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Modeling the reflection from cholesteric liquid crystals using modal analysis and mode matching
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The reflection and transmission spectra from right-handed cholesteric liquid crystals are computed in the
visible region for a linearly, circularly, or elliptically polarized incident plane wave at oblique incidence. The
liquid crystal cell is sandwiched between dielectric layers of certain thickness and refractive index. The underlined
formulation is based on a modal analysis of the governing field expressions in the dielectric and liquid-crystal
regions. A representative matrix system is obtained after enforcing the continuity of the tangential electric and
magnetic fields at the material interfaces. Solution of the governing matrix system results in the reflectance and
transmittance for a given wavelength. Numerical results for both normal and oblique incidence were obtained
and compared with data published in the literature. The underlined formulation is effective, accurate, robust,
versatile, and computationally efficient.
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I. INTRODUCTION

Cholesteric liquid crystals [1,2] are anisotropic materials
where the directors twist along a helical axis which is
perpendicular to the director. The helical structure of the
director field is periodic and the periodicity is often referred to
as the pitch length. As a result, the dielectric tensor entries of a
cholesteric liquid crystal are dependent on the coordinate along
the axis of the helix. In other words, the material is anisotropic
and inhomogeneous. Two methods are often used for the
analysis of cholesteric liquid crystals: the Jones matrix method
[3] and the Berreman 4 × 4 matrix method [4,5]. The Jones
matrix method is based on subdividing the crystal into thin
slices and, using a 2 × 2 complex matrix operator, the incident
polarized field at the lower slice is related to the polarized
field emerging from the upper slice. This method is simple
and fast; however, it is only applicable to normal incidence
and does not take into account multiple reflections within
the sublayers. Throughout the years, there were significant
contributions to the method in an attempt to improve its
accuracy by either taking into account single or multiple
reflections from the interfaces or by extending the method
to oblique incidence [6–10]. On the other hand, the Berreman
method is based on the same technique of slicing the crystal
into thin layers and using a 4 × 4 propagator matrix that relates
the tangential electric and magnetic fields at the lower layer
interface to the upper layer interface. The Berreman method
is more generic than the Jones matrix method as it accounts
for multiple reflections inside the layers and is applicable to
oblique angles of incidence. An overview and comparison of
the two methods can be found in a review paper by Wöhler
and Becker [11]. The calculation of the overall propagator
matrix, which relates the tangential fields at the entry point
to the tangential fields at the exit point, is a computationally
intensive process as it results from the matrix multiplication of
the individual propagator matrices corresponding to successive
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layers. In case the thickness of these layers is comparable
to the wavelength, each of these layers should be further
subdivided thus adding to the computational cost of the
algorithm [12]. The layers and sublayers are thin due to the
fact that the propagator matrix is calculated based on a Taylor
series expansion of an exponential function involving the
well-known Berreman matrix. An accurate Taylor expansion
requires either small layer thickness or higher-order terms.
Alternative faster formulations of the Berreman matrix method
have been suggested in an attempt to speed up the computation
of the reflectance and transmittance spectra of cholesteric
liquid crystals [13–17].

The effect of a dc electric field on electromagnetic wave
propagation in cholestericlike materials at oblique incidence
was studied extensively by Lakhtakia and co-workers [18–20]
using a 4 × 4 matrix representation and a generalization of the
Oseen transformation [21,22]. Exact analytical solutions to the
problem of electromagnetic wave propagation in helicoidal
structures with definite periodicity have been derived only
for the particular case of normal incidence [21,23–25]. For
the problem of oblique incidence, truncated series expansions
of elliptically polarized plane waves were used by Oldano
and co-workers [26–28] to represent forward and backward
propagating waves inside the chiral medium. It has been shown
that a high degree of accuracy can be reached using a small
number of dominant expansion coefficients.

