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Excess equimolar radius of liquid drops
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The curvature dependence of the surface tension is related to the excess equimolar radius of liquid drops, i.e.,
the deviation of the equimolar radius from the radius defined by the macroscopic capillarity approximation. Based
on the Tolman [J. Chem. Phys. 17, 333 (1949)] approach and its interpretation by Nijmeijer et al. [J. Chem.
Phys. 96, 565 (1991)], the surface tension of spherical interfaces is analyzed in terms of the pressure difference
due to curvature. In the present study, the excess equimolar radius, which can be obtained directly from the density
profile, is used instead of the Tolman length. Liquid drops of the truncated and shifted Lennard-Jones fluid are
investigated by molecular dynamics simulation in the canonical ensemble, with equimolar radii ranging from 4 to
33 times the Lennard-Jones size parameter σ . In these simulations, the magnitude of the excess equimolar radius
is shown to be smaller than σ/2. This suggests that the surface tension of liquid drops at the nanometer length
scale is much closer to that of the planar vapor-liquid interface than reported in studies based on the mechanical
route.
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I. INTRODUCTION

The macroscopic capillarity approximation consists in
neglecting the curvature dependence of the surface tension γ

of a spherical liquid drop. Accordingly, the surface tension
of a curved interface in equilibrium is approximated by
its value γ∞ in the zero-curvature limit, i.e., for a planar
vapor-liquid interface. The Young-Laplace equation [1–3] for
spherical interfaces relates the macroscopic surface tension to
a characteristic radius of the liquid drop,

Rκ = 2γ∞
P � − P v

= γ∞
ϕ

, (1)

which will be referred to as the capillarity radius here; the
notation ϕ = (P � − P v)/2 for half of the difference between
the liquid pressure P � and the vapor pressure P v is introduced
for convenience. At equilibrium, the temperature is the same
for both phases, and the pressures P � and P v correspond to
states with the same chemical potential. Both the drop radius
and the pressure difference characterize the extent by which
the surface is curved. The surface tension γ∞ of the planar
vapor-liquid phase boundary, which is relatively easy to access
experimentally, couples 1/Rκ and ϕ, i.e., two measures of
curvature, as a proportionality constant.

*Corresponding author: Also at Imperial College, London, UK;
martin.horsch@mv.uni-kl.de

For curved interfaces in equilibrium, the chemical potential
μ deviates from its saturation value μs for a flat interface.
The precise conditions can be determined from the pressure
difference between the fluid phases by means of an equation
of state. In the case of a drop, both phases are supersaturated.
To realize this, it is sufficient to consider the Gibbs-Duhem
equation for a curved phase boundary.1 Since the chemical
potential must be equal for all phases in (stable or unstable)
equilibrium, one obtains

d(P � − P v) = (ρ� − ρv)dμ. (2)

For a planar interface, both phases coexist at the saturation
condition (μ = μs) and the pressure difference is zero. The
number density of the liquid phase ρ� is larger than that of the
vapor ρv , so that raising the value of the liquid pressure P �

over the vapor pressure P v increases the chemical potential
μ. Therefore, its value for a system comprising a liquid drop,
where P � is greater than P v , has to exceed μs .

In combination with an equation of state for the bulk fluid,
microscopic properties such as the radius of a small liquid
drop can thus be deduced from the macroscopic state of the
surrounding vapor, i.e., from its supersaturation ratio, and vice

1In the following discussion, the temperature T is treated as a
parameter (rather than a variable), so that total differentials are to
be understood as partial derivatives at constant temperature.
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versa. This approach is the most widespread interpretation
of the Gibbs theory of interfaces [4,5], and it is the point
of departure for classical nucleation theory as introduced by
Volmer and Weber [6] and further developed by Farkas [7]
as well as subsequent authors [8–10]. The Gibbs approach
presupposes a sharp dividing surface between the phases, a
conceptual picture that does not reflect the physical features
at the molecular length scale. However, this abstraction is
precisely its strength. Instead of discussing thermodynamic
properties such as the density, the pressure tensor, and the free-
energy density in a localized way, interfacial excess quantities
can be assigned to the formal dividing surface as a whole.

Significant size effects on interfacial properties had already
been detected experimentally by Weber [11] at the turn of
the century. These were also known to Farkas [7], who stated
explicitly that the capillarity approximation should be expected
to fail for radii at the length scale of the intermolecular
interactions. In the absence of a better approximation, however,
the surface tension of the planar phase boundary had to be used
as input for nucleation theory, and little has changed in this
respect in the meantime.

In the case of significant deviations from the macroscopic
capillarity approximation, liquid drops cannot be characterized
sufficiently by a single effective radius. Instead, the capillarity
radius Rκ is distinct from the equimolar radius Rρ , which
is also known as the Gibbs adsorption radius. For a single-
component system, the latter is defined by the zero-excess-
density criterion∫ Rρ

0
dz z2[ρ(z) − ρ�(μ,T )] +

∫ ∞

Rρ

dz z2[ρ(z) − ρv(μ,T )] = 0,

(3)

where one compares a step function using the bulk liquid
and vapor number densities (as functions of μ and T ) with
the microscopic radial density profile ρ(z). By convention,
the density ρ corresponds to the number of particles per unit
volume here, rather than their mass, and z denotes the distance
from the center of mass of the liquid drop.

In addition to Rκ and Rρ , a thermodynamically relevant
definition of the liquid drop size is given by the surface of
tension radius

Rγ = γ

ϕ
, (4)

which is also known as the Laplace radius. It can be obtained
by inserting the actual value of the surface tension γ of the
system with the curved interface (not the planar limit value γ∞)
into the Young-Laplace equation. This radius can be related to
the surface area a and to the volume V of the drop,

Rγ da = 2 dV. (5)

This relation can be expressed in terms of the excess grand
potential � of the surface as

Rγ d� = 2γ dV, (6)

where the surface tension is defined through the formal
thermodynamic relation

γ = d�

da
. (7)

Modified versions of the Young-Laplace equation, which allow
for the use of different radii in an analogous way, were
introduced by Buff [12,13] and Kondo [14].

The present study deals with the deviation between the cap-
illarity radius Rκ , the equimolar radius Rρ , and the surface of
tension radius Rγ of a liquid drop in equilibrium with a super-
saturated vapor. As Tolman [15–17], following Gibbs, showed
on the basis of axiomatic thermodynamics, one of these
differences, now commonly referred to as the Tolman length

δ = Rρ − Rγ , (8)

is sufficient to characterize the curvature dependence of the
surface tension [17],

d ln Rγ

d ln γ
= 1 + 1

2

(
δ

Rγ

+
[

δ

Rγ

]2

+ 1

3

[
δ

Rγ

]3
)−1

. (9)

Castellanos et al. [18] have conjectured that “the Tolman
length is related to the interfacial width 
σ according to

σ ≈ 2δ.” It is important to point out that Eq. (9) follows the
approach of Gibbs strictly, i.e., without neglecting any of the
higher-order curvature terms. The cubic expression originates
from an integral over the spherical density profile.

