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Nonaffine measures of particle displacements in sheared colloidal glasses
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The nonaffine motion of particles is central to the relaxation and flow of glasses. It is usually assumed in
plasticity theories that nonaffine rearrangements are localized and uncorrelated. Here we present evidence that
this assumption may not hold. We investigate and compare systematically different measures of nonaffinity in
a sheared colloidal glass by tracking the motion of the individual particles directly with confocal microscopy.
We show that besides differences in the appearance and degree of localization of nonaffine displacements, the
nature of their fluctuations is very similar. At intermediate times, all spatial correlation functions display robust
power-law behavior, clearly demonstrating long-range correlations and critical behavior of the driven glass, in
contrast to the assumptions of plasticity theories. We show that on long-time scales, correlations become finite
and plasticity theories may apply.
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I. INTRODUCTION

The nature of displacement fluctuations in the flow of
glasses and a wide range of amorphous materials is a topic
of much current interest [1–10]. Unlike crystals, for which
translationally invariant particles experience the same amount
of local deformation under small, uniform applied stress, in
amorphous materials, the varying environment of particles
leads to strongly varying local deformation. As a result,
particle displacements can no longer be described by a single
affine transformation. In other words, in amorphous materials,
the nonaffine displacements are of the same order as the
relative affine displacements of the particles and the notion of
affine displacements breaks down, giving rise to rich nonaffine
physics [11–14]. Simulations have shown that treating the
nonaffine displacements as small corrections to the affine
displacements leads to inaccurate estimates of amorphous
material properties [3,6,7]. Furthermore, rheological mea-
surements on foams and emulsions have shown that these
nonaffine displacements can lead to anomalous viscous loss
[15]. Therefore, proper modeling of the mechanical properties
of amorphous materials requires a good understanding of
these nonaffine displacements. This is particularly important
for plasticity theories that describe material flow based
on constitutive equations. Identifying an appropriate order
parameter to incorporate nonaffine contributions remains one
of the grand challenges of such theories [4]. Insight into
these nonaffine displacements can be obtained in steady-state
flows. Recent quasistatic simulations have shown that in the
athermal limit such flows are characterized by avalanches that
span the entire system [1,2,5–8]. Such long-range-correlated
displacements contrast with many plasticity theories that
assume the nonaffine rearrangements to be localized and
independent of each other [4,16]. Very recently, long-range
correlations have been reported even for finite temperature
and shear rate [17]. Experimental evidence, however, remains
scarce and even in the quasistatic regime experiments and
simulations may not agree [18]. One reason is that different
definitions of nonaffinity have been used to measure the

nonaffine displacements and a conclusive picture remains
elusive [5,9].

In this paper we investigate systematically different mea-
sures of nonaffinity in a sheared colloidal glass. We image
the motion of the individual particles directly with confocal
microscopy and apply various definitions of nonaffinity to
elucidate the nature of the nonaffine displacements. By
comparing the fluctuations of different nonaffine measures, we
show that, besides differences in the participation ratio, all def-
initions show very similar distribution functions with identical
characteristics. We find that all distributions show consistent
power-law decay and power-law correlation functions, clearly
reflecting the criticality of the slowly driven glass.

II. EXPERIMENTAL SYSTEM

We prepare a colloidal glass by suspending sterically
stabilized fluorescent polymethylmethacrylate particles at a
volume fraction of φ ∼ 0.60 in a density and refractive index
matching mixture of cycloheptyl bromide and cis-decalin. The
particles have a diameter of σ = 1.3 μm, with a polydisperity
of 7% to prevent crystallization. The suspension is loaded
in a cell between two parallel plates 3 mm in diameter, a
distance of 65 μm apart. A schematic of the shear cell is
shown in Fig. 1. A rod immersed in a reservoir of colloidal
suspension is used to apply slow shear. The two parallel
boundaries are coated with a layer of polydisperse particles to
avoid boundary-induced crystallization. We use a piezoelectric
translation stage to move the top plate to apply shear at a
rate of γ̇ = 1.5 × 10−5 s−1 with a maximum strain of 140%.
Confocal microscopy is used to image the individual particles
and to determine their positions in three dimensions with an
accuracy of 0.03 μm in the horizontal and 0.05 μm in the
vertical direction [19]. We tracked the motion of ∼ 2 × 105