The current formulation is based on the original work by
Smith [29,30] and later by Teitler and Henvis [31] on the
refraction by stratified anisotropic media. Since the cholesteric
liquid crystal is inhomogeneous, thus resulting in a dielectric
tensor that is dependent on the coordinate along the helical
axis, the crystal cell is subdivided into multiple layers. As
in the Berreman matrix method, these layers are considered
homogeneous; in other words, the dielectric tensor profile
along the helical axis is staircased. Modeling the crystal as
a piecewise continuous material was first proposed in 1869
by Reusch [32] and recently expanded upon by Hodgkinson
et al. [33]. Unlike the Berreman matrix method, in the
underlined formulation there is no propagator matrix. Instead,
a mode-matching approach is used to enforce the continuity of
the tangential field components at the various interfaces, thus
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generating a coefficient matrix that is representative of the
problem at hand. The governing matrix system is solved once
per wavelength in order to obtain the expansion coefficients
of the governing modes inside the liquid crystal and the
dielectric layers constituting the cell. In addition, the solution
vector provides the corresponding reflection and transmission
coefficients based on an obliquely incident plane wave.

The method developed in this paper to solve the problem of
electromagnetic wave propagation in cholesteric crystals under
oblique incidence is analytical in nature and exact. The only
approximation made in our formulation was the staircasing
of the helicoidal profile of the dielectric tensor. The error
introduced in the solution due to the piecewise continuous
nature of the dielectric tensor is exponentially reduced as the
number of layers is increased. Thus the underlined formulation
is highly accurate and suitable even for the characterization of
the higher-order reflection bands of cholesterics, which are
known to exist only for light at oblique incidence [28,34,35].

In the following section, we present the mathematical
formulation starting from the Maxwell equations, in order to
obtain the governing field expressions inside the dielectrics
and chiral medium, and continue to derive the linear set of
equations after enforcing the continuity of the tangential fields
at the interfaces. In Sec. III, we present numerical results
on the reflectance and transmittance at normal and oblique
incidence. We also present computational statistics of the
method as well as convergence results in terms of the number
of layers required for accurate results. Concluding remarks are
presented in Sec. IV.

II. PROBLEM FORMULATION

The problem governing the propagation of a polarized plane
wave obliquely incident to the surface of a cholesteric liquid
crystal cell is formulated in this section. The directors of
cholesteric liquid crystals follow a helical structure which
is periodic along the normal coordinate (z axis) and has a
period Po, known as the pitch length. For such a material, the
corresponding dielectric tensor has the following form:

ε̂(z) =

⎡⎢⎣ εxx εxy 0

εyx εyy 0

0 0 εzz

⎤⎥⎦ , (1)

where
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The refractive indices no and ne correspond to the ordinary
and extraordinary waves. In terms of the dielectric constants
perpendicular and parallel to the directors of the liquid crystal,
these are given by n2

o = ε⊥ and n2
e = ε‖, respectively.

The geometry under investigation is illustrated in Fig. 1.
A linearly, circularly, or elliptically polarized plane wave is
obliquely incident on the cell. Part of the incident wave energy
will be reflected back, whereas the remaining part of the energy
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FIG. 1. Geometry of a cholesteric liquid crystal sandwiched
between layers of dielectric material.

will be transmitted through the cell. According to Snell’s laws,
the reflection (θr ) and transmission (θt ) angles are equal to the
incident angle (θi).

The formulation of the problem begins with the two time-
harmonic curl equations of Maxwell given by

∇ × E = −jωμo H, (3a)

∇ × H = jωεoε̂ E. (3b)

Assuming that the incident plane wave is normal to the y

axis, it is evident that

∂F

∂y
= 0, where F = {Ex,Ey,Ez,Hx,Hy,Hz}. (4)

In addition, all the scalar field components, in either dielectric
or liquid crystal regions, are proportional to e−jkons (x sin θi ); thus
the derivative with respect to x yields

∂F

∂x
= −jkoS · F, (5)

where S = ns sin θi and ns is the refractive index of the exterior
region. Substituting Eqs. (4) and (5) in the scalar Maxwell
equations derived from Eqs. (3), one can obtain the governing
field expressions for either dielectric or liquid crystal regions.
These will be derived and presented in the following two
subsections.