However, this relation is often transformed into a polyno-
mial expansion for γ∞/γ , which contains an infinite number
of terms and has to be truncated, e.g., after the second-order
contribution in terms of curvature [19],

γ∞
γ

= 1 + 2δ∞
Rγ

+ 2

(
λ

Rγ

)2

+ O
(
R−3

γ

)
. (10)

Here, δ∞ is the Tolman length in the limit of an infinite radius
(i.e., zero curvature). The length λ characterizes the effect of
the Gaussian curvature that becomes predominant when δ is
very small or for systems where, due to an inherent symmetry,
δ = 0 holds by construction [19,20]; a similar leading term,
proportional to R−2

γ ln Rγ , has also been deduced by Bieker
and Dietrich [21] from density functional theory based on a
Barker-Henderson perturbation expansion.

One should keep in mind that the Tolman equation as
given by Eq. (9) is valid for curved phase boundaries of pure
fluids in general, whereas truncated polynomial expansions
in terms of the curvature 1/Rγ like Eq. (10) break down for
liquid drops at the molecular length scale. In practice, one
of the major problems of the Tolman approach is that it
analyzes the surface tension in terms of the radii Rρ and Rγ

(because δ is the difference between the radii). While Rρ can
be immediately obtained from the density profile, Rγ is by
definition related to γ itself. Since for highly curved interfaces
the value of γ is disputed or unknown [22–24], the surface of
tension radius Rγ and its deviation from Rρ is correspondingly
uncertain.

To resolve this issue, we reformulate Tolman’s theory in
terms of Rκ and Rρ . This leads to greater transparency, since
the capillarity radius Rκ can be obtained on the basis of
properties of the (stable and metastable) bulk fluid and the
surface tension in the planar limit γ∞, which is experimentally
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FIG. 1. (Color online) Diagram of van Giessen and Blokhuis
[26], showing ϕRρ as a function of the equimolar curvature 1/Rρ

for liquid drops of the truncated-shifted Lennard-Jones fluid at a
reduced temperature of kT /ε = 0.9, where Rρ is determined from
the density profiles and ϕ from the difference between the values of
the normal component of the Irving-Kirkwood pressure tensor in the
homogeneous regions inside the liquid drop as well as outside, i.e.,
in the homogeneous supersaturated vapor. In addition to the results
of van Giessen and Blokhuis (�), the data of Vrabec et al. [27] (◦),
which were obtained using the same method, are included here along
with a data point (�) where ϕ is determined by MD simulation of
the homogeneous fluid. The data for the planar surface tension γ∞
are taken from simulations of Vrabec et al. (•) and van Giessen
and Blokhuis (�) as well as the correlation of Vrabec et al. (�).
The continuous lines are guides to the eye: In the planar limit, a
positive slope corresponds to a negative Tolman length and vice versa;
cf. Eq. (12).

accessible.2 All information on the molecular structure of the
curved interface can thus be captured by a single undisputed
quantity here, namely, the equimolar radius Rρ . In our
approach, the excess equimolar radius, defined as

η = Rρ − Rκ, (11)

plays a role similar to the Tolman length, and the macroscopic
quantity ϕ is used instead of 1/Rγ as a measure of the influence
of curvature on the thermophysical properties of the interface
and the bulk phases. In this way, the thermodynamics of liquid
drops is discussed by following a different route that relies
on the density profiles and bulk properties only, avoiding the
intricacies of defining the pressure tensor or the change in the
surface area as required by other approaches.

The present method is related to the direct determination
of δ∞ proposed by Nijmeijer et al. [25], which was recently
implemented by van Giessen and Blokhuis [26] on the basis of
a representation of the ratio of ϕRρ to the curvature as defined
by 1/Rρ with

−δ∞ = 1

γ∞

(
lim

Rρ→∞
d

d(1/Rρ)
ϕRρ

)
, (12)

2The pressure difference between the coexisting phases in equilib-
rium is a bulk property, since it can be determined from μ and T with
an equation of state for the fluid.

as depicted in Fig. 1. However, the method suggested here
differs from that of van Giessen and Blokhuis, which relies
on a pressure tensor to obtain ϕ, whereas in the present work,
the pressure difference is determined by molecular dynamics
(MD) simulation of the bulk fluids. Applying the definitions of
the capillarity radius and the excess equimolar radius, Eq. (12)
transforms to

−δ∞ = lim
Rρ→∞

d(Rρ/Rκ )

d(1/Rρ)
= lim

Rρ→∞
d(η/Rκ )

d(1/Rρ)
, (13)

facilitating an analysis of the interfacial properties in terms of
the radii Rκ and Rρ as well as the deviation η between them.

This paper is structured as follows: In Sec. II, a review
is made of the available routes to the Tolman length and
the surface tension by molecular simulation. MD methods
directly related to nucleation itself, from which information
about the excess free energy of curved interfaces can also be
deduced [28–31], are not included in the current discussion;
in this regard, the reader is referred to Chkonia et al. [32].
Section III is dedicated to a brief outline of how Tolman’s
thermodynamic approach is transformed by analyzing the
surface tension in terms of η and ϕ rather than δ and 1/Rγ . The
methodology and the results of a series of canonical ensemble
MD simulations, where the excess equimolar radius is obtained
solely on the basis of density profiles, are presented in Sec. IV.
An interpretation of these results is given in Sec. V, leading to
the conclusion that previous studies relying on a mechanical
(i.e., pressure tensor based) route to the surface tension have
overestimated the curvature dependence of γ .

II. THE TOLMAN LENGTH FROM
MOLECULAR SIMULATION

A. Analysis of the planar interface

For the planar interface, the pressure is equal on both sides
of the interface and the surface of tension radius Rγ becomes
ill defined [cf. Eq. (4)], so that the definition of the Tolman
length given by Eq. (8) ceases to be applicable in the absence
of curvature. Therefore, the Tolman length of the planar
interface δ∞ necessarily has to be derived from considerations
pertaining to curved geometries. It can be obtained either by
extrapolating results for δ to the macroscopic limit ϕ → 0
(i.e., Rγ → ∞) or by constructing the limit explicitly from
expressions for the radii Rρ and Rγ . The latter approach was
followed by Fisher and Wortis [33] who, on the basis of a
Landau (square-gradient) theory, derived the relation

−δ∞ = 1


ρ

∫ z=∞

z=−∞
dρ∞(z) z

+
∫ z=∞
z=−∞ dρ∞(z)[dρ∞(z)/d ln z]∫ z=∞

z=−∞ dρ∞(z)[dρ∞(z)/dz]
, (14)

in terms of the density profile ρ∞(z) of the planar interface.
This expression can also be extended to account for the pair
density profile, whereby Eq. (14) becomes a limiting case
[34,35].

