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Mechanical desorption of a single chain: Unusual aspects of phase coexistence
at a first-order transition
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The phase transition occurring when a single polymer chain adsorbed at a planar solid surface is mechanically
desorbed is analyzed in two statistical ensembles. In the force ensemble, a constant force applied to the nongrafted
end of the chain (that is grafted at its other end) is used as a given external control variable. In the z-ensemble,
the displacement z of this nongrafted end from the surface is taken as the externally controlled variable. Basic
thermodynamic parameters, such as the adsorption energy, exhibit a very different behavior as a function of
these control parameters. In the thermodynamic limit of infinite chain length the desorption transition with the
force as a control parameter clearly is discontinuous, while in the z-ensemble continuous variations are found.
However, one should not be misled by a too-naive application of the Ehrenfest criterion to consider the transition
as a continuous transition: rather, one traverses a two-phase coexistence region, where part of the chain is still
adsorbed and the other part desorbed and stretched. Similarities with and differences from two-phase coexistence
at vapor-liquid transitions are pointed out. The rounding of the singularities due to finite chain length is illustrated
by exact calculations for the nonreversal random walk model on the simple cubic lattice. A new concept of local
order parameter profiles for the description of the mechanical desorption of adsorbed polymers is suggested.
This concept give evidence for both the existence of two-phase coexistence within single polymer chains for this
transition and the anomalous character of this two-phase coexistence. Consequences for the proper interpretation
of experiments performed in different ensembles are briefly mentioned.
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I. INTRODUCTION AND OVERVIEW

Understanding the cooperative effects in single polymer
chains has recently become a subject of very intense research.
These effects include protein folding, unzipping of DNA,
translocation of biomolecules through pores, and adsorption
and desorption of polymers on fluid membranes or on solid
substrates. (See. e.g., [1] for a recent review and [2–6] for some
further references.) Particularly useful is the experimental
study of conformational changes of polymers under the action
of pulling forces [6–9].

Polymers at interfaces [10–12] may show a complex phase
behavior already in the absence of a pulling force, for instance,
because of the interplay of the attractive potential due to the
surface and the solvent quality (with poor solvents giving rise
to an effective attraction between the monomers of the chain
in the solution). In poor solvents, adsorption may compete
with the collapse transition into compact globules, in the bulk
as well as adsorbed to the surface, or even crystalline states
[13–17]. Here we shall only be concerned with the adsorption
transition of an end-grafted flexible polymer (which takes a
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“mushroom configuration” under good solvent conditions) to
a quasi-two dimensional “pancake” [18,19]. Despite long-
standing efforts [20–28], even this generic problem is still
under discussion [29]. In the presence of an external pulling
force, the number of phases increases due to the appearance of
the stretched chain state, and numerous phase transitions can
occur.

While the basic aspects of phase transitions in bulk
condensed matter are well understood [30], phase transitions
in a single macromolecule have some unusual features,
which sometimes hamper their understanding. These unusual
properties start already on the most basic level, the distinction
of the different phases of a system in terms of the order
parameter, as introduced in the Landau theory of phase
transitions [31,32]. In standard condensed matter, the order
parameter is an extensive thermodynamic variable, such as,
e.g., the magnetization in a ferromagnetic, or the particle
number density, in the case of the vapor-liquid phase transition.
The latter case is a generic example for a phase transition
of first order, where, according to the classical Ehrenfest
classification, first derivatives of the thermodynamic potential
with respect to intensive thermodynamic variables have a
jump. For example, by taking in a fluid the pressure p as a
control variable, the partial derivative of the Gibbs free energy
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FIG. 1. End-grafted adsorbed polymer chain pulled from the surface in the force ensemble (with fixed given force f ) (a) and the z-ensemble
(for fixed distance of the free chain end above the substrate) (b).

with respect to pressure at constant temperature, the volume,
jumps from a small value of the bulk liquid to a larger value
of the vapor when the liquid evaporates.

In contrast, the order parameter characterizing the phase
transition of a single macromolecule is often chosen as a global
parameter describing the conformation of the chain as a whole.
In the coil-stretch transition in a macromolecule subjected to
a pulling force, the order parameter is the end-to-end distance
of the polymer (possibly normalized by the contour length of
the linear macromolecule). In the so-called escape transition,
whereby a polymer coil grafted at one end on a substrate (a
“polymer mushroom”) is compressed by a piston, which can
lead to an abrupt change of conformation from a deformed
coil to an inhomogeneous “flower state,” the order parameter
is the degree of stretching of the whole chain [33,34]. In
the adsorption of a single chain onto a planar solid or liquid
substrate the fraction of monomers in contact with the substrate
is commonly taken as the order parameter [11,12,18–29].

A difference between phase transitions of bulk matter and
single macromolecules arises, however, when we consider the
transition as a function of an extensive variable as a control
parameter. For example, if the volume of a fluid at constant
temperature is varied, the liquid-vapor transition shows up as
a strictly horizontal part on the P -V diagram at the transition
pressure (where, in the thermodynamic limit, particle number
N → ∞). The interpretation of this horizontal piece (volume
V in the region V� < V < Vg) is that phase coexistence occurs,
whereby two macroscopic regions of volume fractions x of gas
and 1 − x of liquid occur, with x = (V − V�)/(Vg − V�) (the
“lever rule”). These coexisting phases are separated by an
interface which also has a macroscopic area (of order V (d−1)/d

in d dimensions). Apart from interfacial effects, considering
the NV T ensemble rather than the NPT ensemble gives
nothing new (since both ensembles are simply related via a
Legendre transformation).

For phase transitions of single chains, in some cases
phase coexistence simply is impossible. As an example, a
compressed polymer mushroom underneath a piston may be
either “imprisoned” or “escaped,” but it would not make
sense to consider a state which is a mixture of both pure
phases. Phase coexistence in this case is impossible, and in
the transition region the equivalence between the different
statistical ensembles (“force ensemble,” in which the force on
the piston is the control variable, and “height ensemble,” in

which the height of the piston above the surface is controlled)
fails [33,34].

In the present paper, we shall focus on a conceptually
much simpler problem, the transition where an adsorbed
chain is pulled off a solid surface by force f [35–49]
(Fig. 1). Again, two conjugate ensembles are conceivable,
the force ensemble (fixed given force) and the z-ensemble
(fixed distance of the free chain end above the substrate),
and these are experimentally realizable and relevant [7–9].
In this case “phase coexistence” analogous to the liquid-vapor
transition between part of the chain that is still adsorbed and the
nonadsorbed, stretched part of the chains is possible (Fig. 1),
as will be analyzed in detail in the present paper. Of course, it
is well known that fluctuations differ in the various ensembles
of statistical mechanics [31], and hence also finite-size effects
differ in these two ensembles [50,51]. However, as we shall
see, in the thermodynamic limit the f -ensemble and the
z-ensemble yield strictly equivalent results (which are again
related by Legendre transformations).

Nevertheless, there is one important difference from the
liquid-vapor case: while in the latter the two pure phases are
separated in the “free energy landscape” by a barrier (due to
the need to create an interface of area proportional to V (d−1)/d

to move from one state to the other, when they coexist), there is
no such barrier for the transition from the adsorbed coil to the
stretched chain: the analog of a macroscopic interface between
coexisting states does not exist; at the “interface” there is just
a single effective monomer (or a few of them, if we consider
an extended finite range of the adsorption potential and/or
semiflexible polymers, etc.).