A. Governing equations for a dielectric region

The cholesteric liquid crystal is sandwiched between layers
of dielectrics. Assuming the dielectric constant of one such
layer is given by εd , and using Eqs. (4) and (5) in the two
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Maxwell curl equations, we obtain

∂Ey

∂z
= jkoηoHx, (6a)

∂Ex

∂z
= jkoηo

(
S2

εd

− 1

)
Hy, (6b)

∂Hy

∂z
= −j

ko

ηo

εdEx, (6c)

∂Hx

∂z
= j

ko

ηo

(εd − S2)Ey. (6d)

Equations (6a)–(6d) can be written in a more convenient
form,

∂u1

∂z
= jko(b14u4), (7a)

∂u2

∂z
= jko(u3), (7b)

∂u3

∂z
= jko(b32u2), (7c)

∂u4

∂z
= jko(b41u1), (7d)

where

u1 = Ex, u2 = Ey, u3 = ηoHx, u4 = ηoHy, (8a)

b14 = S2/εd − 1, b41 = −εd, b32 = εd − S2. (8b)

The generic solution of the above system of differential
equations has the following form:

u ∝ e−jkonz, (9)

where n is the unknown governing refractive index. Conse-
quently, the governing system of Eqs. (7a)–(7d) becomes

nu1 + b14u4 = 0, (10a)

nu2 + u3 = 0, (10b)

b32u2 + nu3 = 0, (10c)

b41u1 + nu4 = 0. (10d)

In matrix form, the above system of equations can be
expressed as⎡⎢⎢⎢⎣

n 0 0 b14

b41 0 0 n

0 n 1 0

0 b32 n 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

u1

u2

u3

u4

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0

0

0

0

⎤⎥⎥⎥⎦ . (11)

For a nontrivial solution, the determinant of the coefficient
matrix must be zero. This results in a quartic secular equation
with respect to the unknown refractive index; i.e.,

(n2 − b32)(n2 − b14b41) = 0, (12)

with solutions

n1,4 = ±
√

b14b41, n2,3 = ±
√

b32. (13)

As seen from the linear system in Eq. (11), the quantities u1

and u4 are totally decoupled from the quantities u3 and u4. As
a result, the governing expressions of u1 and u4 can be written
as the superposition of the generic form, shown in Eq. (9),

for the two values of the refractive indices n1 and n4. Similarly,
the governing expressions of u2 and u3 can be written as
the superposition of the same generic form, but instead,
using the two refractive indices n2 and n3. Consequently, the
corresponding expressions for ui are given by

u1(z) = q11ADe−jkon1z + q14DDe−jkon4z, (14a)

u2(z) = q22BDe−jkon2z + q23CDe−jkon3z, (14b)

u3(z) = q32BDe−jkon2z + q33CDe−jkon3z, (14c)

u4(z) = q41ADe−jkon1z + q44DDe−jkon4z, (14d)

where

q11 = 1, q14 = 1, q41 = −b41

n1
, q44 = −b41

n4
, (15a)

q22 = 1, q23 = 1, q32 = −n2, q33 = −n3. (15b)

Subscript D indicates dielectric layer.

B. Governing equations for the liquid crystal

The dielectric tensor of the cholesteric liquid crystal is
given by Eqs. (1) and (2). Since the dielectric properties of the
medium are dependent on the z coordinate, the liquid crystal is
subdivided into electrically thin layers in which the entries of
the dielectric tensor are considered constants. Consequently,
the analysis in this subsection is valid for a thin layer of liquid
crystal where the directors are nematic in nature oriented along
the same direction. Thus following the same approach as for
the dielectric region presented in the previous subsection, the
governing set of differential equations for the cholesteric liquid
crystal (anisotropic medium) is given by

∂Ey

∂z
= jkoηoHx, (16a)