The available computational methods for evaluating the
Tolman length of curved interfaces, however, involve the
determination of the surface tension γ . It is usually
the methodology related to the evaluation of γ that is both
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the crucial and the most debatable step, which is made evident
by the contradictory findings for γ (and consequently also
for δ∞) obtained with different methods. Three routes to the
surface tension of liquid drops will now be discussed briefly:
the mechanical route as implemented by Thompson et al. [36],
the grand canonical route of Schrader et al. [37], and the
free-energy difference route developed by Sampayo et al. [23].

Many different versions and combinations of these ap-
proaches exist [38–40], but it would be inappropriate to attempt
a full appreciation of the complete body of work here. The
reader is directed to the excellent review by Henderson [41] for
a detailed discussion of the underlying statistical mechanical
approaches.

B. The mechanical route

The mechanical route to the surface tension is based on the
Bakker-Buff equation for spherical interfaces [13,36,42,43],

γ = R−2
γ

∫ z=∞

z=0
dz z2[Pn(z) − Pt (z)], (15)

in terms of the normal component Pn(z) and the two (equal)
tangential components Pt (z) of the diagonalized pressure
tensor, which is considered as a spherical average, and where
the integration starts from the center of the drop (z = 0).
With this relation one expresses the work required for a
reversible isothermal deformation of the system that leads
to an infinitesimal increase of the surface area at constant
volume, which coincides with the corresponding free-energy
difference. It is sufficient to compute either the normal or the
tangential pressure profile, since the two are related by [36,44]

dPn

d ln z
= 2(Pt − Pn). (16)

At mechanical equilibrium, Eq. (15) can thus be transformed
to [36]

2γ 3 = −ϕ2
∫ z=∞

z=0
dPn(z) z3, (17)

a relation in which Rγ no longer appears. The surface of tension
radius Rγ can be obtained from Eq. (4) once the surface tension
γ is known.

The most widespread implementation of this approach in
terms of intermolecular pair potentials makes use of the Irving-
Kirkwood (IK) pressure tensor [45], which was applied to
spherical interfaces by Buff [13]. It underlies the simulation
studies of Vrabec et al. [27] as well as those of van Giessen
and Blokhuis [26]. The normal component of the IK pressure
tensor is given by [36,45]

Pn(z) = kTρ(z) +
∑

{i,j}∈S

−duij

drij

|z · rij |
4πz3rij

, (18)

where k is the Boltzmann constant and the summation covers
the set S containing all sets of particles i and j connected by a
line that intersects the sphere of radius z around the center of
mass of the liquid drop. The intersection coordinates (relative
to the center of mass) are represented by z and the distance
between the particles by rij with rij = |rij |, while −duij /drij

is the force acting between the two particles i and j .

Regarding the mechanical route as described here, various
issues arise:

(a) Irving and Kirkwood [45] originally proposed their
expression for the special case of “a single-component, single-
phase system.” Its derivation relies on truncating an expansion
in terms of derivatives of the pair density ρ(2) after the first
term, thereby disregarding the density gradient completely.
For a liquid drop, this can lead to inaccuracies: “at a boundary
or interface ... neglecting terms beyond the first may not be
justified” [45]. Nonetheless, Blokhuis and Bedeaux [46] have
shown that the IK tensor leads to the correct expression for ϕ

(to third order in terms of the equimolar curvature), and thus
to the correct value for δ∞.

(b) By construction, the mechanical route cannot be
separated from the assumption of mechanical equilibrium
that underlies the basic approach, i.e., Eqs. (15)–(17). For
nanoscopic liquid drops, however, configurations that are
not in mechanical equilibrium correspond to a significant
fraction of the partition function, and it is not clear to what
extent the spherical average of the pressure tensor succeeds in
accounting for the free-energy contribution of capillary waves,
i.e., the excited vibrational modes of the interface [47,48].
An additional entropic contribution to the surface free energy
due to large fluctuations in the energy is responsible for
this [23]. For the truncated-shifted Lennard-Jones (TSLJ) fluid,
the deviation of the Tolman length resulting from the use of the
Bakker-Buff equation is quite significant [49], overestimating
the value of δ∞ obtained with the approach of Blokhuis and
Bedeaux [46] by an order of magnitude.

(c) The nonunique nature of the pressure tensor, which for
a planar interface does not affect the computed value of the
surface tension [50], leads to an inconsistent description for a
curved interface [40,41,51]. However, the Harasima pressure
tensor [43], where the set S is defined differently and the
tangential pressure profile Pt (z) is computed instead of the
normal component Pn(z), has been found to agree rather well
with the IK tensor [27,39,50].

C. The grand canonical route

From an analysis of the canonical partition function, Binder
[48] has derived very useful scaling laws for the probability
ω(ρmin) that a relatively small subvolume has the density ρmin

corresponding to a maximum of the local free energy, i.e., the
least probable local density between ρ� and ρv . It follows that
“the probability of a homogeneous state with order parameter
ρmin decreases exponentially fast with the volume” while for
cases where the corresponding subvolume is situated within a
phase boundary the probability “decreases exponentially fast
with the interface area” [48]. The surface excess of the grand
potential (per unit surface area) can thus be determined as

f E = lim
a→∞

�

a
= kT lim

L→∞
ln ω(ρmin)

a(L)
, (19)

which is related to the surface tension by γ = d�/da. Therein,
the term a(L) describes the dependence of the surface area on
the characteristic length L of the system [48], e.g., a(L) = 2L2

for a planar slab in a cubic volume V = L3 with standard
periodic boundary conditions.
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Small subvolumes of a canonical system in the thermody-
namic limit (N → ∞) are equivalent to systems with constant
μ, V , and T so that grand canonical Monte Carlo simulation
can be applied. Umbrella sampling may be used to fully sample
the relevant range of values for the order parameter [52,53],
i.e., the number of particles N present in the grand canonical
system. Thereby, a profile is obtained for the free-energy
density f (N ) or, equivalently, f (ρ).