This lack of interfacial contributions to the thermodynamic
potential in the regime of phase coexistence also has important
consequences for the finite-size effects that lead to a rounding
of the transition for finite-chain length. While for phase
transitions in bulk condensed matter physics finite-size effects
are quite negligible (with the notable exception of phase tran-
sitions in small clusters or nanoparticles), for phase transitions
in simple macromolecules N usually is only the order 102 to
104 (while for DNA up to N = 1010 is possible). Although
the thermodynamic limit for single chains is in principle
accessible to experimental studies since many polymers can
be synthesized with their molecular weight being varied over
several decades without changing the intrachain interactions,
the influence of finite-size effects is completely different from
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that in bulk matter: the finite-size effects for a liquid droplet are
dominated by the surface contributions to the free energy, while
a polymer in a good solvent taking a typical coil conformation
does not have a well-defined surface at all. Therefore we shall
discuss finite-size effects for our problem in detail.

In the present paper, we shall compare the phase transi-
tion and the associated finite-size effects at the mechanical
desorption of an adsorbed chain in the f -ensemble and in
the z-ensemble, using a simple lattice model ignoring the
excluded volume interactions. Although this neglect has the
consequence that some physical properties of the chain are not
correctly described (e.g., the lateral dimension of adsorbed
chains scales like N1/2 rather than N3/4 [11]), it is useful for
elucidating the physical nature of the desorption transition in
the two conjugate ensembles. We choose this simple model
intentionally, since it is exactly solvable in the thermodynamic
limit N → ∞, while for finite N all the equilibrium properties
are calculated numerically. In this way we can show that the
underlying phenomenon is the same first-order transition in
the thermodynamic limit N → ∞, although its manifestations
in various quantities in the two conjugate ensembles are
dramatically different.

Finally, we would like to explain the motivation of this
work. Mechanical desorption is very closely related to the
problem of DNA unzipping, which has generated an extensive
body of experimental, analytical, and numerical studies (see
the review [1]). The most direct analogy appears when a
real double-stranded DNA is replaced by a complex of
two homopolymers [49,52]. It was in the context of this
simple model that mechanical unzipping was classified as
a standard first-order transition and the equivalence of the
f - and z- ensembles was noted [5]. On the other hand,
detailed computer simulations of mechanical desorption in
the z-ensemble [46] revealed unexpected continuous change
of the adsorption order parameter with temperature, which the
authors referred to as characteristic of second-order transitions.
Comparison with the jumpwise behavior of the adsorption
order parameter in the f -ensemble [44,45] prompted some
doubt as to whether the ensemble equivalence is applicable
in this case. A straightforward reference to a fundamental
theorem on the equivalence of conjugate ensembles [53]
is not entirely convincing since phase transitions in single
macromolecules are known to demonstrate notable exceptions
to this theorem. One example, namely the escape transition,
was mentioned above, and the other refers to the homo-DNA
unzipping when the force is applied to interior (rather than
to end) monomers [54]. The background reason underlying
the possibility of ensemble nonequivalence is related to the
abnormal nature of the covalent potentials preserving the linear
structure of a chain. As long as these bonds do not break at
room temperature, the corresponding potential is presented as a
function increasing with distance indefinitely, which excludes
it from the class of potentials to which the theorem applies.

The other aspect of mechanical desorption that caused
some confusion was the question of whether the notion of
phase coexistence is applicable to this case. In Ref. [44]
mechanical desorption in f -ensembles was considered as a
dichotomic transition without phase coexistence. Indeed, first-
order transitions in a single chain without phase coexistence
are known, as mentioned above for the escape transition. Other

examples for the first-order phase transitions without phase
coexistence within a single chain include polymer chains
tethered near an adsorbing solid surface and near a step
potential, as has been discussed in a recent review [55]. It can
be inferred from [54] that homo-DNA unzipping by a force
applied to an interior monomer may also belong to this class.
In the present paper we demonstrate that chain desorption by
the end force is rather an exception where the notion of phase
coexistence is particularly productive and perfectly applicable
at the critical detachment value of the force.

The main focus of this paper is therefore to study phase
coexistence within a single macromolecule and to identify
its peculiar features as compared to the phase coexistence in
other condensed matter analogies. These analogies prompted
us to revise the traditional way of defining the adsorption order
parameter and to suggest a local version of it, which turns out
to be perfectly suited for such a study. It allows an unequivocal
demonstration of the ensemble equivalence in the case of end
desorption and may be useful for clarifying more complicated
situations where inhomogeneous chain configurations arise.

II. MODEL AND METHOD

A. Model

We consider a single flexible polymer chain consisting
of N monomer units grafted by one chain end onto a solid
planar substrate (Fig. 1). We use a lattice model where chain
conformations are represented as walks on the simple 5-choice
cubic lattice (with no immediate reversals; this model is also
known as the nonreversal random walk (NRRW) model [56]).
Excluded volume interactions are ignored. A lattice step
represents the repeat unit of the polymer chain, and its length
� (the lattice spacing) henceforth is taken as the unit of length.
The interaction of the chain with the infinite planar surface at
z = 0, to which the chain is grafted, occurs only in the lattice
plane z = 1 adjacent to the surface. Each contact of a repeat
unit with the surface leads to an energy gain ε. In real systems,
ε has the meaning of an exchange free energy upon replacing
a solvent molecule in contact with the surface by the chain
repeat unit and hence can be temperature dependent, but this
complication will be disregarded here.

We consider the effect of a force f applied to the other
end of the chain in the +z direction normal to the surface.
Such a force gives rise to a stretching energy f � per step in
the direction of the force. By choosing units such that ε =
1, kB = 1, and � = 1, the parameters are the force f and
the temperature T . We use the reduced parameter τ = Tc/T ,
where Tc = 1/ ln(5/4) is the critical temperature (in units of
ε/kB) of the adsorption transition in the absence of the force.

B. Numerical approach

The present treatment is based on a Green’s function
formalism as used by Rubin [21] for ordinary random walks
on the simple cubic lattice and later generalized to the NRRW
model [49]. The central quantities are the statistical weights
G(z; n) of all conformations of tethered chain parts of length
n with one free end in the layer z. In order to take into account
that immediate reversals are forbidden, the Green’s function
must be represented as a sum of three components with
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respect to the direction of the last monomer-monomer link:
G(z; n) = G↑(z; n) + G↔(z; n) + G↓(z; n), where the upper
index shows the direction with respect to the adsorbing surface:
away from it (↑), parallel to it (↔), or toward the surface (↓).

The components of these Green’s functions satisfy the
following recursion relations:

G↑(z; n + 1) = G↑(z − 1; n) + G↔(z − 1; n),

G↔(z; n + 1) = 4G↑(z; n) + 3G↔(z; n) + 4G↓(z; n), (1)

G↓(z; n + 1) = G↔(z + 1; n) + G↓(z + 1; n),

at z > 0. At the surface, however, we have

G↑(0,n + 1) = 0,

G↔(0,n + 1) = [3G↔(0,n) + 4G↓(0,n)] exp(1/T ), (2)

G↓(0,n + 1) = [G↔(1,n) + G↓(1,n)] exp(1/T ).