∂Ex

∂z
= jkoηo

(
S2

εzz

− 1

)
Hy, (16b)

∂Hy

∂z
= −j

ko

ηo

{εxxEx + εxyEy}, (16c)

∂Hx

∂z
= j

ko

ηo

{εyxEx + (εyy − S2)Ey}. (16d)

Introducing the same notation as in Eqs. (7), the above set of
equations can be written in a more convenient form given by

∂u1

∂z
= jko(c14u4), (17a)

∂u2

∂z
= jko(u3), (17b)

∂u3

∂z
= jko(c31u1 + c32u2), (17c)

∂u4

∂z
= jko(c41u1 + c42u2), (17d)

where

u1 = Ex, u2 = Ey, u3 = ηoHx, u4 = ηoHy, (18a)

c14 = S2

εzz

− 1, c41 = −εxx, c42 = −εxy, (18b)

c31 = εyx, c32 = εyy − S2. (18c)
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As in the dielectric case, the generic solution of the above
system of equations is of the following form:

u ∝ e−jkonz, (19)

where n is the unknown governing refractive index. Differ-
entiating with respect to the z coordinate and substituting
the result in Eqs. (17) yields the following set of linear
equations:

nu1 + c14u4 = 0, (20a)

nu2 + u3 = 0, (20b)

c31u1 + c32u2 + nu3 = 0, (20c)

c41u1 + c42u2 + nu4 = 0. (20d)

In matrix form, the above system of equations can be written
as ⎡⎢⎢⎢⎣

n 0 0 c14

0 n 1 0

c31 c32 n 0

c41 c42 0 n

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

u1

u2

u3

u4

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0

0

0

0

⎤⎥⎥⎥⎦ . (21)

For a nontrivial solution, the determinant of the coefficient
matrix must be zero. This will result in solving a quartic secular
equation with respect to the unknown refractive index; i.e.,

n4 − αn2 + β = 0, (22)

where α = c32 + c14c41 and β = c14c41c32 − c14c41c31. The
roots of Eq. (22) are

n1,2,3,4 = ±
√

α ±
√

α2 − 4β

2
. (23)

The complete valid solution for ui , where i = 1,2,3,4 is a
superposition of the generic form, given in Eq. (19), for the
four distinct values of the refractive index obtained in Eq. (23).
As a result, the corresponding expressions for ui are given by

u1(z) = w11Ae−jkon1z + w12Be−jkon2z

+w13Ce−jkon3z + w14De−jkon4z, (24a)

u2(z) = w21Ae−jkon1z + w22Be−jkon2z

+w23Ce−jkon3z + w24De−jkon4z, (24b)

u3(z) = w31Ae−jkon1z + w32Be−jkon2z

+w33Ce−jkon3z + w34De−jkon4z, (24c)

u4(z) = w41Ae−jkon1z + w42Be−jkon2z

+w43Ce−jkon3z + w44De−jkon4z, (24d)

where

w1j = n2
j − c32

c31
, j = 1,2,3,4, (25a)

w2j = 1, j = 1,2,3,4, (25b)

w3j = −nj , j = 1,2,3,4, (25c)

w4j = nj

(
c32 − n2

j

)
c14c31

, j = 1,2,3,4. (25d)

C. Governing field expressions for the exterior region

The exterior region is divided into two subregions: the lower
region where the incident and reflected fields exist, and the
upper region where the transmitted field exists. The incident
plane wave impinges on the liquid crystal cell at an angle θi

with respect to the normal to the cell, whereas the reflected
wave forms an angle θr = θi with respect to the normal.
Similarly, the transmitted wave forms an angle θt = θi with
respect to the normal. The polarization of the incident wave
could be either linear, circular, or even elliptical. The refractive
index of the medium in the exterior region is defined as ns . As
a result, the incident fields, for a generic type of polarization,
can be written as

Ei = {âyE01 + (âz sin θi − âx cos θi)E02}
·e−jkons (x sin θi+z cos θi ), (26a)