To analyze liquid drops of a certain size, however, the limit
a → ∞ cannot be applied since the area a of the surface of
tension is fixed. Instead, the surface excess term f E(Rρ) is
determined from expressions based on the equimolar radius
[37],

f (ρ) = V �

V
ρ�(Rρ)μ(Rρ) + V v

V
ρv(Rρ)μ(Rρ)

+ 4πR2
ρ

V
f E(Rρ). (20)

Here, V � = 4πR3
ρ/3 is the volume associated with the liquid

phase, V v = V − V � is the remainder of the volume, and
ρ�(Rρ) as well as ρv(Rρ) are bulk densities related to the liquid
drop and the surrounding vapor. The chemical potential μ(Rρ)
is equal for the vapor and liquid regions, but different from
both the saturated bulk value μs and the chemical potential μ

set in the grand canonical simulation itself. This approach
has recently been employed to examine the properties of
drops, bubbles, and symmetric liquid-liquid interfaces in great
detail [19,20,22,37,54].

The original method of Binder [48] was developed for
planar interfaces. In the case of systems with a spherical
geometry, the following points ought to be kept in mind:

(a) Following the approach of Schrader et al. [37], the
surface tension γ can be accessed only indirectly, e.g., from
Eq. (6), based on the surface of tension radius Rγ , which also
has to be obtained in a circuitous manner. Thereby, care should
be taken not to confuse f E with γ , or Rρ with Rγ [54].

(b) Since the infinite size limit [cf. Eq. (19)] does not apply
to nanoscopic liquid drops and the systems under consideration
can be extremely small, it is not generally possible to neglect
the contribution of homogeneous configurations to f (ρ).

(c) The assumption that 4πR2
ρ is the surface area associated

with the surface excess for the grand potential of the system, as
in Eq. (20), essentially amounts to applying the macroscopic
capillarity approximation. Such an approach may be justified
under certain circumstances, but for investigations of the
deviation from capillarity it is of limited use only.

Other umbrella sampling based methods [55,56], which will
not be discussed here, are confronted with similar difficulties,
in particular regarding the relation between the surface tension
and the surface excess free energy.

D. The free-energy difference route

The free-energy difference route to the surface tension
is based on Bennett’s [57] general considerations of the
molecular simulation of free energies and entropic quantities.
In the canonical ensemble, the free-energy difference 
A =
A1 − A0 between two states with equal N , V , and T is
related to the quotient of the respective canonical partition

functions Z0 and Z1, which can be evaluated from ensemble
averages [57]:

exp

(

A

kT

)
= Z0

Z1
=

〈
min

(
exp

(

E
kT

)
,1

)〉
1〈

min
(
exp

(−
E
kT

)
,1

)〉
0

, (21)

in terms of the internal energy difference 
E = E1 − E0.
The index of the angular brackets denotes the system over
which the ensemble average is taken. Bennett proposed the
determination of these energy differences from “separately
generated samples” [57] for E0 and E1. If the two systems
differ in the area of a phase boundary, then the free-energy
difference can be related to the surface tension, assuming that
all other deviations between them are accurately taken into
account.

Gloor et al. [38] introduced a version of this approach
where differences between the two states are obtained from
a single simulation run for an unperturbed system with the
partition function Z0. Corresponding configurations of the
second, perturbed system are generated by performing small
affine transformations, keeping the volume and the number of
particles in both phases constant. In the limit of an infinitesimal
distortion of the system, Eq. (21) can be simplified as [38,58]


A

kT
= − ln

〈
exp

(−
E

kT

)〉
0

, (22)

as the probability distribution functions of the ensembles
corresponding to the unperturbed and the perturbed systems
converge, so that separate sampling is no longer required. A
third-order expansion in the inverse temperature [58],


A

kT
= 〈
E〉

kT
− 〈
E2〉 − 〈
E〉2

2(kT )2

+ 〈
E3〉 − 3〈
E2〉〈
E〉 + 2〈
E〉3

6(kT )3
, (23)

can be used to increase the precision of the simulation results
[23,38]. The surface tension is then immediately obtained from

A/
a, since the distortion of the interface itself (as opposed
to its increase in area) makes a negligible contribution to the
free-energy difference [15].

In analogy with the Widom test-particle method [59], this
implementation of the free-energy difference route is also
called the test-area method [38,60]. Following Sampayo et al.
[23], it can be applied to curved interfaces, where the affine
transformation scales one of the Cartesian axes by the factor
1/(1 + ξ ) and the remaining ones by (1 + ξ )1/2. For ξ > 0,
this creates an oblate shape and the area of the surface of
tension is increased by [61]


a

πR2
ρ

= 2(1 + ξ ) + ln([1 + �]/[1 − �])

(1 + ξ )2�
+ O

(
δ 
a

R3
ρ

)
,

(24)

with the ellipticity of the average equimolar surface in the
perturbed system given by � = [1 − (1 + ξ )−3]1/2. In the
prolate case (ξ < 0), the corresponding term is � = [1 − (1 −
ξ )−3]1/2 and the change in area is [61]


a

πR2
ρ

= 2

(
arcsin �

�(1 − ξ )1/2
− ξ − 1

)
+ O

(
δ 
a

R3
ρ

)
. (25)
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It can be shown that the first-order term in Eq. (23) is
equivalent to the Kirkwood-Buff [62] mechanical expression
for the surface tension [63]. The higher-order terms therefore
presumably capture the deviation between the mechanical
and free-energy difference routes due to fluctuations or,
equivalently, the contribution of configurations which are
not in mechanical equilibrium to γ . Thus, the higher-order
contribution to Eq. (23) may be related to the closed expression
derived by Percus et al. [64] for the deviation between the
actual free energy and an approximation based on the local
pressure.

From this point of view, the following aspects of the method
merit further consideration:

(a) While finite differences of higher order are taken into
account for the energy, no such terms are considered for the
surface area here. Clearly, the variance of 
E is partly caused
by the variance of 
a. The use of Rρ in the definition of
the surface area [cf. Eqs. (24) and (25)] may lead to further
deviations.

(b) The variance of 
E accounts for surface oscillations
such as long-wavelength capillary waves, which are directly
related to equilibrium properties of the interface and therefore
do not depend on the statistical mechanical ensemble [41].
However, it can also be influenced by fluctuations in ρ� (at
constant V �) or V � (at constant ρ�). These modes are ensemble
dependent, since they are coupled to the density of the vapor
phase. Canonically, their amplitude increases with the total
volume and is ill defined in the thermodynamic limit V → ∞.
Therefore, the surface tension from the free-energy difference
route may depend on the constraints imposed on the system
by the ensemble.

