ooksT

S

The potential U (x|y) is maximum at x! = 1/y corresponding
to the energy barrier U* = U(x'|y) = &/2y. Both the position
x* and height U? of the energy barrier decrease as y becomes
larger as a result of the membrane stress.

D. DTS observables

As the barrier crossing to both pore nucleation and mem-
brane rupture are stochastic processes, both the membrane
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FIG. 2. (Color online) Energy landscape [Eq. (5) with ¢ = 2] for
the DTS. Flat area x > 2/y corresponds to U < 0.

lifetime and the membrane tension at rupture are distributed.
Our goal is to calculate the two quantities that characterize
the kinetics of membrane rupture in the DTS framework: the
rate of membrane rupture and the distribution of tension at
membrane rupture.

For a membrane with a pore in the absence of mechanical
stress v = 0, the distribution of tension at membrane rupture
is the delta function Q(y) = 8(y — 1), and the rate of the
membrane rupture can be obtained analytically by using the
first passage time approach [13,14]

1 _fl dx |:/x Y ]2
Kel0) Sy Dol LSy PeEE

_ J/7T/Q2e) ld
N erfi[/€/2] Jo *
x {erfily/e/2] — erfi[(1 — x)/e/21}>  (6)

e—tG—1/2)

in which we have assumed that the membrane system was
initially prepared with the distribution peq(x|1), where

—U(x]y)

peq(x|y) = T}’);

1/y
Z() = / eV gy (7)
0

and Z(y) = %)1/2 erfi[«/¢/2y], where erfi[z] = erf[iz]/i
and erf[- - -] is the error function.

On the other hand, for a membrane initially free of pore
and for v > 0, analytical expressions are not straightforward,
but the rate of membrane rupture and the distribution of
tension at membrane rupture can be determined as follows. Let
S(¢) be the survival probability that describes the fate of the
membrane from the beginning of the experiment. The distri-
bution of the membrane lifetime or rupture time is given by
—dS/dt, and the membrane rupture rate (equal to the inverse
of the membrane lifetime) is obtained as

[ _dS(t) Y
k(8|v)_/0 t|: TR i|dt_/0 St)dr . 8)
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Likewise, the distribution Q(y) of tensions y at which the
membrane rupture is related to the distribution of rupture time
and, as y = 1 + vz, we have

(-%)
X [ —
dt
The DTS spectrum (here, mean of rupture tensions) (y(e|v)) =
floo yQ(y)dy is related to the rupture rate k(¢|v) by (y(e|v)) =
1 4+ v/k(e|v). In the case where S(¢) satisfies a first-order

rate equation with the time-dependent rate I'(¢) [i.e., S(t) =
exp{— fot I'(¢')dt'}], the distribution Q(y) can be written as,

[*(V_*l) »=D/v
T" exp{ —/ F(z)dz} . (10)
0

It follows from this that S(#) is the key function to the derivation
of the expressions of the quantities of interest.

dt
dy

Q(y) = ’ 9

y=1+4vt

Q@) =

III. ANALYTICAL THEORY

Equivalently to the stochastic equation in Eq. (4), the joint
probability density P(x,y,t) of finding the membrane with
surface tension y and pore of radius x [i.e., the phase space
point (x,y)] at time ¢ is described by the two-dimensional
Fokker-Planck equation

0P(x,y,t) 0P(x,y,t)  dJ(x,y,1)
Rl AP AL _
at dy ox

. 3D

where the first term in the right-hand side describes the ballistic
drift of the surface tension caused by the applied loading
rate, and the second term is the diffusive flux describing the
diffusion of the pore radius in the potential U (x|y) for given y

y 0 ,
J@,y,n) = —e V0 — W Py . (12)
ox
Equation (11) reduces to the Smoluchowski equation in the
v =0 limit [15]. To study the rupture of membrane as an
escape of the pore radius undergoing a Brownian dynamics
within the interval [0, 1[, we require that P(x,y,t) satisfies
the reflecting boundary condition at x = 0 and the absorbing
boundary condition at x = 1/y, that is,
Jx,y,t) =0 atx =0,
(13)
P(x,y,t) =0 atx=1/y.