H i = ns

ηo

{(âz sin θi − âx cos θi)E01 − âyE02}

·e−jkons (x sin θi+z cos θi ). (26b)

The polarization of the incident wave can be set by the choice
of the amplitudes E01 and E02. Specifically, the following
combinations can be set:

E01 = 1, E02 = 0 → perpendicular polarization,

E01 = 0, E02 = 1 → parallel polarization,

E01 = 1, E02 = +j → RH circular polarization,

E01 = 1, E02 = −j → LH circular polarization,

E01 = 1, E02 = +νj → RH elliptical polarization,

E01 = 1, E02 = −νj → LH elliptical polarization,

where ν �= 1, RH stands for right hand, and LH stands for
left hand. The corresponding reflected field expressions can
be written as

Er = {ây�⊥ + (âx cos θi + âz sin θi)�‖}
·e−jkons (x sin θi−z cos θi ), (27a)

H r = ns

ηo

{(âx cos θi + âz sin θi)�⊥ − ây�‖}

·e−jkons (x sin θi−z cos θi ), (27b)

where �⊥ and �‖ correspond to the reflection coefficients per-
pendicular and parallel to the plane of incidence, respectively.
Likewise, the corresponding expressions for the transmitted
fields in the upper region are given by

Et = {âyT⊥ + (âz sin θi − âx cos θi)T‖}
·e−jkons (x sin θi+z cos θi ), (28a)

H t = ns

ηo

{(âz sin θi − âx cos θi)T⊥ − âyT‖}

·e−jkons (x sin θi+z cos θi ), (28b)

where T⊥ and T‖ correspond to the transmission coeffi-
cients perpendicular and parallel to the plane of incidence,
respectively.

Now, based on the definition of the incident, reflected, and
transmitted fields in the lower and upper exterior regions, the
corresponding expressions for uj ’s can be written in a more
convenient form. Specifically, for the lower exterior region,
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we have

u1(z) = cos θi

(
�‖ejkonsz cos θi − E02e

−jkonsz cos θi
)
, (29a)

u2(z) = �⊥ejkonsz cos θi + E01e
−jkonsz cos θi , (29b)

u3(z) = ns cos θi

(
�⊥ejkonsz cos θi − E01e

−jkonsz cos θi
)
, (29c)

u4(z) = −ns

(
�‖ejkonsz cos θi + E02e

−jkonsz cos θi
)
. (29d)

Similarly, for the upper exterior region, the z-dependent
expressions for the uj ’s are given by

u1(z) = − cos θiT‖e−jkonsz cos θi , (30a)

u2(z) = T⊥e−jkonsz cos θi , (30b)

u3(z) = −ns cos θiT⊥e−jkonsz cos θi , (30c)

u4(z) = −nsT‖e−jkonsz cos θi . (30d)

D. Mode-matching approach

Once we have defined the governing fields in the exterior
region, the dielectric layers, and the cholesteric liquid crystal,
the unknown coefficients can be obtained by enforcing the
continuity of the tangential fields at the interfaces. An interface
exists between the exterior region and the neighboring dielec-
tric layer (see Fig. 1), between subsequent dielectric layers,
between the last dielectric layer and the liquid crystal, etc.
In addition, as mentioned previously, the cholesteric liquid
crystal was subdivided into N thin homogeneous layers in
which the dielectric tensor entries are considered constants.
Consequently, the continuity of the tangential fields at those
interfaces should be enforced. For each crystal or dielectric
layer, there are four unknown coefficients namely A, B,
C, and D. For the lower and upper exterior regions, there
are two unknown reflection coefficients and two unknown
transmission coefficients. Thus the total number of problem
unknowns is 4(N + M + K + 1), where M and K correspond
to the number of dielectric layers below and above the liquid
crystal, respectively. Note that enforcement of the tangential
electric and magnetic fields is equivalent to the enforcement
of uj , where j = 1,2,3,4.