(c) Although the volume associated with each of the
phases is invariant for test-area transformations, there is still
a distortion of the sample with respect to the equilibrium
conformation. The method is therefore limited to isotropic
phases, since shearing an anisotropic phase will induce an
elastic contribution in 
A from the bulk region as well.

III. TOLMAN’S APPROACH IN TERMS OF THE EXCESS
EQUIMOLAR RADIUS

From the Tolman equation in its approximate polynomial
form [cf. Eq. (10)], the excess equimolar radius η can be related
to the Tolman length δ by

η = (δ + Rγ ) − Rκ

= δ + Rγ

(
1 −

[
1 + 2δ∞

Rγ

+ O
(
R−2

γ

)])
= −δ + O

(
R−1

γ

)
, (26)

so that its magnitude in the zero-curvature limit is obtained as

η∞ = −δ∞. (27)

Essentially, this expresses the same relationship as Eq. (13).
Both in the planar limit and in the presence of curvature effects,
it is therefore possible to rewrite the Tolman relations in terms
of the easily accessible quantities η and ϕ, rather than δ and
1/Rγ .

The starting point for such an expression is the exact
closed form of the Tolman equation [cf. Eq. (9)], which is

derived from the Gibbs-Duhem equation, the Young-Laplace
equation, and the Gibbs adsorption equation [17]; hence, it is
based entirely on an axiomatic thermodynamic treatment. As
opposed to truncated power series of the form of Eq. (10), the
description given by Eq. (9) remains valid when the radius Rγ

becomes similar to or smaller than |δ|. Polynomial expansions
in terms of δ/Rγ necessarily fail to capture this limit. From
the Young-Laplace equation, it follows that

dRγ

dϕ
= 1

ϕ

dγ

dϕ
− γ

ϕ2
, (28)

while the reduced length scale appearing in the Tolman
equation can be transformed to

δ

Rγ

= ηϕ + γ∞
γ

− 1, (29)

by using Eqs. (1), (4), (8), and (11). The Tolman relation can
thus be converted to

dγ

dϕ
= −2γ

ϕ

(
δ

Rγ

+
[

δ

Rγ

]2

+ 1

3

[
δ

Rγ

]3
)

= 2γ

3ϕ

(
1 −

[
ηϕ + γ∞

γ

]3
)

. (30)

This representation of the Tolman expression is fully equiva-
lent to Eq. (9).

For ϕ → 0, further considerations are required. There, the
curvature dependence of γ as specified by Eq. (30) is self-
consistent only under an additional condition. To demonstrate
this, it is helpful to consider the exact Tolman equation in a
different form:

dγ

dϕ
= 2

γ 2

(
1

3
[ζ − η3ϕ2] − γ∞η[γ∞ + ηϕ]

)
. (31)

This is obtained from Eq. (30) by expanding the cubic term.
Therein, ζ has been defined as

ζ = γ 3 − γ 3
∞

ϕ
. (32)

For the sake of conciseness, the notation

q(i)
∞ = lim

ϕ→0

diq

dϕi
(33)

is used here for the ith derivative of a quantity q in the zero-
curvature limit. The slope of γ can be obtained by inserting

ζ∞ = [γ 3]′∞ = 3γ 2
∞γ ′

∞ (34)

into Eq. (31), which yields

γ ′
∞ = 2η∞. (35)

Expanding the excess equimolar radius as

η = η∞ + η′
∞ϕ + O(ϕ2) (36)

and inserting this expression as well as Eq. (35) into the planar
limit of Eq. (31) leads to

[γ 3]′′∞ = 12γ∞η2
∞ (37)

and

γ∞γ ′′
∞ = −4η2

∞. (38)
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By considering the zero-curvature limit for the third derivative
of γ 3, a theorem for the slope of η can now be deduced. Based
on Eqs. (34) and (37), a Taylor expansion for d(γ 3)/dϕ in
terms of ϕ,

d

dϕ
γ 3 = [γ 3]′∞ + [γ 3]′′∞ϕ + 1

2
[γ 3]′′′∞ϕ2 + O(ϕ3), (39)

yields

ζ = 1

ϕ

∫ ϕ

0
dϕ

(
d

dϕ
γ 3

)

= 6γ 2
∞η∞ + 6γ∞η2

∞ϕ + ϕ2

6
[γ 3]′′′∞ + O(ϕ3). (40)

From Eqs. (35)–(40),

6γ∞
(
γ∞η′

∞ + η2
∞

) + ϕ

6
[γ 3]′′′∞ = 0 + O(ϕ) (41)

follows by applying the full Tolman equation [cf. Eq. (31)] in
the planar limit. However, this implies

η′
∞ = −η2

∞
γ∞

, (42)

which constitutes a necessary boundary condition for the
Tolman approach in terms of η and ϕ.

Thus, while there is a direct correspondence between δ∞
and η∞, no such relation exists in the case of δ′

∞ and η′
∞, i.e.,

their respective derivatives (in terms of ϕ) in the zero-curvature
limit; instead, η′

∞ is fully determined by η∞ and thus by δ∞,
the Tolman length of the planar interface. This means that data
for the excess equimolar radius for large radii have a double
significance regarding the planar limit: On the one hand, they
can be extrapolated to ϕ = 0, leading to an estimate for the
planar Tolman length and the curvature dependence of γ to
first order in terms of ϕ or 1/Rγ ; on the other hand, the slope
of η is in itself relevant, since its zero-curvature limit η′

∞ also
provides information on η∞.

The equivalent of the exact Tolman equation in terms of
the excess equimolar radius η and the pressure difference
characterized by ϕ is Eq. (30). An expansion as a power series,
analogous to Eq. (10), can be obtained as

γ = γ∞ + 2η∞ϕ − 2η2
∞

γ∞
ϕ2 + O(ϕ3). (43)

The planar limit, where higher-order terms can be neglected,
can be treated accurately with expressions like Eq. (43). Away
from the planar limit, Eq. (30) applies without any further
condition (since the boundary condition for the slope of η

is relevant only for ϕ → 0), while Eq. (43) becomes an
approximation.