A formal, yet numerically computable, solution of Eq. (11)
with the initial condition P(x,y,r = fy|xp,Y0) = 6(x —
X0)8(y — yo) and boundary conditions in Eq. (13) is given
by the Green’s function

P(x,y,t|x0,Y0,%)

. peq(x|y) 1z
= | = Sy — oy — o(r — 10)]
Peq(X0ly0)
o0 1 y
x ;mmm)wn(m) exp{ - ;f kn(z)dz}.
(14)

PHYSICAL REVIEW E 85, 031905 (2012)

The ¥,(x|y) and A,(y) are, respectively, the normalized

eigenfunctions ( fol/ Y dx Y, ()Y (x) = 8,,,) and associated
eigenvalues of the eigenvalue problem

2 2 201 _ yr)2
szc;xl/zf_[vsx +8(1 yx) +8yi|1//

Y
4 4 2 4

15)

satisfying the reflecting and absorbing boundary conditions at
x =0and x = 1/y, respectively,

0
e V™ a[evw Y (X)]|=0 = O,

Y(x=1/y)=0.

Let z = [ve +&2y?]V/4[x — %] such that zo < z < z1,
where

(16)

Sy[US +£2y2]1/4. _ U[US +£2y2]1/4

70 = 17
’ W+ey?) Y+ ey?) 4
The eigenvalue problem Hvy = —Ay becomes
dzl/f Z2
—_— E—— =0,
dx? + |: 4 :| 4
(18)

E_ 1 o (24 ve?
 [ve + £2y2]1/2 2 Aw+ey?)/)]

The general solution to Eq. (18), which satisfies the absorbing
boundary condition in Eq. (16), is given by

V(z) = A[D,(=z1)Dy(z) = Dy(z1) Dy (=2)],

1
I)ZE—E,

19)

where D, (z) is the Weber’s parabolic cylinder function [16].
The constant A is obtained from the normalization and the
eigenvalue spectrum by solving the following eigenvalue
equation obtained be using the reflecting boundary in Eq. (16)

dD,(z0) e
DU(_ZI)[ dZO 2[1)8 T g2y2]1/4 Du(ZO)i|
dD,(—zp) & _
+ Dv(Zl)|: dzo - 2ve + 82)72]1/4 Dv(_ZO):| =0.

(20)

Now, assuming that the system is initially prepared with
the distribution g(x,y,?) describing the pore formation, the
survival probability that describes the fate of the membrane
with a pore is given by

00 00 1/y0 1/y t
S() =/ d)’o/ dy/ dxo/ dx / dty
1 1 0 0 0

P(x,y,t|x0,¥0,%0) &(x0,Y0,%0), 21

where P(x,y,t) is given in Eq. (14) and the preparation
distribution

8(x,y,t) = peq(x]y)8(y — 1 —v1)

x [q(t)GXP{ —/th(t’)dt’”, (22)

where the term between the squared brackets stands for the
distribution of times for pore nucleation.
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Equation (21) provides an exact expression of S(¢) in terms
of infinite series from which the rupture rate k(¢|v) (or the
DTS spectrum) and the distribution Q(y) of rupture tension can
subsequently be derived by using Eqgs. (8) and (9), respectively,
and the approximate expression for I'(¢) as well.

Interestingly, these derivations can also be used to establish
the correspondence with the three-state model in Ref. [6] and,
therefore, provide exact expressions as

) 00 1/y0 t
5.(1) = / dyo / dy / dxo / dio
1 1 0 0

P(0,y,t|x0,¥0,%0) &(x0,¥0,%0),
S() = S(t) — So(1), (23)

Shole(1) = 1 = 8(1),

where S,(?) is the defect-free ground state, S,(¢) the defect or
metastable state, and Spoe(?) the ruptured membrane state as
defined in Ref. [6].

Unfortunately, the derivation of analytical expressions
[which require solving Eq. (20)] as outlined above may be
tedious and the obtained results turn out to be not easy to use in
practice. These calculations were done mainly for the purpose
of presenting the derivation formalism of exact expressions.
Such exact solutions may turn out to be useful for checking
simulation results just like those presented in the next section.
Our main interest in this paper is to understand, write down
equations describing DTS experiments, and develop related
simulations that could be compared with experimental data.
To this end, we switch to the simulations of the kinetics of the
membrane rupture as described by stochastic and dynamical
equations outlined above.