Before imposing the continuity of uj ’s at the interfaces, it is
important to introduce a transformation on the z coordinate in
order to simplify the implementation of the mode-matching
approach. In particular, we transform z to z − zo, where
zo is the z coordinate of the lower interface of a given
layer. The implementation of the mode-matching approach is
demonstrated below by presenting a set of equations obtained
after imposing the continuity of uj ’s at selected interfaces:

At z = 0,

cos θi(�‖ − E02) = q1
11A

1
D + q1

14D
1
D, (31a)

�⊥ + E01 = q1
22B

1
D + q1

23C
1
D, (31b)

ns cos θi(�⊥ − E01) = q1
32B

1
D + q1

33C
1
D, (31c)

−ns(�‖ + E02) = q1
41A

1
D + q1

44D
1
D. (31d)

The superscript on the coefficients q, A, B, C, and D
corresponds to the index of the particular dielectric layer.

At z = L1,

qM
11A

M
D e−jkon1tM + qM

14D
M
D e−jkon4tM

= w1
11A

1 + w1
12B

1 + w1
13C

1 + w1
14D

1, (32a)

qM
22BM

D e−jkon2tM + qM
23CM

D e−jkon3tM

= w1
21A

1 + w1
22B

1 + w1
23C

1 + w1
24D

1, (32b)

qM
32BM

D e−jkon2tM + qM
33CM

D e−jkon3tM

= w1
31A

1 + w1
32B

1 + w1
33C

1 + w1
34D

1, (32c)

qM
41AM

D e−jkon1tM + qM
44DM

D e−jkon4tM

= w1
41A

1 + w1
42B

1 + w1
43C

1 + w1
44D

1. (32d)

The superscript on the constants w, A, B, C, and D indicate
the layer number within the liquid crystal with thickness d =
Lc/N .

At z = L1 + Lc,

wN
11A

Ne−jkon1d + wN
12B

Ne−jkon2d + wN
13C

Ne−jkon3d

+ wN
14D

Ne−jkon4d = q1
11Ã

1
D + q1

14D̃
1
D, (33a)

wN
21A

Ne−jkon1d + wN
22B

Ne−jkon2d + wN
23C

Ne−jkon3d

+ wN
24D

Ne−jkon4d = q1
22B̃

1
D + q1

23C̃
1
D, (33b)

wN
31A

Ne−jkon1d + wN
32B

Ne−jkon2d + wN
33C

Ne−jkon3d

+ wN
34D

Ne−jkon4d = q1
32B̃

1
D + q1

33C̃
1
D, (33c)

wN
41A

Ne−jkon1d + wN
42B

Ne−jkon2d + wN
43C

Ne−jkon3d

+ wN
44D

Ne−jkon4d = q1
41Ã

1
D + q1

44D̃
1
D. (33d)

The constants ÃD , B̃D , C̃D , and D̃D correspond to the dielectric
layers of the upper cell; the superscript represents the dielectric
layer number.

At z = L1 + Lc + L2,

qK
11Ã

K
De−jkon1̃tK + qK

14D̃
K
De−jkon4̃tK = −T‖ cos θi, (34a)

qK
22B̃

K
D e−jkon2̃tK + qK

23C̃
K
D e−jkon3̃tK = T⊥, (34b)

qK
32B̃

K
D e−jkon2̃tK + qK

33C̃
K
D e−jkon3̃tK = −ns cos θiT⊥, (34c)

qK
41Ã

K
De−jkon1̃tK + qK

44D̃
K
De−jkon4̃tK = −nsT‖. (34d)

The above equations can be expressed in matrix form with
the unknown vector consisting of the expansion coefficients,
the two reflection coefficients, and the two transmission coef-
ficients. Solving this matrix system, the unknown vector can
be obtained for a given incident angle and a given polarization.
Once the reflection and transmission coefficients are obtained,
the reflectance and transmittance can be computed using

γ = |�‖|2 + |�⊥|2
|E01|2 + |E02|2 , (35)