particles during a 25-min time interval by acquiring image
stacks every 60 s. All measurements presented here were
made after the sample has been strained to 100%, well in the
steady-state regime, as confirmed by independent rheological
measurements.
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FIG. 1. (Color online) (a) Schematic showing the shear setup with
the colloidal sample (cutaway) and the two opposing plates (center).
(b) Enlarged section depicting the volume imaged with the confocal
microscope.

III. NONAFFINE MEASURES OF PARTICLE
DISPLACEMENTS

When a crystal is subject to small shear deformation,
the particles exhibit affine motion; the local strain of the
particles relative to their neighbors is the same and equal
to the externally imposed strain. In an amorphous solid,
however, the displacements are highly nonaffine; the local
strain is heterogeneous. The nonaffine displacements are
typically of the same order of magnitude as the relative affine
displacements of neighboring particles and therefore cannot
be considered as small corrections to affine deformation.
Ignoring them, or treating them as a perturbation, yields highly
inaccurate estimates for macroscopic material properties such
as the elastic moduli [3,20]. In this paper we investigate various
measures of nonaffinity in a sheared colloidal glass.

A. Deviations from the global deformation �r̃

The most widely used definition of nonaffine displacement
is with respect to the global deformation [21], which can be
expressed as

�r̃i(t,δt) = ri(t) − ri(t − δt) − γ̇

∫ t

t−δt

dt ′zi(t
′)ex. (1)

Here i is the particle index, δt is the time interval over which
the displacements are computed, γ̇ is the shear rate, and ex

is the unit vector in the x (flow) direction. Equation (1)
describes the deviation of the displacement of particle i from
a linear displacement profile.

B. Deviations from locally affine motion D2

A local measure of nonaffinity is achieved by mapping the
motion of nearest-neighbor particles on an affine transforma-
tion. This is done by identifying the nearest neighbors of each
particle as those separated by less than d0, the first minimum
of the pair-correlation function, and determining the best
affine tensor � that transforms the nearest-neighbor vectors
over the time interval δt . The best affine transformation � is
determined by minimizing the quantity D2, which is defined as
the mean-square difference between the actual displacements
of the neighboring particles relative to the central one and the
relative displacements they would have if they were in a region

of uniform deformation �. That is, we define [4]

D2(t,δt) =
∑

n

∑
i

(
ri
n(t) − ri

0(t) −
∑

j

(δij + �ij )

× [
rj
n (t − δt) − r

j

0 (t − δt)
])2

, (2)

where the indices i and j denote spatial coordinates; the
index n runs over all the neighbors, n = 0 being the reference
particle; and ri

n(t) is the ith component of the position of the
nth particle at time t . We find the tensor �ij that minimizes
D2 by calculating

Xij =
∑

n

[
ri
n(t) − ri

0(t)
][

rj
n (t − δt) − r

j

0 (t − δt)
]
, (3)

Yij =
∑

n

[
ri
n(t−δt)−ri

0(t−δt)
][

rj
n (t−δt)−r

j

0 (t−δt)
]
, (4)

�ij =
∑

k

XikY
−1
kj − δij . (5)

The minimum value of D2(t,δt) is then the local deviation from
an affine deformation or the nonaffine deformation during the
time interval [t − δt,t]. This quantity has been reported to be
an excellent metric of plasticity that detects local irreversible
shear transformations [4,22].