IV. SIMULATION ALGORITHM

The simulations of the kinetics of the membrane rupture
were performed using the discretized version of Eq. (4) to
have the algorithm

Xnt1 = (€AY, + Dx, —eA + X,
(24)
Yn+1 = Yn + vAa

where A is the time step and the Gaussian random noise X,
is defined by the moments, (X,) = 0 and (X, X,/) = 2A 5.
For each trajectory for a membrane free of pore at t = 0, with
fixed barrier height ¢ and loading rate v, the system is prepared
according to the distribution g(x¢, yo,%y) given in Eq. (22). The
initial pore is created in the membrane at time 7o = (yp — 1)/v
where the membrane surface tension y, for pore creation is
given by the exponential distribution

fo) = (@> exp{ - / “ (M)dy’}, (25)
v 1 v

and the pore radius x, is generated from the distribution
Peq(X0lyo) in Eq. (7). From this, the next pore radii x, and
surface tensions y, are generated according to the algorithm
in Eq. (24). To simulate the rupture of the membrane, each
trajectory starting at xo (0 < x9 < 1/yg) at time t = fy is
terminated at time ; = nA when the condition x, > 1/y, is
satisfied for the first time (the boundary at x = 0 is reflecting).
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The rupture surface tension y; = y,, the first passage time
t;, and the survival probability S;(¢) [defined as S;(¢) = 1 for
all t < t; and S;(¢) = 0 otherwise] for this given trajectory are
recorded. The distribution Q(y) of rupture tensions is obtained
by binning the y;’s over a large number N of trajectories.
Likewise, the definitive survival probability S(¢) and the
rupture rate constant k(e|v) (i.e., the inverse of the membrane
mean lifetime) are then obtained by averaging these quantities
over a large number of trajectories

N
S(t) = — Zsa) and k(sm Z (26)

i=1 i=1

For all simulations reported in this paper we used A = 107>
and a total of N = 10 trajectories were used to perform the
averages.

V. RESULTS

In what follows simulations were carried out with the
tension-dependent pore nucleation rate given by ¢(y) =
goe®® D, where gy is the pore creation rate in the unstressed
membrane and o« is a constant depending on membrane
characteristics and temperature (e.g., €). As the membrane
tension increases with time with load v the overall rate of pore
formation will be given by

[[Jarenl 0] e
k, = qo / dx exp{ — —— ;o oa=—. (27)
0 a qo

The DTS outputs are the distribution Q(y) of tensions at
rupture and the DTS spectrum defined by the plot of the
mode of Q(y) as a function of In(v) [6]. We have computed
the membrane survival probability (results not reported)
distribution Q(y) and rupture rate k(e|v). As a successive
process, the membrane rupture rate can be written as, k(¢|v) =
kakp ett/ (kg + kn err) Where ky o (different from k,) is the
effective rate of pore formation and &, is the rupture rate for a
membrane initially with a pore in it. In what follows we will
investigate the effect of ¢, v, and € on Q(y) and k(e|v).

A. Diffusion controlled limit: ¢ — oo limit

This limit corresponds to the situation where a membrane
under tension stress already has a pore in it and, therefore,
k(e|v) = ky. Figures 3, 4, and 5 display the distribution Q(y)
and the DTS spectrum as a function of the energy barrier ¢
and loading tension rate v. As can be seen, the distribution
Q(y) of tensions at rupture broaden from the delta function
at y = 1 to a wider distribution when both v and ¢ increase.
Accordingly, the mean tensions (y(g|v)) for membrane rupture
increase with both loading rate v and barrier height ¢.

B. Finite pore nucleation rate g # 0 limit

To investigate the effect of pore nucleation rate on the
membrane rupture, we consider two cases of increasing
complexity.