The first of these relations simply expresses the fact that the
surface is impenetrable for the monomers. The starting point
for the recursion is the distribution of dimers (n = 2),

G↑(0; 2) = 0, G↑(1; 2) = exp(1/T ),

G↑(z > 1; 2) = 0, G↔(0; 2) = 4 exp(2/T ), (3)

G↔(1; 2) = 0, G↔(z > 1; 2) = 0,

G↓(0; 2) = 0, G↓(1; 2) = 0, G↓(z > 1; 2) = 0.

Recursively applying Eqs. (1)–(3), one can easily calculate
G(z; n) for every chain length n. The partition function of
tethered chains is then obtained by summing over all positions
of the free chain end,

Z(N ) =
N�∑
z=0

G(z; N ). (4)

From Z(N ) and the Green’s functions one can calculate various
observables. For example, the probability that monomer n is
adsorbed on the surface can be written as

p(n) = G(0; n)Z(N − n) exp(−1/T )/Z(N ), (5)

and the average fraction of adsorbed monomers θ becomes

θ = (1/N)
N∑

n=1

p(n) = 〈m〉/N, (6)

where m is the number of polymer surface contacts.

III. TREATMENT OF THE MECHANICAL
DESORPTION TRANSITION

A. The average fraction of adsorbed monomers at the
mechanical desorption, as described in the two

conjugate ensembles

From Eq. (4) it is obvious that G(z; N ) is nothing but the
constrained partition function that the end of the chain is at the
distance z above the surface, and hence it is straightforward
to compute all thermodynamics quantities of interest in the
z-ensemble from this constrained partition function, according
to the standard rules of statistical thermodynamics. On the
other hand, the partition function in the f -ensemble simply is
obtained from Z(N,z) = G(z; N ) as [31]

Z(N,f ) =
∑

z

Z(N,z) exp(f z/T ). (7)

Equation (7) just expresses the standard rule of statistical
mechanics to transform from one statistical ensemble to the
thermodynamically conjugate ensemble; note that Eq. (7)
holds also for finite N and not only in the thermodynamic
limit (where Eq. (7) reduces to a simple Legendre transfor-
mation between the corresponding thermodynamic potentials
[31]). [Note also that the average restoring force is f =
T (∂ ln Z(N,z)/∂z).]

Here we are particularly interested in the average fraction
of adsorbed monomers, θ , as defined in Eq. (6), which
traditionally is taken as the order parameter in the adsorption
transition. Figures 2(a) and 2(b) display the curves of θ versus
the external pulling force f and θ versus the reduced height
z/N of the chain end, for two values of τ (=T/Tc), namely
τ = 1.5 and τ = 5.

FIG. 2. Fraction of adsorbed monomer units for nonreversal random walk chains on the simple cubic lattice as a function of the external
pulling force acting at the free chain end (a) and as a function of fixed (reduced) height of the chain end, z/N (b). The values of τ = Tc/T and
the chain lengths N are indicated.
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FIG. 3. Average adsorption energy −E/ε = θ as a function of reduced inverse temperature (T/Tc) in the constant f -ensemble (a) and in
the constant z-ensemble (b). Three chain lengths N = 50, N = 200, and N = ∞ are shown in both cases. Panel (a) includes the cases f = 0
and f = 1.5, while panel (b) includes the cases z/N = 0 and z/N = 0.5.

Clearly, there is a big difference between Figs. 2(a) and 2(b).
In the thermodynamic limit, N → ∞, the curves of θ versus
f exhibit a jump in the order parameter at a well-defined
transition force ftr, which is a clear signal of a first-order
transition.

In contrast, the dependence of the order parameter θ on z/N

shows a continuous change, with only a discontinuity of slope
occurring at a particular transition point (z/N )tr, in the limit
N → ∞. For finite N , these discontinuities in both ensembles
get progressively rounded as the chains become shorter.

If one had only the information shown in Fig. 2(b), one
might be misled to conclude from the fact that the order
parameter is a continuous function of the control variable that
the transition at (z/N )tr is a continuous phase transition. The
same misleading conclusion would result from a consideration
of the specific heat, which traditionally is considered by the
“Ehrenfest criterion” [31] to distinguish the order of phase
transitions: according to this criterion, the specific heat exhibits
a delta-function singularity at a first-order transition (reflecting
the latent heat of the latter), while there is a weaker singularity

of the specific heat (finite jump or power-law divergence [30])
at a continuous (second-order) phase transition.

In our model, the average energy of the adsorbed chain
per monomer is simply related to the order parameter as E =
−εθ . The heat capacities in the two ensembles then become
C = dE/dT (z-ensemble) and C = dE/dT − f d〈z〉/dT (f -
ensemble). [Note that a change of temperature in the f -
ensemble changes also the mechanical part of the energy f 〈z〉
which is present in this ensemble.]

Figures 3 and 4 show both the energy and the specific
heat as a function of temperature in both ensembles. We have
included here the case of no force (f = 0) in the f -ensemble
and z/N = 0 in the z-ensemble: this case is nothing but the
ordinary adsorption transition in an end-grafted chain with a
free end (f = 0) or in a loop (z/N = 0) having both ends
pinned at the surface, which is known to have the character
of a continuous transition [11,18–29]. Indeed, one finds in
this case the expected behavior: the energy (Fig. 3) vanishes
smoothly (for N → ∞) as Tc/T → 1 from above. For finite
N , the transition is rounded, and the curves for the same value

FIG. 4. Specific heat of the lattice chain as a function of τ = Tc/T in the f -ensemble, at two values of the pulling force (a) and in the
z-ensemble, for two choices of the reduced height z/N (b). The chain lengths are N = 50 (dotted lines), 200 (dashed lines), and ∞ (solid
lines). Note that the case f = 0 corresponds to a second-order transition, in the f -ensemble, and thus for N → ∞ a finite jump develops,
while for f = 1.5 the first-order transition shows up via a δ peak.
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of N differ somewhat in the two ensembles, while the curves
−E/ε versus Tc/T become identical for N → ∞ at f = 0 and
z/N = 0 [but note that the range of Tc/T shown in Fig. 3(b) is
twice that in Fig. 3(a)]. With respect to the specific heat, there
are larger differences, particularly with respect to finite-size
effects. We note, of course, that the specific heat is a second
derivative of the thermodynamic potential, and such quantities
generally differ in conjugate statistical ensembles (since there
is a difference between the specific heats at constant pressure
or constant volume in fluids and solids).

Now the energy (or order parameter) for f = 1.5 develops
a jump as N → ∞, and the specific heat develops a delta-
function singularity; these are clear signals of the first-order
character of the transition. In contrast, in the z-ensemble the
energy (or the order parameter) varies smoothly, similar to
the case z/N = 0, and the specific heat develops a jump.
Qualitatively, in the z-ensemble the behavior at z/N > 0 is
always rather similar to the case z/N = 0, where we know
that the transition is second order. Should we then conclude
that this problem leads to another case of statistical ensemble
inequivalence (as is known to occur for the polymer escape
transition [33,34])?