IV. THE EXCESS EQUIMOLAR RADIUS FROM
MOLECULAR SIMULATION

With the MARDYN MD program, developed by Bernreuther
and co-workers [65–67], the canonical ensemble is simulated
for small systems, corresponding to equilibrium conditions for

nanoscopic liquid drops surrounded by supersaturated vapor.
The TSLJ pair potential

u(r) =
{

4ε
[(

σ
r

)12 − (
σ
r

)6] + ushift for r < rc,

0 for r � rc,
(44)

with the size parameter σ , the energy parameter ε, and a
cutoff at rc = 2.5σ is employed as a fluid model here,
including a shift by ushift = 4ε[(σ/rc)6 − (σ/rc)12] to make
the potential continuous. The TSLJ model is an adequate basis
for the investigation of bulk and interfacial properties of simple
spherical conformal fluids (e.g., noble gases and methane) at
the molecular level; cf. Vrabec et al. [27]. On account of
this, numerous studies on nanoscopic TSLJ liquid drops have
been reported [19,26,27,68–72]. The TSLJ fluid can thus be
regarded as a key benchmark for theoretical and simulation
approaches to the problem of curved vapor-liquid interfaces.

Certain of the general properties of this simple model,
taking only short-range interactions into account, can be
assumed to carry over to polar fluids as well [73], except
for temperatures in the vicinity of the critical point. It is clear,
however, that a qualitatively different behavior is expected
for the liquid drops formed by water with and without ionic
species [74,75], liquid crystals [76], and similar complex
fluids. Such systems are beyond the scope of the present study.

Liquid drops are investigated at reduced temperatures
between kT /ε = 0.65 and 0.95, covering most of the
range between the triple-point temperature (which is ≈0.55
according to Bolhuis and Chandler [77], ≈0.618 as determined
by Toxværd [78], and ≈0.65 according to van Meel et al.
[70]) and the critical temperature, which several independent
studies have consistently obtained as 1.08 for the TSLJ fluid
[27,79,80]. The Verlet leapfrog algorithm is employed to
solve the classical equations of motion numerically with an
integration time step of 0.002 in Lennard-Jones (LJ) time
units, i.e., σ

√
m/ε, where m is the mass of a particle. Cubic

simulation volumes with 290–126 000 particles, applying the
periodic boundary condition, are equilibrated for at least
2000 time units. Subsequently, spherically averaged density
profiles ρ(z), with their origin (z = 0) at the center of mass of
the whole system, are constructed with a binning scheme based
on equal volume concentric spheres using sampling intervals
between 1000 and 40 000 time units, depending on the total
simulation time, to gather multiple samples for each system.
Examples of the density profiles obtained with this method are
shown in Figs. 2–4.

The density profiles of TSLJ vapor-liquid interfaces are
known to agree well with an expression based on two
hyperbolic tangent terms, to which ρ(z) has been successfully
correlated for liquid drops by Vrabec et al. [27]. The
present method merely requires the bulk densities ρ� and
ρv corresponding to a certain value of μ or ϕ, which are
determined here by correlating the outer parts of the density
profile and extrapolating them to regions far from the interface.
The densities of the coexisting fluid phases are thus deduced
from the simulated profiles by correlating the exponential
terms

ρ� = ρ(z) + α� exp(β�[z − z�]),
(45)

ρv = ρ(z) − αv exp(βv[zv − z]),
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FIG. 2. (Color online) Density profiles from canonical MD sim-
ulations of TSLJ liquid drops at the reduced temperatures of kT /ε =
0.65 and 0.95, showing the average densities from simulation (•) and
exponential approximants (– –). The steeper profile corresponds to
the lower temperature.

to the data for the inner- and outermost spherical bins of the
density profiles; cf. Fig. 2. These terms, which are based on
those employed by Lekner and Henderson [63], asymptotically
agree with the hyperbolic tangent expression of Vrabec et al.
[27]. From the liquid and vapor densities ρ� and ρv obtained
from the fit to Eq. (45), the equimolar radius Rρ is calculated
according to Eq. (3). The respective margins of error are
obtained as standard deviations from the profiles belonging
to different sampling intervals of the same MD simulation
(cf. Fig. 4), of which there are at least three in all cases.
The corresponding pressures P � and P v are computed from
canonical MD simulation of the bulk fluid at the respective
densities; see Table I.

For the surface tension in the zero-curvature limit (as a
function of the reduced temperature), the values γ∞(0.65) =

FIG. 3. (Color online) Density profiles from canonical MD
simulations of TSLJ liquid drops at kT /ε = 0.75 with equimolar
radii of Rρ = 9.977 ± 0.001 (·—·), 12.029 ± 0.003(– –),13.974 ±
0.002σ (· · · ) and 15.967 ± 0.001σ (—); cf. Tables II and III.

FIG. 4. (Color) Density profiles from a single canonical MD
simulation of a TSLJ liquid drop, showing the average densities from
simulation (◦) and exponential approximants (curves) corresponding
to the sampling intervals 2000–3000 (· · · ; green), 3000–4000 (·–·;
red), 4000–5000 (—-; blue), and 5000–6000 time units (—; black)
after the onset of the simulation. The standard deviation between the
densities at an infinite distance from the interface, according to the
exponential fits for all sampling intervals of a single MD simulation,
is used to determine the error of the bulk densities here.

(0.680 ± 0.009)εσ−2, γ∞(0.75) = (0.493 ± 0.008)εσ−2,
γ∞(0.85) = (0.317 ± 0.007)εσ−2, and γ∞(0.95) = (0.158 ±
0.006)εσ−2 are taken from the correlation of Vrabec et al. [27];
the error corresponds to the individual data points for γ∞
from the same source. In the case of kT /ε = 0.9, the higher
precision of the computations by van Giessen and Blokhuis
is exploited, using the value γ∞ = (0.227 ± 0.002)εσ−2

obtained from a linear fit to data for the curved interface;
cf. Fig. 1. The assumption made for the error is rather generous
in this case, considering that the agreement between the indi-
vidual data points for ϕRρ suggests an even higher precision.

Combining these quantities provides values for the cap-
illarity radius Rκ and the excess equimolar radius η. Note
that the margin of error for η, as indicated in Table II, contains
contributions quantifying the accuracy of γ∞ and the precision
of the MD simulations of the liquid drop itself as well as those
of the homogeneous vapor and liquid phases. While the vapor
pressure P v and the equimolar radius Rρ are obtained with a
high precision, the liquid pressure and the surface tension in
the zero-curvature limit are major sources of uncertainty here.
In both cases, methodical changes can be expected to increase
the precision significantly: regarding γ∞, it can be seen from
Fig. 1 that it is now possible to reach a level of confidence
beyond that of the data of Vrabec et al. [27] which are also
examined here. For the pressure of the liquid P �, approaches
based on the chemical potential, which can be determined
in any region of the simulation volume (including the vapor
phase), are expected to lead to significant improvements in
combination with a reliable equation of state or high-precision
simulations in the grand canonical ensemble.