1. o =0 limit

In this case, k, ff = k, = qo. Figure 6 shows the variation
of rupture rate k(e|v) as a function of the pore nucleation rate
qo- As expected for a successive process, k(g|v) linearly grows
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FIG. 3. (Color online) Distribution, Q(y), of rupture tensions y
for various values of the energy barrier ¢ and loading rate v. For each
row of figures, the leftmost and second leftmost figures have the same
scales in both the x and y axes, and likewise for the rightmost and
second rightmost figures. Note that the y scales of the rightmost
figures are an order of magnitude smaller than for the leftmost
ones.
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FIG. 4. (Color online) DTS spectrum (y(¢|v)) as a function of
the loading rates v (in logarithm scale) for various barrier heights
& (quoted numbers). Filled symbols correspond to simulations and
dashed lines are a guide for the eyes.

with g in the nucleation-controlled limit when gy < k; and
saturates to k; in the diffusion controlled limit for gy > kg .
Figure 6 illustrates that system parameters can be tuned to
follow the transition between the nucleation and diffusion
controlled limits. Accordingly, Fig. 7 displays the profiles
of the distribution Q(y) corresponding to the nucleation-
controlled limit and toward the diffusion-controlled limit.

2. Caseofa =1

When o # 0, the dynamic nature of a membrane rupture
leads to k, off # k,,. Both k(¢|v) and Q(y) still exhibit similar
behaviors observed in the case of @ = 0, but with nontrivial
dependence on the loading rate v and barrier height €. As
ky(elv) is known from the limit ¢ — oo, the behavior of
ky efr(elv) can be learned from Fig. 8. Clearly, k, ¢ > ki,
and the effective pore nucleation rate has extra v and &
dependencies that are not taken into account in k, in the
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FIG. 5. (Color online) DTS spectrum (y(e|v)) as a function of the
barrier height ¢ for various loading rates v (quoted numbers). Filled
symbols correspond to simulations and dashed lines are a guide for
the eyes.
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FIG. 6. (Color online) Rupture rate k(¢|v) as a function of the
tension-independent pore nucleation rate gy (for @ = 0) for various
barrier heights ¢ (quoted numbers) and loading rates v = 0.1 (circles
and squares) and v = 10 (diamonds and triangles). Filled symbols
correspond to simulations and dashed lines are a guide for the eyes.

absence of pore dynamics. The departure of k, ¢ from k,
increases with both v and ¢ indicating that opening pore is
more likely for high barrier membrane with high loading rates.
The kind of distributions Q(y) that can be observed in this limit
are displayed in Fig. 9.
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FIG. 7. (Color online) Distribution Q(y) of rupture tensions y for
various values of the tension-independent pore nucleation rate g (for
o = 0) and loading rate v. For each row of figures, panels with gy = 1
and go = 10 have the same scales in both the x and y axes.
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and o = 1. Filled symbols correspond to simulations and dashed lines
are a guide for the eyes. Inset: Reduced nucleation rate k, /g versus
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VI. CONCLUDING REMARKS

Rupturing fluid membranes or vesicles with a steady ramp
of micropipette suction produces a distribution of breakage
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FIG. 9. (Color online) Distribution Q(y) of rupture tensions y for
various values of loading rate v and energy barrier ¢ with gy = 0.1
and o = 1. For each row of figures, panels with v = 1, v = 10, and
v = 100 have the same scales in both the x and y axes.
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tensions governed by the kinetic process. Experimental ev-
idence have demonstrated that the membrane rupture is a
dynamical property whose strength depends on the time scale
for breakage. From the theoretical point of view, we have
developed a minimal model for the DTS that describes the
pore nucleation as a first-order activated process, the dynamics
of pore growth as a two-dimensional (in pore radius and
tension coordinates) Markovian stochastic process, and the
rupturing of membrane is modeled by an escape process over
the time-dependent critical barrier of the energy landscape.
We have provided an exact analytical solution of this problem
and established the correspondence between this description
and the three-state model in Ref. [6]. As numerical results, we
have simulated the rupture rate and the distribution of rupture
tension as a function of the pore nucleation rate, the critical
barrier height ¢ of the unstressed membrane, and the reduced
tension loading rate v. Our simulated histograms already
reproduce several features observed in DTS experiments in
Ref. [6] and highlight the variety of profiles and richness
of the problem. Indeed, the distribution of rupture tensions
show different profiles between and in the two nucleation- and
diffusion-controlled limits as a function of ¢ and v. In other
words, we have shown that the membrane failure problem can
be described in a three-dimensional phase diagram involving
pore nucleation rate ¢, energy barrier to rupture €, and the
loading rate (control parameter) v as variables. As illustrated
in Fig. 3, for a given material or kind of vesicles (given as g
and ¢) the distribution of rupture tensions is very peaked at the
left (low tensions) for low v and it is broad and shifted to the
right (high tensions) when v gets higher, very much similar to
the experiments (e.g., see Fig. 3 in Ref. [6]). The shifting and
broadening of the distribution of rupture tensions depend both
on g and ¢, and for a given loading rate v, the distributions
are broader for low g and high e corresponding to highly
stretchable and stressed materials which are energetically
expensive to rupture and vice versa. These features illustrate
and emphasize how the developed framework outlined above
allows to rationalize and analyze experiments like those in
Ref. [6].