τ = |T‖|2 + |T⊥|2
|E01|2 + |E02|2 . (36)

III. NUMERICAL RESULTS

The eigenmode analysis and mode-matching approach pre-
sented in the previous section were verified against published
data found in the literature. We considered the same exact
cases investigated by Yang et al. [36] in order to provide
comparisons to our simulations. In their paper, they used
the Jones matrix method to develop an improved numerical
method where multiple reflections were taken into account.
However, their approach is only suitable for normal incidence
and in the absence of dielectric layers external to the liquid
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FIG. 2. (Color online) Reflectance and transmittance of a
cholesteric liquid crystal for a RH circularly polarized wave at normal
incidence.

crystal cell. Their numerical results compared well with those
obtained using the Berreman method with some instabilities
when the thickness of the cell exceeded 100Po. Specifically,
we considered a cholesteric liquid crystal with pitch length
Po = 350 nm, no = 1.5, ne = 1.8, Lc = 10Po. The exterior
region to the liquid crystal cell is characterized by an isotropic
medium of refractive index equal to that of glass; thus there
is no reflection from the first interface between the exterior
region and the liquid crystal. The incident plane wave is
normal to the cell and the polarization is either right-hand
circular polarization (RHCP), perpendicular polarization, or
parallel polarization. Both the reflectance and transmittance
are computed in the entire visible spectrum by considering
the reflection and transmission coefficients in both principal
planes. Our simulated results are shown in Fig. 2, for the RH
circular polarization, in Fig. 3, for perpendicular polarization,
and in Fig. 4, for parallel polarization. Comparing with the
corresponding figures in Ref. [36], there is an excellent
agreement between the improved Jones matrix method and
our proposed mode-matching technique.
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FIG. 3. (Color online) Reflectance and transmittance of a
cholesteric liquid crystal for a plane wave polarized perpendicularly
to the plane of incidence and at normal incidence.
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FIG. 4. (Color online) Reflectance and transmittance of a
cholesteric liquid crystal for a plane wave polarized parallel to the
plane of incidence and at normal incidence.

The advantage of our method, as compared to the improved
Jones matrix method presented in Ref. [36], is the ability to
obtain reflection and transmission spectra at oblique incidence.
Figure 5 illustrates the reflectance of a cholesteric liquid
crystal, having the same specifications as above, for a right-
hand circularly polarized plane wave at normal and oblique in-
cidence (θi = 30◦). At oblique incidence, the reflection spectra
exhibit the well-known blueshift of the Bragg reflection.

The reflectance as a function of the cell thickness is illus-
trated in Fig. 6. Our simulation results compare favorably with
the corresponding graph depicted in Ref. [36]. As seen from
this figure, the Bragg reflection is established only when the
thickness of the cholesteric liquid crystal cell is approximately
ten times the pitch length of the helical molecular structure.

Our proposed method is also generic in terms of adding
as many dielectric layers as needed in the exterior region.
The versatility of the method is illustrated by examining the
same geometry investigated by Xu et al. [37]. Specifically,
they considered a cholesteric liquid crystal cell of thickness
Lc = 15Po, where Po = 338 nm, no = 1.494, and ne = 1.616.
The cell is sandwiched between three dielectric layers at the top
and bottom of the cell. The outer layer is glass with a refractive
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FIG. 5. (Color online) Reflectance of a cholesteric liquid crystal
for a RH circularly polarized wave at normal and oblique incidence.
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FIG. 6. (Color online) Reflectance of a cholesteric liquid crystal
for a RH circularly polarized wave at normal incidence for different
cell thicknesses.