A full summary of the simulation results where η could be
determined with error bars smaller than σ is given in Table III.
Note that to achieve full consistency with the Tolman approach,
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TABLE I. Bulk pressure P from canonical MD simulation of (homogeneous) vapor and liquid states of the TSLJ fluid at a specified reduced
temperature kT /ε and density ρ. All values are given in LJ units, and the error in terms of the last digit is specified in parentheses.

kT /ε ρ (units of σ−3) P (units of εσ−3) kT /ε ρ (units of σ−3) P (units of εσ−3)

0.65 0.00651 0.00396(1) 0.65 0.8298 0.220(8)
0.65 0.00904 0.005371(5) 0.65 0.8567 0.65(1)
0.75 0.01340 0.00907(3) 0.75 0.76434 0.04(1)
0.75 0.01381 0.00932(4) 0.75 0.76492 0.05(2)
0.75 0.01401 0.00944(2) 0.75 0.76532 0.05(1)
0.75 0.01405 0.00946(1) 0.75 0.76723 0.0686(6)
0.75 0.01442 0.009690(4) 0.75 0.76733 0.0695(4)
0.75 0.01442 0.00968(3) 0.75 0.76835 0.075(9)
0.75 0.01451 0.009743(7) 0.75 0.7679 0.0746(4)
0.75 0.01469 0.009848(5) 0.75 0.76853 0.0799(8)
0.75 0.01506 0.010065(6) 0.75 0.76968 0.0904(3)
0.75 0.01556 0.01035(1) 0.75 0.7703 0.0958(5)
0.75 0.01566 0.01042(1) 0.75 0.77212 0.1125(5)
0.75 0.01676 0.01104(2) 0.75 0.7753 0.140(7)
0.75 0.01731 0.01135(1) 0.75 0.7774 0.1626(5)
0.75 0.02136 0.01354(5) 0.75 0.8109 0.55(1)
0.85 0.03708 0.02492(4) 0.85 0.7135 0.097(1)
0.85 0.04211 0.0273(1) 0.85 0.733 0.23(1)
0.9 0.05041 0.03396(2) 0.9 0.67379 0.0671(4)
0.9 0.05315 0.03516(2) 0.9 0.67734 0.0820(1)
0.9 0.05731 0.03688(4) 0.9 0.6868 0.1252(5)
0.95 0.08249 0.0503(2) 0.95 0.6615 0.169(9)

the bulk densities ρ� and ρv from Eq. (45) have to match
those of the bulk fluid at the same temperature and chemical
potential as the two-phase system. Regarding liquid drops with
Rρ > 8 σ , this is certainly the case, since constant-density
regions of the profile in the liquid and vapor regions are actually

present; cf. Fig. 3. However, the values determined for the
smallest drops here rely on the validity of the correlation given
by Eq. (45) and can be considered valid only as far as this
expression itself does not introduce any major deviations, an
assumption that remains open to further examination; a version

TABLE II. Error analysis for the excess equimolar radius η of TSLJ liquid drops at the reduced temperature of kT /ε = 0.75. The number
of particles N , the volume V of the periodic simulation box, and the total simulation time t for simulations of the liquid drops are indicated
alongside the contributions to the uncertainty of η from the pressure P � of the liquid phase (determined by canonical MD simulation of the
bulk liquid), the surface tension γ∞ of the planar vapor-liquid interface (cf. Vrabec et al. [27]), the vapor pressure P v (obtained in an analogous
manner to P �), and the equimolar radius Rρ (from the density profiles of the liquid drops). Note that the time unit, i.e., σ

√
m/ε, corresponds

to 500 simulation time steps here. The flat symbols (�) indicate the fraction of the margin of error for η due to the respective quantities. All
values are given in LJ units, and the error in terms of the last digit is specified in parentheses. In the subsequent discussion, the cases where the
uncertainty of η exceeds 1σ are disregarded.

V t P � P v Rρ η

N (units of σ−3) (units of σ
√

m/ε) (units of εσ−3) � P � � γ∞ (units of εσ−3) � P v (units of σ ) � Rρ (units ofσ )

497 10648 60000 0.6(1) 84% 5.9% 0.0135(3) 0.23% 4.33(5) 9.5% 2.5(5)
1418 21952 48176 0.16(1) 82% 17% 0.01136(5) 0.37% 6.883(3) 0.5% 0.4(6)
1766 21952 6000 0.14(3) 94% 5.3% 0.0110(2) 0.58% 7.61(1) 0.55% 0(2)
3762 39304 221244 0.113(2) 53% 45% 0.01042(4) 1.0% 9.977(1) 0.28% 0.3(3)
5161 54872 64219 0.096(3) 63% 34% 0.0104(1) 2.4% 11.089(4) 0.82% −0.4(5)
6619 74088 162678 0.090(2) 59% 40% 0.01007(2) 0.75% 12.029(3) 0.57% −0.2(5)
10241 110592 185460 0.080(1) 56% 43% 0.00985(2) 0.58% 13.974(2) 0.29% −0.1(5)
12651 140608 32594 0.075(2) 66% 32% 0.00974(4) 1.2% 14.981(6) 0.78% −0.2(8)
15237 166375 135348 0.070(2) 66% 33% 0.00969(1) 0.35% 15.967(1) 0.15% −0.5(8)
17113 169418 6006 0.08(1) 89% 9.8% 0.00969(9) 0.78% 16.689(4) 0.18% 2(2)
24886 238328 27272 0.069(9) 90% 9.7% 0.00947(3) 0.3% 18.969(5) 0.17% 2(3)
28327 238328 6006 0.056(9) 92% 7.5% 0.00945(3) 0.28% 19.950(8) 0.18% −1(5)
38753 247673 6000 0.050(7) 90% 8.8% 0.00932(5) 0.69% 22.391(7) 0.15% −2(4)
125552 697078 6006 0.042(5) 89% 9.6% 0.00908(9) 1.6% 33.31(1) 0.21% 3(5)
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TABLE III. Number of particles N , volume V of the simulation box, and reduced temperature kT /ε of the canonical simulations of
TSLJ liquid drops surrounded by vapor, together with the main results from the spherical density profiles, i.e., the equimolar radius Rρ

and the densities ρ� and ρv . For drop radii above 8σ , these values can be reliably regarded as identical with those corresponding to the present
theoretical approach, which is highlighted with the bold typeface. In the cases of smaller radii (italic typeface), inaccuracies can arise due to
the application of exponential approximants for the density profiles; cf. Fig. 2 and Eq. (45). Results from MD simulation of the bulk fluid (cf.
Table I) are evaluated to obtain the corresponding pressures P � and P v as well as the capillarity radius Rκ , and the excess equimolar radius η.
All values are given in LJ units, and the error in terms of the last digit is specified in parentheses. The margin of error specified for the pressure
values here is larger than in Table I, because it also contains a contribution due to the uncertainty in the density.