C. Displacement fluctuations �r′

Another local measure of nonaffinity is based on the
fluctuations of particle displacements with respect to a coarse-
grained displacement field. Motivated by the ideas of classical
mechanics and kinetic theory, Goldenberg et al. [5] defined
fluctuations of the displacement and studied their correlations.
We incorporate these ideas to define a coarse-grained dis-
placement field, which is continuous, and a fluctuating part
that is obtained by subtracting the continuous displacement
field from the individual particle displacements. We define the
coarse-grained displacement field as

U(r,t ; δt) = 1

N

N∑
i=1

�ri(t,δt)�(ri(t − δt) − r) (6)

and the fluctuations as

�r′
i(t,δt) = �ri(t,δt) − U(ri ,t ; δt), (7)

where i is the particle index, N is the number of particles in
the system, and � is a coarse-graining function. Here we use
the rectangular function

�(R) = H
(
R2 − d2

0

)
, (8)

where H is the Heaviside function and d0 is the first minimum
of the pair-correlation function. We refer the readers to
Refs. [5,23] for a detailed discussion of the coarse-graining
procedures used in simulations.

D. Nearest-neighbor loss NNN

Nearest-neighbor loss has been used as a measure of
irreversibility [21] and we include it here in the comparison
of nonaffine motion. Generally, a local rearrangement can
be considered irreversible if the particles involved in the
rearrangements lose a certain number of their neighbors. A
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few computer simulations of quiescent glasses have used
the criterion of four or more neighbor losses for identifying
irreversible zones [24,25]. We adopt this procedure to pinpoint
irreversible rearrangements in our colloidal glass. We first find
the neighbors of each particle at any instant of time using
the method of Delaunay tessellation. Then, by comparing the
neighbors of each particle at time t and t − δt , we identify the
neighbors that are lost during the time interval δt and determine
their number NNN.

E. Choice of δ t

The nature of the nonaffine displacements will depend on
the time interval δt used to determine them. For quiescent
glasses, it is known that at short δt , one probes the oscillation
of particles in the nearest-neighbor cages, while at very large
δt , one probes the long-time diffusion out of these cages; at
intermediate time scales, at which particles are arrested, one
probes their collective rearrangement. An elegant way to study
the influence of the probe time on the dynamics has been given
in the framework of the dynamic susceptibility [26]. Here we
follow a simpler route based on the probability distribution of
displacements. For uncorrelated displacements, the probability
distributions are Gaussian, while with increasing spatial
correlation, increasing deviation from a Gaussian distribution
is expected. The deviation from a Gaussian distribution is
measured by the kurtosis

κ4 =
⎧⎨
⎩ 1

3N

N∑
i=1

[
�x̃i − �x̃

σ

]4
⎫⎬
⎭ − 1, (9)

allowing us to estimate the degree of correlation as a function
of probe time interval δt . In this paper we focus on the time
scale of maximally correlated motion, i.e., the time interval
that maximizes κ4.

IV. RESULTS

The mean-square displacement of particles as a function
of time is shown in Fig. 2(a). Red squares indicate the

FIG. 2. (Color online) (a) Mean-square displacement of the
quiescent [red squares (right)] and sheared glass [blue circles (left)].
Here we used 〈�r̃2〉, the mean-square displacement around the mean
global deformation [Eq. (1)]. (b) Normalized probability distribution
of nonaffine displacements (x component of �̃r) obtained at a shear
rate of γ̇ = 1.5 × 10−5 s−1 and over two different time intervals. The
black dashed line is a Gaussian distribution of zero mean and unit
variance. The inset shows kurtosis κ4 as a function of time.

FIG. 3. (Color) Real-space renderings of the magnitude of non-
affine motion for various nonaffine measures: (a) deviation from the
global deformation �̃r2, (b) deviation from local affine motion D2, (c)
fluctuations around a coarse-grained displacement field �r ′2, and (d)
number NNN of neighbors lost. A time interval δt = 120 s was used.