Of course, as we shall see below, the answer to this question
is no. The flaw in the consideration of Figs. 2–4 in terms of
Ehrenfest criteria is that the latter require the use of statistical
ensembles with a single extensive variable (such as the f -
ensemble, with only N as an extensive variable) rather than
two of them (with the variable z here playing also the role
of an extensive variable, which may not be obvious at first
sight). Before we expand on this issue, we turn to a particularly
puzzling feature of this problem, the so-called detachment line
in the infinite chain limit.

B. Analytical theory for detachment lines at different modes
of mechanical desorption: infinite chain limit

The transition line in the constant-force ensemble can be
defined by the position of the jump in the order parameter:
the transition occurs when the chemical potential μads (ε/T )
of the adsorbed polymer chain becomes equal to the chemical
potential μstr(f/T ) of the stretched chain. For a NRRW model
on a simple cubic lattice there exists an explicit analytical
form expressing ε/T in terms of μads, i.e., the inverse of the
μads (ε/T ) function [48]:

ε/T = log
2

3x
− log

[
1 +

√
1 + 2

(3x)2
(1 − 3x − x2 − 5x3 −

√
(1 − 3x − x2 − 5x3)2 − 64x4)

]
, (8)

where x = exp [μads/T ] is the inverse partition function per
step. The chemical potential of the stretched chain as a function
of force is also available [48]:

exp

[−μstr

T

]
= 2 + cosh(f/T )

+
√

cosh2(f/T ) + 4 cosh(f/T ) − 1. (9)

The detachment line in terms ftr versus T/Tc for the present
model on a cubic lattice was obtained earlier in Ref. [48]. It

is derived by combining Eqs. (9) and (8) with the equilibrium
condition

μads (ε/T ) = μstr (f/T ) (10)

and is shown in Fig. 5(a). Upon crossing the detachment line
(except at the critical adsorption point) the chemical potential
has a slope discontinuity, indicating that this is a line of first-
order phase transitions, ending at the abscissa in a critical point.

FIG. 5. (Color online) Phase diagram for mechanical desorption of adsorbed polymers in the infinite chain limit, as obtained in the
f -ensemble (a) and the z-ensemble (b). The curve (a) showing ftr as a function of the normalized temperature T/Tc displays a maximum. This
implies that at some given force the chain is adsorbed in a certain temperature window and desorbed outside it: the stretched state is re-entered
at low temperature. The transition at f = 0 is the second-order adsorption transition, while the transition at f > 0 is the first-order transition.
The phase diagram (b) in the z-ensemble is the labeling region in between the abscissa and the detachment line (z/N )tr vs T/Tc. The labeling
region must be interpreted as a two-phase coexistence between a stretched part and an adsorbed part of the chain.
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The asymptotic form of this line in case of strong adsorp-
tion(at τ 	 1) is given by

ftr 
 ε + T ln 3, (11)

while in the opposite limit of weak adsorption close to the
critical point (at τ − 1 � 1) it has the form

ftr 
 10
√

2 ln(5/4)

3

√
T

Tc

(Tc − T ) . (12)

We now construct the detachment line as defined in
Ref. [46] for the adsorbed chain torn off the plane by gradually
increasing its end height z/N . The free energy of an ideal
adsorbed chain with one end at the distance z can be written as
a sum of the free energies of the adsorbed and stretched parts
of the chain:

F = (N − n)μads (ε/T ) + nμstr(ξ ). (13)

Here the first term is the adsorption free energy, which is linear
in the number of monomers in the adsorbed pancake, (N − n),
and depends on adsorption interaction parameter ε/T through
the monomer chemical potential in the unperturbed adsorbed
chain μads < 0 calculated with respect to the reference coil
state. The second term is the free energy of the stem consisting
of n monomers; ξ = z/n is the strain (the degree of stretching)
of the stem.

The equilibrium distribution of monomers between the stem
and the adsorbed part is obtained by minimizing Eq. (13) with
respect to n, which leads to

μads(ε/T ) =
(

∂Fstr

∂n

)
z

= μstr (ξ ) . (14)

Equations (14), (9), and (8) define together the equilibrium
strain of the stem, ξ , as a function of the adsorption strength,
ε/T , and therefore provide the number of monomers in the
stem,

neq = z

ξ (ε/T )
, (15)

and finally the equilibrium Helmholtz free energy
Feq(N,z,ε/T ).

The fraction of adsorbed units is calculated as

θz = 1

N

∂Feq

∂ε
= θ0

(
1 − z

Nξ (ε/T )

)
, (16)

where θ0 = ∂μads/∂ε is the fraction of adsorbed units in a
chain with the free end at the surface. One can see that θz

decreases linearly with z/N until it vanishes. There is a slope
discontinuity in θz at the transition point defined by θz = 0:(

z

N

)
tr

= ξ (ε/T ). (17)

The dependence of the strain on ε/T can be found by
using the equation of state ξ (f/T ) determined from Eq. (9),
and the relation between the force and ε/T follows from
Eq. (10). This case is presented on Fig. 5(b) in terms of the
parameters (z/N)tr versus T/Tc.

The numerical results that we have presented (Figs. 2–5)
show that the phase transition effected by the mechanical
desorption of an adsorbed chains has a rather different

character, depending on the considered ensemble: if the
desorption occurs by varying the external pulling force we
encounter a first-order phase transition from zero relative
extension 〈z〉/N (as N → ∞) and nonzero adsorption order
parameter θ to the stretched state with nonzero 〈z〉/N and
θ = 0. In contrast, if z/N is taken as the external control
variable, the variation of θ is continuous, and so the “transition”
at the detachment line, where θ vanishes, could be mistaken
as a second-order transition, if one would apply standard
Ehrenfest criteria naively and without reflection.

The fact that such a naive interpretation actually is in error
should be obvious from the observation that all the results
presented in Figs. 2–5 are deduced from the same statistical
weight G(z; n) which we can use to compute the partition
function in both the z-ensemble Z(N,z) and in the f -ensemble,
Z(N,f ), and these partition functions are conjugate to each
other [Eq. (7)] and indeed are equivalent in the thermodynamic
limit. The apparent differences between the behavior of the
f -ensemble and the z-ensemble can be readily understood
in terms of the consequences of phase coexistence. Phase
coexistence at first-order phase transitions is a well-known
concept for bulk matter, but it is less so for transitions of
single polymer chains. Therefore we discuss this interpretation
in some detail in the next section.

IV. PHYSICAL PICTURE OF A FIRST-ORDER
TRANSITION IN CONJUGATE ENSEMBLES

A. van der Waals fluid

A classical example of a first-order phase transition is the
vapor-liquid transition of fluids [30,31]. We recall the textbook
description of this transition in two conjugate ensembles:
the constant-pressure (N,P,T ) ensemble, which has only
the particle number N as a single extensive thermodynamic
variable, and the constant-volume (N,V,T ) ensemble, with
two extensive variables. In both cases we only address the
behavior in the thermodynamic limit, N → ∞.

In the (N,P,T ) ensemble the two intensive variables
pressure P and temperature T define uniquely the phase of the
system in thermal equilibrium. Phase coexistence of vapor and
liquid occurs only along a line Pcoex(T ) in the (P,T ) diagram.
This line in van der Waals theory starts at P = 0,T = 0 and
ends with a second-order transition at the critical point P (Tc),
Tc [see Fig. 6(a); in real systems the line starts at the triple point
where also the solid phase comes into play]. Each point on
this coexistence line Pcoex(T < Tc) corresponds to two-phase
equilibria, the volume fractions x and 1 − x of the two phases
are not fixed.