V ρ� ρv P � P v Rκ Rρ η

N (units of σ 3) kT /ε (units of σ−3) (units of σ−3) (units of εσ−3) (units of εσ−3) (units of σ ) (units of σ ) (units of σ )

291 8999 0.65 0.857(5) 0.0090(2) 0.65(8) 0.0054(1) 2.1(3) 3.90(1) 1.8(3)
1022 17576 0.65 0.830(1) 0.00651(7) 0.22(2) 0.00397(4) 6.3(6) 6.407(2) 0.1(6)
497 10648 0.75 0.81(1) 0.0214(6) 0.6(1) 0.0135(4) 1.8(5) 4.33(5) 2.5(5)
1418 21952 0.75 0.777(1) 0.0173(1) 0.16(1) 0.01136(5) 6.5(6) 6.883(3) 0.4(6)
3762 39304 0.75 0.7721(2) 0.01566(6) 0.113(2) 0.01042(4) 9.7(4) 9.977(1) 0.3(4)
5161 54872 0.75 0.7703(2) 0.0156(2) 0.096(3) 0.0104(1) 11.5(5) 11.089(4) −0.5(6)
6619 74088 0.75 0.7697(2) 0.01506(4) 0.090(2) 0.01007(2) 12.3(5) 12.029(3) −0.2(5)
10241 110592 0.75 0.7685(1) 0.01469(3) 0.080(2) 0.00985(2) 14.1(5) 13.974(2) −0.1(5)
12651 140608 0.75 0.7679(2) 0.01451(7) 0.075(2) 0.00974(4) 15.2(8) 14.981(6) −0.2(8)
15237 166375 0.75 0.7673(2) 0.01442(2) 0.070(2) 0.00969(1) 16.5(8) 15.967(1) −0.5(8)
1119 14172 0.85 0.733(7) 0.0421(5) 0.23(5) 0.0273(2) 3.1(9) 6.79(6) 2.5(9)
3357 32768 0.85 0.7135(8) 0.0371(5) 0.097(5) 0.0249(2) 8.8(8) 9.11(1) 0.4(9)
2031 21952 0.9 0.687(3) 0.0573(8) 0.13(1) 0.0369(3) 5.1(8) 6.79(6) 1.7(9)
4273 29791 0.9 0.6773(9) 0.0532(2) 0.082(4) 0.03516(7) 9.7(9) 10.086(9) 0.4(9)
11548 85184 0.9 0.6738(1) 0.0504(2) 0.0672(6) 0.03396(8) 13.7(4) 14.054(8) 0.4(4)
2414 19683 0.95 0.662(2) 0.0825(2) 0.169(7) 0.05032(8) 2.7(3) 6.86(3) 4.2(3)

of the present method where P � is computed from μ could
resolve this issue.

V. DISCUSSION

Previous authors have made qualitatively contradictory
claims about the magnitude of the Tolman length as well as its
sign: Tolman himself expected δ to be positive and smaller than
the length scale of the dispersive interaction, a conjecture that
Kirkwood and Buff [62] appeared to confirm from a statistical
mechanical point of view, based on a mechanical approach.
Subsequent studies, however, have also found δ to be negligible
or even equal to zero [21,68,81], positive and larger than
σ [27,71,82,83], or negative with −σ < δ < 0 [23,26,84–86],
while others have claimed that the sign of δ is curvature
dependent [87,88]. Thereby, they have only confirmed the
mutual inconsistency of their assumptions and methods, while
little is truly known about δ and the dependence of the surface
tension on curvature.

The approach introduced in Sec. III is strictly based on
axiomatic thermodynamics and relies on the fact that δ∞ =
−η∞ holds in the planar limit. From the values for η reported
in bold face in Table III, corresponding to Rρ > 8σ , the excess
equimolar radius for liquid drops of the TSLJ fluid is unequiv-
ocally shown to be smaller in magnitude than σ/2, while its
remains unclear whether it is positive, negative, of both signs
(depending on the curvature), or equal to zero. No definite
conclusion can be drawn regarding the dependence of η on
curvature. Since this means that, at the present level of accu-
racy, no significant dependence of γ on the radius of the liquid
drop could be detected, the statement of Mareschal et al. [89]

regarding cylindrical interfaces also applies here: Considering
“the large fluctuations in the bulk liquid phase [cf. the error
analysis presented in Table II] we tentatively conclude that the
surface tension is independent of the curvature of the liquid-
vapor interface or else that this dependence is very weak.”

A notion that can be definitely dismissed is that of a large
and positive Tolman length (previously also reported by some
of the present authors), which is obtained by following the
mechanical route to the surface tension employing the IK
pressure tensor [27,71,82,83]. The same deviation between the
mechanical route (leading to large positive values for δ) and
a thermodynamic approach (leading to δ <0.5 σ ) was found
by Haye and Bruin [49]. As shown in Fig. 5, the previous
simulation results of Vrabec et al. [27] are actually consistent
with those from the present study if they are interpreted in
terms of the radii Rκ and Rρ . Thereby, applying the approach of
Maruyama et al. [90], only the density profile and the pressure
in the homogeneous regions inside and outside the liquid drop
are taken into account, whereas the normal pressure along the
interface is not considered at all.

Since the deviation between the present and previous
data disappears in such a representation, the disagreement
must be caused by the inadequacy of the pressure tensor
(mechanical) route implemented by Thompson et al. [36], as
pointed out by Henderson [41]. Possible sources of error in
such an approach are outlined in Sec. II. Nonetheless, more
detailed methodological investigations would be expedient to
determine which approximations are actually responsible for
major inaccuracies, and whether they can be corrected or
whether the pressure tensor route to the surface tension has
to be discarded altogether.
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FIG. 5. (Color online) Equimolar radius Rρ as a function of the
capillarity radius Rκ for TSLJ liquid drops, from density profiles
and bulk pressures determined with canonical MD simulations
at reduced temperatures of kT /ε = 0.75 (�) and 0.85 (◦), in
comparison with results from the previous work of Vrabec et al.
[27] at kT /ε = 0.75 (�) and 0.85 (•), using pressure differences
based on evaluating the IK tensor in the (approximately) homoge-
neous regions inside and outside the liquid drop. The continuous
diagonal line denotes Rρ = Rκ and thus corresponds to an excess
equimolar radius of η = 0, while the dotted lines correspond to η =
±0.5σ .
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