quiescent glass and blue circles indicate the sheared glass.
We estimate the structural relaxation time of the quiescent
glass τ ∼ 2 × 104 s from the requirement 〈�r(τ )2〉 = (σ/2)2.
When the shear is applied, this relaxation time shortens to
τs ∼ 4000 s, clearly indicating the enhanced particle diffusion
associated with the applied shear. To estimate the degree
of correlation, we show the relative frequency of nonaffine
displacements for two different time intervals in Fig. 2(b). The
tails of these distributions differ significantly from a Gaussian
distribution (dotted line). For quiescent glasses, such non-
Gaussian behavior has been attributed to correlated dynamics.
We assume here that the same interpretation holds for the
sheared glass; we will see below that this is indeed the case.
Apparently, the deviation from the Gaussian distribution is
stronger for shorter-time intervals. We quantify this deviation
by calculating the kurtosis κ4, which we show as a function
of time in the inset of Fig. 2(b). The kurtosis κ4 exhibits a
maximum at short times; on this time scale, we therefore expect
maximum correlated motion and we will focus on this regime
in the following.

Real-space distributions of nonaffine displacements for
short-time intervals are shown in Figs. 3(a)–3(d). The panels
show �r̃2, D2

m, �r ′2, and NNN, respectively, in a 5-μm-thick
section of the glass parallel to the xz plane. The magnitude
of nonaffine motion is represented with color: blue spheres
indicate particles with small nonaffine motion, while red
spheres indicate particles with large nonaffine components.
Red zones in Figs. 3(a)–3(c) demarcate regions of highly
nonaffine rearrangements; the particles in these regions have
diffused more compared to the rest. These zones are the
active zones of plastic deformation and have been referred
to as shear transformation zones [4,9,16,22,27]. The degree of
localization of the nonaffine displacements can be quantified
by the participation ratio pA = (

∑
i AiAi)2/N

∑
i(AiAi)2,

where Ai is the nonaffine displacement of particle i and
N is the total number of particles. The participation ratio
pA is of the order unity when all the particle participate
in the deformation and scales as 1/N for strongly local-
ized deformation that is concentrated over a few particles
in the system. For the distributions in Figs. 3(a)–3(c) we
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FIG. 4. (Color online) Probability distribution function of various
nonaffine measures: �̃r2 (circles), D2 (squares), and �r ′2 (diamonds)
obtained at a shear rate of γ̇ = 1.5 × 10−5 s−1. The distributions are
computed by taking an average over time intervals of δt = 240 s. The
dashed line has a slope of −2.8.

obtain p�r̃ = 0.361 ± 0.015, pD = 0.413 ± 0.02, and p�r ′ =
0.283 ± 0.022, showing that the nonaffine fluctuations of
�r ′ are relatively more localized than those of D and �r̃ .
Despite these differences, there is excellent overlap and all
the definitions succeed in capturing the same zones of high
activity. The red regions in Fig. 3(d) point to particles that
have lost a maximum number of neighbors. This distribution
appears much more scattered, but a careful comparison with
Figs. 3(a)–3(c) shows that the neighbor loss is enhanced in
regions where the nonaffine displacements are large, indicating
that these nonaffine rearrangements are irreversible.

To obtain further insight into the nature of nonaffine
fluctuations, we determine probability distribution functions
(PDFs) and measure the spatial extent of fluctuations. We
present PDFs of �r̃2, D2, and �r ′2 in Fig. 4. Interestingly,
the tails of all PDFs display very similar power-law decay,
associated with the same exponent β = −2.8 ± 0.2. Inciden-
tally, this exponent is very close to the value β = 2.66 that
was reported in computer simulations of two-dimensional
Lennard-Jones glasses [5]. Different characteristics, however,
were observed in this work for the nonaffine displacements
[Eq. (1)] and the displacement fluctuations [similar to Eq. (7)].
Both exhibited a power-law decay, however, with a different
exponent. Our results show no such difference and we observe
the same power-law distribution for all nonaffine measures
within the error margin of our experiment. We note that the
rearrangements studied here are irreversible, leading to plastic
flow, while the ones studied in Ref. [5] are reversible and in
the elastic regime, which may explain the difference.