When one crosses the coexistence line, extensive thermo-
dynamic variables such as volume V , entropy S, and average
internal energy E change discontinuously. As an example,
Fig. 6(b) shows the first-order phase transition at constant T ,
plotting V as a function of P to show the abrupt change of V

at P = Pcoex(T ), using the van der Waals mean-field equation
of state, defined by the equation [30,31]

[P/Pc + 3(Vc/V )2](3V/Vc − 1) = 8T/Tc (18)

together with the Maxwell construction. Of course, we do not
imply that Eq. (18) is accurate for any real fluid; but the general
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FIG. 6. (Color online) (a) Phase diagram of the van der Waals fluid in the plane of variables of reduced pressure (P/Pc) vs reduced
temperature (T/Tc), Pc and Tc being pressure and temperature, respectively, at the critical point terminating the coexistence line. (b) Vapor-liquid
transition along the isotherm at T = 0.8Tc, showing V/Vc as a function of P/Pc. At P = Pcoex there is an abrupt decrease of V , signalling the
first-order transition. (c) Phase diagram of the van der Waals fluid in the plane of variables (V/Vc, T /Tc). The coexistence curve separates the
pure vapor and liquid phases from the two-phase coexistence region. (d) Vapor-liquid transition P/Pc as a function of V/Vc along the isotherm
at T = 0.8Tc, exhibiting a flat region that signals the coexisting gas and liquid phases.

features of phase coexistence that we wish to emphasize can
already be nicely illustrated with this simple example. By
using standard thermodynamic relations, also energy E and
entropy S can be worked out, and their jumps at P = Pcoex(T )
can be easily constructed. Note that one can consider also the
transition at fixed pressure P by varying the temperature T ,
which then occurs at T = Tcoex(P ), with Tcoex(P ) simply being
the inverse function of Pcoex(T ).

We now consider the phase diagram in the NV T ensemble
[Fig. 6(c)]. In the plane of variables (V,T ), phase coexistence
now occurs everywhere in the two-phase coexistence region,
to the left of the vapor-liquid coexistence curve in Fig. 6(c).
While the van der Waals theory is inaccurate with respect
to some quantitative aspects—e.g., it predicts the parabolic
variation of the coexistence curve Vgas(T ) − V�(T ) ∝ (1 −
T/Tc)β with β = 1/2 rather than the correct critical exponent
β, which is close to β ≈ 1/3 in d = 3 dimensions [30]—it
correctly accounts for the qualitative aspects of gas-liquid
phase coexistence.

Following an isotherm along the V axis, one passes
from the homogeneous liquid at V = V�(T ) into the region
with constant pressure P , where liquid and saturated vapor
coexist in equilibrium, with volume fractions x = [V −
Vgas(T )]/[V�(T ) − Vgas(T )], 1 − x, until at V = Vgas(T ) the
liquid fraction has disappeared [Fig. 6(d)]. Thus, the pressure
P as a function of V at fixed T is a continuous function;
only its slope changes discontinuously at V�(T ) and Vgas(T ),

the end points of the horizontal part at P = Pcoex in the
isotherm [Fig. 6(d)]. Of course, the isotherms in the NV T

ensemble [Fig. 6(d)] and NPT ensemble [Fig. 6(c)] are strictly
equivalent: in the limit N → ∞, the two ensembles are related
via a Legendre transformation between the Gibbs {G(T ,P,N )}
and Helmholtz {F (T ,V,N )} free energies, with G/N being the
chemical potential μ(T ,P ),

G(T ,P,N ) = Nμ(T ,P ) = F (T ,V,N ) + PV. (19)

With respect to the corresponding isotherms [Figs. 6(b)
and 6(d)], the Legendre transformation simply means an
interchange of variables taken for the ordinate and abscissa
in the (P,V ) plane.

B. Analogy between vapor-liquid transitions and
the mechanical desorption of a single chain

The picture of the mechanical desorption of adsorbed
polymers in the limit where their chain length N has been taken
to infinity (Fig. 5) bears a striking resemblance to the vapor-
liquid transition, if we compare the f -ensemble of the polymer
to the NPT ensemble and the z-ensemble of the polymer to
the NV T ensemble of the fluid: Fig. 6(a) should be compared
to Figs. 5(a) and 6(b) should be compared to Fig. 5(b); the
vapor (states with large V ) correspond to the detached states,
(z/N ) for N → ∞ being nonzero; the liquid (states with small
V ) correspond to the adsorbed states (z/N ) = 0 for N → ∞.
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FIG. 7. (Color online) Isotherms for mechanical desorption (in the limit N → ∞) in different ensembles, for Tc/T = 2, where Tc is the
temperature of the critical adsorption transition without applied forces. (a) In the f -ensemble (〈z〉/N vs f ) the first-order transition from
adsorbed to stretched states of the chain appears as a discontinuous jump. (b) In the z-ensemble (〈f 〉 vs z/N ) the transition shows up as a
horizontal straight line, at 〈z〉 = ftr, indicating phase coexistence in between z = 0 and z = (〈z〉/N )tr.

Of course, the character of the critical point in the polymer
problem (adsorption transition of the end-grafted polymer
chain) is not of the simple (Ising-model type) criticality that
vapor-liquid critical points of actual real fluids display [30],
but we do not at all wish to dwell on critical phenomena here,
but rather we are concerned with the general analogy of phase
diagrams, and the consequences of phase coexistence. Thus,
we emphasize again that all states in between the abscissa in
Fig. 5(b) and the detachment line in this diagram correspond
to phase coexistence between fluid [with small volume V�(T )]
and vapor [with large volume Vgas(T )]: as long as (z/N ) is
below the detachment line, there is still a fraction of 1 − x of
the chain adsorbed and a fraction x detached, and x → 1 only
when the detachment line in Fig. 5(b) is reached.

These considerations are corroborated by isotherms 〈z〉/N
versus f in the f -ensemble for T < Tc [Fig. 7(a)] or 〈f 〉 versus
z/N in the z-ensemble [Fig. 7(b)]: The first-order transition
between pure phases (completely adsorbed, 〈z〉/N = 0) and
nonadsorbed and stretched (〈z〉/N > 0) occurs discontinu-
ously at a transition value ftr of the force, from z = 0 up
to (〈z〉/N )tr. In the conjugate z-ensemble, the first-order
transition shows up as a horizontal two-phase coexistence
region. Again we emphasize that the curves in Figs. 7(a) and
7(b) are completely equivalent—one function is just the inverse
function of the other one; the diagram in Fig. 7(a) turns into
that in Fig. 7(b) by interchanging which variable is used as
abscissa or as ordinate, i.e., via a Legendre transformation.