index of n = 1.5 and thickness of t = 1.06 mm. The middle
layer is ITO whose refractive index is a function of wavelength
[37] and is given by n(λ) = 2.525 − 0.001 271λ, where λ is
given in nanometers (nm). The thickness of ITO is t = 25 nm.
The inner dielectric layer is a Polyimide alignment layer
with refractive index n = 1.7 and a thickness of t = 98 nm.
The corresponding reflectance spectra for normal incidence
and oblique incidence at θi = 30◦ is shown in Fig. 7 for a
right-handed circularly polarized incident plane wave. In this
case, the medium of the exterior region is characterized by a
refractive index of n = 1.5 thus there is no reflection from the
first dielectric interface, i.e., between the exterior region and
the glass layer. However, if the exterior region is taken to be air,
it is evident from Fig. 8 that there is significant reflection from
the first air-glass interface. This can be alleviated by properly
designing an antireflective layer for the visible spectrum to be
placed at the first air-glass interface.

The accuracy of the proposed numerical approach was
evaluated in terms of the number of layers considered in the
cholesteric liquid crystal. Note that the dielectric layers (e.g.
glass, ITO, polyimide) are not subdivided into smaller layers.
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FIG. 7. (Color online) Reflectance of a cholesteric liquid crystal
sandwiched between layers of glass, ITO, and polyimide for a RH
circularly polarized wave; the medium of the exterior region has the
same refractive index as that of glass.

400 450 500 550 600 650 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Wavelength (nm)

R
ef

le
ct

an
ce

 

 

Glass
Air

FIG. 8. (Color online) Reflectance of a cholesteric liquid crystal
sandwiched between layers of glass, ITO, and polyimide for a RH
circularly polarized wave; a comparison between two cases of exterior
region: air and glass.

The only approximation introduced in the proposed method is
the staircasing of the dielectric tensor profile along the helical
axis. For this reason, we are plotting the reflectance at λ =
550 nm, for normal and oblique incidence, as a function of the
number of layers per pitch inside the cholesteric liquid crystal.
The incident plane wave was right-hand circularly polarized.
The corresponding graph is shown in Fig. 9. It can be seen
that approximately 10 layers per pitch is sufficient to obtain
accurate results for the case of normal incidence, whereas for
the case of oblique incidence, approximately 20 layers per
pitch are required. In terms of solution time on a personal
desktop computer, we plotted the CPU time in seconds for a
single evaluation point as a function of the number of layers
per pitch. The corresponding graph is shown in Fig. 10. As
seen, the solution time increases in a nonlinear fashion as the
number of layers per pitch increase. When using 20 layers per
pitch, which is sufficient to provide accurate results at oblique
angles of incidence, the required solution time per evaluation
point is 0.5 sec; for 30 layers per pitch, the corresponding
solution time increases to 1.7 sec per evaluation point. Based
on our experience, there is no need to subdivide the liquid
crystal into more than 30 layers per pitch.
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FIG. 9. (Color online) Convergence of the reflectance as a
function of the number of subdivisions per pitch length.
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FIG. 10. (Color online) CPU solution time (in seconds) per point
as a function of the number of subdivisions per pitch length.

IV. CONCLUSIONS

In this paper, we developed an exact formulation based
on an eigenvalue analysis and a mode-matching technique

imposed at the interfaces between stratified media. The
eigenvalue analysis was applied on isotropic dielectric layers
as well as on anisotropic cholesteric liquid crystals exhibiting
a right-handed twist of the director field. The eigenvalue
analysis provided governing solutions for the fields inside the
media as well as the supported propagation characteristics
along the helical axis. A linearly, circularly, or elliptically
polarized incident plane wave was considered at oblique
angles. The formulation presented in Sec. II is exact and
introduces no approximations. The only compromise made
was the staircasing of the helical profile of the dielectric
tensor along the helical axis. In other words, the cholesteric
liquid crystal was subdivided into N layers assuming a
homogeneous nematic orientation of the director fields, thus
the tensor entries were considered constant within each of
these layers. As a result of this approach, a matrix system of
linear equations was obtained, which was solved in order to
obtain the corresponding reflection and transmission coeffi-
cients on the two principal planes. The obtained numerical
results verify the accuracy and the effectiveness of the
proposed method in dealing with this type of liquid crystal
problems.
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