The power-law distribution that we observe gives evidence
of critical behavior of the driven glass. To elucidate this critical
behavior, we measure how far the fluctuations of nonaffine
displacements extend in space. We determine the normalized
spatial correlation function

CA(δr) = 〈A(r + δr)A(r)〉 − 〈A(r)〉2

〈A(r)2〉 − 〈A(r)〉2
, (10)

where A = D2
m, �r̃2, or �r ′2 and δr is the distance between

two particles. Here �r̃ and �r ′ are the magnitudes of the

FIG. 5. (Color online) Angle-averaged spatial correlations of
nonaffine displacements. Different line types represent the different
definitions of nonaffinity. The solid line indicates D2, the dash-dotted
line indicates �r ′, and the dotted line indicates �r̃ .

vectors defined by Eqs. (1) and (7), respectively. The normal-
ized spatial correlation function CA correlates fluctuations of
nonaffine displacements at two points separated by δr . Spatial
correlation functions of D2 (solid line), �r̃2 (dotted line), and
�r ′2 (dash-dotted line) are shown in Fig. 5. Remarkably, all
these definitions display the same power-law decay up to δr =
50σ , the vertical system size, indicating that these fluctuations
are long ranged, and there is no characteristic length scale
associated with the nonaffine displacements. Furthermore, the
different measures of nonaffinity are characterized by a unique
exponent α = −1.2 ± 0.1. In contrast, the simulations of
two-dimensional Lennard-Jones glasses [5] showed different
spatial correlations for the nonaffine displacements [Eq. (1)]
and the displacement fluctuations [similar to Eq. (7)]. The for-
mer were observed to be long ranged, while the latter appeared
short ranged. We do not observe this difference in the plastic
flow and our results demonstrate robust power-law decay
for all definitions of nonaffinity. Such long-range correlation
may originate from the glass elasticity: Shear transformations
introduce long-range quadrupolar elastic strain fields [28] that
couple to the external applied stress and to each other [29,30].
The resulting interactions can give rise to spatiotemporal
correlation and to critical behavior of the flowing glass. Our
results clearly show that this critical scaling is robust and
independent of the specific definition of nonaffinity.

FIG. 6. (Color online) Angle-averaged spatial correlation func-
tions of nonaffine displacements D2 computed for various time
intervals δt at a shear rate of (a) γ̇ = 1.5 × 10−5 s−1 and
(b) γ̇ = 2.2 × 10−4 s−1. Different line types are used to distinguish
time intervals δt .
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This scaling behavior depends, however, on the time scale
used to compute the nonaffine displacements and the applied
shear rate. To demonstrate this, we focus on the quantity
D2 [Eq. (2)] and show correlation functions for increasing
time intervals in Fig. 6. Apparently, the correlation functions
show a tendency to curve down earlier at longer-time intervals,
suggesting a decreasing correlation length. While our limited
time window does not allow us to clearly validate this point
for the current strain rate of 1.5 × 10−5 s−1 [Fig. 6(a)], we
have performed shear experiments at a higher strain rate of
2.2 × 10−4 s−1 [Fig. 6(b)] that show this trend more clearly.
As the time interval grows, correlations become shorter ranged,
indicating that nonaffine rearrangements become increasingly
localized. While Fig. 6 shows only the nonaffine quantity
D2, all other nonaffine measures exhibit the same behavior.
We conclude that on long-time scales, spatial correlations are
lost and the rearrangements become increasingly localized and
independent of each other.

V. CONCLUSION

We have investigated various nonaffine measures of the
flow of amorphous materials using three-dimensional real-
space measurements on colloidal glasses. We find that the
fluctuations of all these nonaffine measures show very con-
sistent characteristics. The persistent power-law probability
distributions and power-law correlation functions that we
observe clearly indicate critical behavior of the glass when
slowly driven out of the arrested state. This long-range
nature of the nonaffine displacements contrasts with mean-
field theories of plasticity that assume rearrangements to be
localized in space. While on long-time scales correlations
are finite and these plasticity theories apply, at intermediate-
and short-time scales correlations span the entire system,
prohibiting the definition of a coarse-graining length scale on
which constitutive equations of mean-field plasticity theories
can be formulated, thereby calling for alternative concepts of
such theories.
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