The analogy between the mechanical desorption of macro-
molecules and standard first-order transitions in condensed
matter systems can be further elucidated by considering the
variation of the energy and specific heat at these transitions.
Figures 8(a) and 8(b) show the average potential energy
per particle in the NV T ensemble as a function of volume
(a) and of temperature (b). [Note that the kinetic energy
(3kBT /2) is not included, for the sake of comparison with the
polymer system, where kinetic energy has been disregarded
from the start.] The average potential energy per particle in
a particular phase depends on the local density and has to be
calculated separately for the two phases. When one traverses
the two-phase coexistence region, the fraction of particles
belonging to the liquid phase changes linearly as a function

of volume (lever rule); since the global average of the energy
is found by weighting the energies of the coexisting phase
according to their weights, a linear variation of the potential
energy in the two phase-coexistence region results [Fig. 8(a)].
When we instead consider a variation of the potential energy
as a function of T/Tc at fixed off-critical volume, such as
V = 3Vc [Fig. 8(b)], a smooth but nonlinear curve results. (The
lever rule also applies in this case, but the volume fraction x of
the liquid phase, which comes into play when the coexistence
curve is crossed, has a nonlinear dependence on T , as is
obvious from the shape of the coexistence curve.) Similarly,
the specific heat shows a jump, when the coexistence curve is
crossed, due to the gradual onset [proportional to the volume
fraction x(T ) of the contribution due to the liquid phase to the
specific heat]. Obviously, it would be completely wrong from
a naive consideration of Fig. 8 to conclude that the continuous
variation of the quantities shown implies that continuous
(second-order) phase transitions occur: it is simply misleading
to think in terms of Ehrenfest criteria, when one studies a
system in a statistical ensemble with more than one extensive
variable; only when the NPT ensemble is used is the Ehrenfest
criterion useful for the discussion of the liquid-vapor transition.

In Fig. 8(b), the curve for V = Vc actually passes right
through the critical point, and hence this curve does correspond
to a second-order transition. But as a caveat, we mention that in
a real fluid the non-mean-field character of critical phenomena
would imply a somewhat different behavior; namely the energy
at V = Vc, T = Tc for real fluids does not have a kink, but
rather near Tc a singularity proportional to |T − Tc|1−α occurs,
with α ≈ 0.1 as the critical exponent of the specific heat [30].
Thus, in reality, there occur small qualitative differences in
behavior, when one crosses the coexistence curve through
the critical point, rather than away from it. Nevertheless, it
remains generally true (beyond the mean-field level of the van
der Waals fluid) that the potential energy (and the specific
heat) exhibit kink singularities when one enters the two-phase
coexistence region with V �= Vc.

Returning to the polymer desorption problem, by studying
the total potential energy E as a function of z/N , we see a linear
variation [Fig. 8(c)], in full analogy with Fig. 8(a). Note that the
only anomalous feature is that one branch of the coexistence
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FIG. 8. (Color online) Average potential energy per particle, in units of Tc, of the van der Waals fluid in the (NV T ) ensemble (a) plotted
at fixed temperature T/Tc = 0.8 vs reduced volume V/Vc and (b) plotted at fixed values of V/Vc (as indicated in the figure) vs T/Tc. Note
that in (a) the linear part of the curve in between the two kinks shows the variation inside the two-phase coexistence region, while in (b) the
(nonlinear) parts of the curves on the left side of the kinks are due to two-phase coexistence, and the kink positions again signify that the co-
existence curve is crossed. Only for V = Vc is this a second-order transition. Panels (c) and (d) show the analogous variation of the average
energy per monomer (in units of ε) at the mechanical desorption of the chain in the z-ensemble as function of z/N for Tc/T = 2 and as function
of T/Tc for two values of z/N . While for z/N = 0.2 the kink at E/ε = 0 reflects the crossing of the coexistence curve where one leaves the
two-phase coexistence region (because then no part of the chain is any longer adsorbed), the kink for z/N = 0 at T = Tc shows the location
of the second-order transition for the present NRRW model.

curve is at z/N = 0, and hence any small nonzero value
of z/N already is inside the two-phase coexistence region.
Also the plots of E versus T [Fig. 8(d)] look very similar
to their liquid-vapor counterparts [Fig. 8(b)]. We note that
for a polymer chain with excluded volume effects in the true
second-order case (z/N = 0) the kink at T = Tc is replaced
by a (weakly) singular vanishing as (1 − T/Tc)−1+1/φ , where
φ is the crossover index, which is close to 0.5 [11,22,26–28].

C. Local order parameter

The notion that a phase transition is of first order may at
first sight seem puzzling when the order parameter varies as
smoothly as exemplified in Figs. 2(b) and 3(b). This dilemma
is avoided by complementing the previous definition of the
order parameter θ , which did refer to the chain as a whole,
and hence was unsuitable for detecting phase coexistence, by
a more appropriate local order parameter, which can reflect
the inhomogeneous structure of the partially desorbed chain.
A suitable definition of local order parameter that is applied in
the adsorbed part of the chain only should then yield a result

that is independent of the given (normalized) position of the
chain end, z/N .

This concept is again easily illustrated in a qualitative
manner by the analogy with the liquid-vapor transition (Fig. 9).
In the fluid, the control variable is the volume (which is varied
via the height of the piston in the left half of Fig. 9), while
for polymer desorption, it is z/N . In both cases there is an
interval of values where two phases coexist. Of course, in
the liquid the two phases are separated by an interface which
is also macroscopic, which is not the case in the polymer
problem. Coexistence of the adsorbed and stretched parts of
the chain, which are referred to as “phases” within the same
macromolecule, may seem quite peculiar, due to the absence
of a macroscopic “surface” at the boundary between these
phases. There is no analog of a surface free energy (associated
with the vapor-liquid interface) for the polymer problem!

In the fluid, a local order parameter may be defined as the
average volume per molecule in a small subsystem (which is
still large enough to contain many molecules but negligibly
small on the macroscopic scales of Fig. 9). Studying this local
volume per particle υ(z) as a function of the position z of
the subsystem over the bottom of the container in Fig. 9,
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FIG. 9. Qualitative analogy between vapor-liquid systems (left) and the mechanical desorption of an adsorbed polymer chain (right) to
illustrate phase coexistence. In the fluid, phase coexistence is controlled by the height of the piston: in the left-most sketch we have only fluid;
the two following graphs show two-phase coexistence (with fluid on the bottom separated by a meniscus from the vapor on top); the last two
sketches refer to single-phase vapor at two different volumes. For the polymer, phase coexistence is controlled by the height of the free chain
end: the left-most sketch (z > 0) refers to the (single-phase) adsorbed chain, in the next two graphs part of the chain is still adsorbed, and the
last two graphs on the right are in the single-phase region of desorbed chains with different degree of stretching.

we see that υ(z) has a small constant value [characteristic
of bulk fluid right at the coexistence curve in Fig. 6(c)] and
then it increases to a much larger value when one crosses
the meniscus, staying again constant [at the value of bulk
vapor right at the coexistence curve in Fig. 6(d)] for still larger
choices of z.