As presented above, the kinetic of membrane rupture
as probed in DTS experiments is very similar to nonequi-
librium problems such as those studied in single-molecule
pulling experiments using atomic-force microscopes [17,18]
and molecular failure experiments using the dynamic force
spectroscopy [19,20]. In these problems, the rupture event
under constant loading is described as a thermally activated
escape from a time-dependent well. To cite a few, there are
several theoretical works [21-25] that have been developed,
extended, and refined to describe the thermally activated
rupture events within the general framework of Kramers’
reaction rate theory [7,8]. The approach outlined above can
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also be applied to membrane disruption by antimicrobial
peptides as peptide binding induces a local membrane area
expansion which is equivalent to local tension (e.g., see
Refs. [5,10]).

Needless to say that the theoretical model outlined above
does not yet take into account all aspects of the membrane
rupture observable in different kinds of experiments since we
purposely neglected some of the features like, e.g., the coarse-
grained structure of the membrane or hydrodynamics effects.
However, there are several aspects that can be addressed within
the framework of our model. First, for transient pores in
vesicles with leaking-out as in Refs. [26,27], the leak-out of the
vesicle content results in decreasing the vesicle size that leads
to surface tension change as a function of time. This situation
is formally identical and can be treated as a two-dimensional
problem as described above with the appropriate adaptation
for the potential in Eq. (5) and the dynamical equations in
Eq. (4), especially for the surface tension variable y. Second,
when dealing with membrane rupture with a noncircular
but an arbitrary-shaped pore, a pore configurational entropy
(negative) contribution should be included into the net energy
of the pore formation in Eq. (1) such that the total energy cost of
pore formation becomes temperature dependent [28,29]. This
case is equivalent to renormalizing the effective line tension
which may become negative as a function of temperature, but
the kinetics of membrane rupture is still described as outlined
above. Third, in the case of fluctuating membranes [30], both
the line and surface tensions in Eq. (1) become dynamical
variables and what matters is the time scale of fluctuations
compared to that of the rupture event. When membrane
fluctuations are fast, the line and surface tensions in Eq. (1) can
be replaced by their effective temperature-dependent values
and the kinetics of membrane rupture is described as discussed
above. For slow fluctuations of the membrane, each event of
the membrane rupture, described as outlined above, takes
place in a system frozen in initial preparation conditions
depending on the distributions of line and surface tensions.
In the intermediate regime of membrane fluctuations, the
membrane rupture problem can still be treated in terms of
the two-dimensional problem as outlined above by redefining
the x and y variables and reworking the potential in Eq. (5)
and dynamical equations in Eq. (4).

Finally, the developed formulation can still be embellished
in several directions to include aspects like hydrodynamics
effects and non-Markovian dynamics of the pore dynamics
driven by the membrane matrix. Although only a single pore
is likely to occur in the DTS context as shown in membrane
conductance measurements [31], an additional challenging
theoretical issue will be to consider the membrane rupture
problem under conditions of multiple interacting pores [32].
Such works are underway.
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