Guided by this analogy, we introduce a local order param-
eter for a polymer chain at mechanical desorption, defining θk

as the average probability of finding the kth monomeric unit

in contact with the surface. The global order parameter profile
along the chain contour is then

θ = 1

N

N∑
k=1

θk. (20)

We first analyze the behavior of θk in the f -ensemble
[Fig. 10(a)]. Recall from Fig. 2(a) that for Tc/T = 5 and
N = 200 the global order parameter is almost constant and

FIG. 10. The local order parameter profile θk plotted vs the scaled monomer position k/N in the f -ensemble, for N = 200 and varying
f at Tc/T = 5 (a) or varying Tc/T at fixed f = 1(b). For N → ∞, the first-order transition (where θ jumps from a nontrivial value to zero)
occurs at f = 1.57 in case (a) and at Tc/T = 1.54 in case (b). Case (c) shows the analogous behavior for the second-order transition when
f = 0.
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FIG. 11. The local order parameter θk plotted vs the scaled monomer position k/N along the chain, for the z-ensemble at Tc/T = 5 and
several choices of z/N (a) and for fixed height z/N = 0.5 and several choices of Tc/T (b). The profiles corresponding to the crossing of the
coexistence curve [where the adsorbed phase completely disappears in the limit N → ∞; Fig. 5(b)] are shown by dotted lines. The coexistence
curve is crossed at z/N = 0.63 in (a) and Tc/T = 3.52 in (b). Note the strong finite-size effects.

nonzero for f � 1.5 and almost equal to zero for f � 1.6,
i.e., the typical picture of a first-order transition that is weakly
rounded because of the finite length N of the chain. The
local order parameter for f < 1.5 is also almost constant as
a function of k/N , except for a few monomeric units close to
the free chain end (which occurs at k = N ). At the transition
point (ftr), the local order parameter decreases almost linearly
with z/N .

This behavior reflects large fluctuations due to the zipping-
unzipping mechanism of mechanical desorption at ftr: all
phase-separated states with different lengths of the torn-off
tail have the same statistical weight [35,49]. We note that in
bulk condensed matter at a first-order transition such large
fluctuations are suppressed, of course, due to the hysteresis of
the free energy barrier between the pure coexisting phases
(caused by the need to form a macroscopic interface); in
simulations of small finite systems, however, where this
interfacial barrier may be of the order of a few kBT only, these
large fluctuations between the coexisting phase are relevant
[57]. Beyond the transition point, the local order parameter
decays quickly to zero for all monomers except those near the
grafting point (and, of course, this finite-size effect plays no
role in the limit N → ∞). For θk with k away from the chain
ends, the local order parameter thus changes discontinuously
(or almost so for finite N ) when f exceeds ftr.

By varying Tc/T at fixed force the situation is similar
[compare Figs. 10(b) to 3(a) but note that f = 1.5 rather than
f = 1 is shown in Fig. 3(a)]. Again, θk is constant along the
chain, apart from the regions near the chain ends; this constant
plateau value decreases with T/Tc, until at the transition point
of the first-order transition again a region of linear decrease
of θk with k is found, while, beyond the transition point,
θk is close to zero. This behavior is different from the case
of the second-order transition occurring for f = 0, however,
where the plateau value of θk gradually decreases to almost
zero at Tc/T = 1 [Fig. 10(c)] and never shows the remarkable
linear behavior which is a hallmark of the first-order transition
[Figs. 10(a) and 10(b)]. At the first-order transition, both local
and global order parameters behave similarly and exhibit the

discontinuous change that develops for N → ∞ when one
crosses the transition line in the (f,τ ) plane [Fig. 5(a)].

In contrast, by varying z/N in the z-ensemble at fixed
T [Fig. 11(a)] the local order parameter profiles clearly
demonstrate that the local properties of the coexisting phases
remain the same, and only the position of the “interface” is
moved when z/N varies. The direct analogy to the vapor-liquid
case (Fig. 9) should be evident. The linear drop in the global
order parameter θ in Fig. 2(b) clearly does not reflect any
change in the properties of the adsorbed phase but just reflects
the shift in the position of the “interface” in Fig. 11(a),
thus confirming that the simple interpretation of Fig. 2(b)
in terms of the lever rule for coexisting phases is inevitable.
The interpretation of Fig. 11(b) is similar: with the increase
in temperature the adsorbed phase gradually “evaporates,”
and since the interfacial region broadens with increasing
temperature, very strong finite-size effects occur, and thus
for finite N the z-ensemble clearly is much less suitable for
estimating the location of the coexistence curve [Fig. 5(b)] that
emerges in the thermodynamic limit.

D. An extension: negative forces and loop adsorption

There is one aspect of the polymer problem, however, for
which the vapor-liquid transition has no counterpart: in the
(P,T ) plane, the first-order transition line ends in a standard
critical point at Tc, Pcoex(Tc) = Pc [30,31]. However, the
critical point in the phase diagram in the (f,T ) plane in Fig. 5,
occurring at the axis f = 0, has a very different character from
this critical point. This fact is realized when one considers the
generalization of the problem to the case of negative forces
f < 0 at the free chain end, which drive the chain end toward
the grafting surface. In the limit of N → ∞, the chain becomes
in many respects equivalent to a “loop” (i.e., a chain with
both ends grafted to the surface, but without fixing the lateral
distance of chain ends at the surface).

Figure 12(a) shows the variation of the global order
parameter with inverse temperature for a typical example, and
Fig. 12(b) shows the corresponding behavior of the local order
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FIG. 12. (a) Global order parameter θ plotted vs Tc/T in the f -ensemble at a force f = −1 driving the free chain end toward the substrate
surface. Three chain lengths N = 50, 200, and ∞ are shown, as indicated. (b) Local order parameter θk plotted vs the scaled monomer position
k/N along the chain in the f -ensemble, for N = 200 and f = −1, at four choices of Tc/T as indicated. (c) Extension 〈z〉/N of the polymer
chain for a chain attached to a nonadsorbing surface at T/Tc = 2.0, plotted vs force. Three chain lengths N = 50, 200, and N = ∞ are
included, as indicated.

parameter θk as introduced in the previous section. It is seen
that the behavior of the global order parameter as a function of
Tc/T for f = −1 is very similar to that for f = 0 [compare
to the data for f = 0 in Fig. 3(a)]. And Fig. 12(b) differs
from its counterpart for f = 0 [Fig. 10(c)] only near the end
where the force acts: the local order for k/N near unity is
now enhanced rather than reduced, although the enhancement
is not as large as near the grafted end. Since this negative
force has only local effects, it also does not lead to a shift
of the adsorption transition temperature, Tc(f < 0) = Tc(0).
Physically, this means that adsorption of a polymer chain in
a loop conformation occurs summarily to that of a grafted
chain with the free end. When one includes the region f < 0
in the phase diagram [Fig. 5(a)], the isolated critical point
at (T = Tc, f = 0) becomes part of a (vertical) critical line
(Fig. 13)!

An interesting behavior, however, is also detected when
one considers the region T > Tc and studies the variation of
the chain extension 〈z〉/N with f , changing f from negative
to positive values [Fig. 12(c)]. For f < 0 one finds that
〈z〉/N → 0 as N → ∞; since the chain monomers cannot
take any positions with z < 0, the chain cannot get stretched
to values 〈z〉/N < 0 like an unconstrained chain (with one

end fixed at z = 0 but otherwise free). For such a free chain
with one end fixed at z = 0, and the other end under the action
of the force f , we would have simply the symmetry relation
〈z〉|−f = −〈z〉|f , and clearly the variation of 〈z〉 with f does
not involve any phase transition; the problem is fully analogous
to the magnetization process of bulk paramagnetic matter
(including ferromagnetic materials at temperatures above the
Curie temperature) induced by an external magnetic field.
Now the part of the 〈z〉/N versus f curve for f > 0 and
N → ∞ is essentially equivalent to the extension versus force
of such a free chain. Thus crossing the line f = 0, T > Tc

in the (f,T ) phase diagram of a chain grafted to a surface
clearly is not a phase transition in the standard sense, but
nevertheless it is a dividing line between different states of the
chain (Fig. 13). For T > Tc and f > 0 the chain is stretched,
i.e., 〈z〉/N is nonzero, as expected since the coil configuration
must respond to the force. For f = 0 and T > Tc we have
a desorbed “polymer mushroom”; the average value of 〈z〉 is
of order N1/2 for our NRRW model with Gaussian statistics
(but if excluded volume interactions are included, we rather
would have 〈z〉 ∝ Nν , where ν is the “Flory exponent,” with
ν = 3/4 in d = 2 dimensions and ν = 0.588 ≈ 3/5 in d = 3
dimensions [58,59]). For f < 0 and T < Tc, the value of 〈z〉
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FIG. 13. (Color online) Phase diagram of a single chain (in the
limit N → ∞), end-grafted with one end at an impenetrable surface
at z = 0 which is attractive to the surface, while on the free chain end
a mechanical force f in the z direction perpendicular to the surface
acts. For T/Tc < 1 and f < 0 the chain is adsorbed in a quasi-
two-dimensional configuration. At T = Tc for f < 0 a continuous
transition to a desorbed state of the chain occurs (desorbed loops).
For f > 0 and T/Tc < 1 a first-order phase transition occurs from
the adsorbed state of the chain to a stretched state (with 〈z〉/N > 0).
This transition is shown by the full line, which ends at a (multi)critical
point at T = Tc, f = 0. For T/Tc > 1 and f = 0 (broken line) the
state of the chain changes from a desorbed state (for f � 0) to a
stretched state (with 〈z〉/N > 0). Note that crossing the line f = 0,
T/Tc < 1, does not involve any transition.

will be only of order unity (at least for large enough values
of |f |), but the gyration radius component 〈R2

gz〉1/2 in the z

direction perpendicular to the surface will be of the order of
Nν still: this is what we mean by a “desorbed loop” in Fig. 13.
At this point, we mention that the excluded volume actually
presents a further complication for the region T > Tc and
f > 0 as well: in the limit N → ∞, the extension versus force
for f → 0 becomes singular, 〈z〉/N ∝ f 1/ν−1 [60], while for
Gaussian chains (ν = 1/2) it is linear. Of course, for finite N

this singularity is rounded off for small enough 〈z〉 [〈z〉 not
much larger than 〈R2

gz〉1/2], so for real polymers the actual
behavior may be more complicated than shown in Fig. 12(c).
However, such excluded volume effects on extension versus
force curves [61] are beyond our focus here.

V. DISCUSSION

In this paper we have presented an analysis of the states
of end-grafted macromolecules at attractive surfaces under
the action of a mechanical force f acting on the free end
of the chains. Particular attention was paid to the proper
interpretation of the phase transitions that occur in the
thermodynamic limit of infinite chain length, N → ∞. By
numerical solutions of the NRRW model on a simple cubic
lattice we have also illustrated the extent of rounding of these
transitions as a function of the chain length.

A key result of our findings is that a proper interpretation
of the phase behavior is easily found when one chooses
a statistical ensemble with two intensive variables (tem-
perature T and force f ), the chain length N being the
only extensive variable. Then it is readily recognized that
for f > 0 there always occurs a first-order transition from
the adsorbed to the stretched state of the chain (while for

f < 0 a second-order transition from the adsorbed chains to
desorbed loops occurs, similar to the second-order adsorption-
desorption transition of end-grafted chains in the absence of a
force).

When one instead works in the conjugate statistical
ensemble, where temperature and (relative) extension z/N

of the free chain end are used as control variables, one
observes a continuous variation of the order parameter and
other variables, with kink singularities when the so-called
detachment line in the (z/N,T ) plane is crossed. However,
the proper interpretation of this detachment line is a boundary
(“coexistence curve”) of a two-phase coexistence region (the
other boundary being the abscissa axis, z/N = 0). Thus,
the kink singularity simply signifies that one leaves the regime
where the behavior of the system is controlled purely by one
phase and enters the regime where the familiar lever rule of
phase coexistence controls the system’s properties. Since the
interpretation of a partially desorbed state of a single chain
(n monomers still adsorbed and N − n monomers desorbed)
as two-phase coexistence inside a single chain clearly is
somewhat less intuitive and not yet commonly accepted,
we have tried to present a detailed pedagogic analogy with
two-phase coexistence at the vapor-liquid transition of a simple
fluid. We expect that our detailed discussion will settle this
issue, of the proper interpretation of the “detachment line” in
the (z/N,T ) plane, about which rather confusing discussions
can be found in the literature. We emphasize thus that despite
the continuous variation of properties when this line is crossed
it does not signify a continuous phase transition (or second-
order transition) in the sense of the Ehrenfest classification; a
too-naive application of this criterion simply leads to wrong
results; one must not apply it when one uses a statistical
ensemble with more than one extensive variable, but one can
use it only in statistical ensembles with a single extensive
variable (and, for phase transitions involving single polymer
chains, the chain length N is a natural choice of this extensive
variable, of course). This fact may seem almost obvious for
ordinary phase transitions of bulk matter, and hence it is hardly
discussed much in textbooks; for single chain transitions often
the choice of global or (if possible) also local order parameters
is not at all obvious, and two-phase coexistence in a single
chain, if it is possible, can have very anomalous properties
[such as the macroscopically large fluctuations at the first-order
transition, which have been detected via the linear profiles of
the local order parameters (Fig. 11) and which are due to the
lack of interfacial free energy barriers between the coexisting
phases].

A new concept for the description of the mechanical
desorption of adsorbed polymers that we have emphasized
here is the use of local order parameter profiles, as exemplified
in Figs. 10–12. Such data give evidence for both the existence
of two-phase coexistence within single polymer chains for
this transition and the anomalous character of this two-phase
coexistence.

We have tried here to discuss the global picture of the
behavior associated with the mechanical desorption of single
adsorbed chains in the most simple terms, and we have
disregarded complications that aspects such as excluded
volume forces, chain stiffness, or more complicated chemical
architecture (random copolymers or branched polymers such
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as star polymer, comb polymers, etc.) can provide. These
aspects are left to future study.

Finally, we mention that considerations about the proper
interpretation of results due to the use of a statistical ensemble
where one crosses a coexistence curve not in a critical point are
needed in many physical contexts. For example, consider the
problem of adsorption of molecular monolayers at surfaces in
ultrahigh vacuum: At submonolayer coverage one commonly
observes “island formation.” When such a island is heated up,
one may observe that it gradually shrinks to zero. Simulation
attempts to describe this “island evaporation” in terms of a

critical exponent [62,63] are clearly misleading; at off-critical
conditions one has a continuous island vanishing again simply
as a consequence of the lever rule. However, since here
interfacial effects matter, the details of this behavior are
somewhat different from the single chain problem studied
here.
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