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Elastic waves in the presence of a granular shear band formed by direct shear
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The propagation of elastic waves in a box under direct shear, filled with glass beads and being sheared at
constant rates, is studied experimentally and theoretically. The respective velocities are shown to be essentially
unchanged from that in a static granular system under the same pressure and shear stress but without a shear
band. Influence of shear band on sound behaviors are also briefly discussed.
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I. INTRODUCTION

Granular media are known to display both elastic and plastic
behavior [1]. A pronounced elastic behavior is the propagation
of longitudinal and transverse waves, quite similar to that in an
elastic system [2] (see also Ref. [3] for the study of nonlinear
effects at higher amplitudes). On the other hand, the critical
state of granular media displays striking plastic behavior [4]:
When being sheared at a constant rate, the shear stress of a
granular system will, after first increasing as in any elatstic
system, saturate at a constant value that is independent of the
rate. The asymptotic state, ideally plastic, is usually referred to
as critical. If the initial density is low, the shear stress increases
monotonically as the strain accumulates, until it reaches the
saturated, critical stress σc. If the initial density is high, the
shear stress will first go through a maximum σM , before
arriving at the same σc. Frequently, a shear band is formed
right after σM . Conceptually, it is simply the concentration of
shear rate and plasticity within a narrow region. The question
we pose here is: How do the elastic and plastic behavior affect
each other? More specifically, how is the propagation of elastic
waves influenced by the constant shear rate that occurs in a
shear band?

Two seemingly straight answers contradict each other when
considering the difference between sound propagation in a
static granular medium and one that is being sheared: (1)
Microscopically, it appears obvious that enduring contacts in
a static medium are essential for the transmission of sound.
If the system is being sheared slowly enough, such that the
contacts remain for a number of wave oscillations, nothing
much should change: With d the diameter of the grain, γ̇ the
shear rate, ω the angular frequency of sound wave, γ̇ d is
the velocity difference, which, during the time span of 1/ω,
should yield a displacement much smaller than d, or ω/γ̇ � 1.
(2) Macroscopically, we know that the propagation of waves
depends critically on the system being elastic. For an ideally
plastic state, stress does not increase for increasing strain, and
it has no restoring force. So we must conclude that elastic
waves do not exist.

As we shall see, neither answer is quite right. Microscopi-
cally, before particles lose contacts due to shearing, something
else occurs that kills the waves: The slight jiggling and
slipping of the grains produced by the shear rate—quantified
by the granular temperature Tg—softens the contacts, relaxes
the stress, and restricts wave propagation. Since the jiggling

grows with the shear rate, Tg ∼ γ̇ , so does the restriction.
As shown below, the existence of elastic waves depends on
the inequality, ω/γ̇ � �, where typically � ≈ 102 for sand.
So this condition is rather more stringent than ω/γ̇ � 1.
Macroscopically, the critical state may be seen as a stationary
solution, in which the rate of stress increase produced by a
given shear rate is just the amount being relaxed [5]. Therefore,
additional stress fluctuations given by an elastic wave no longer
relax, and (if varying fast enough) will propagate as a wave
signal. (In contrast to the work in Ref. [6], we consider only
normal incidence of the sound. Also, sound amplification due
the presence of a shear band as considered in Ref. [7] is
ignored.)

We employ granular solid hydrodynamics (GSH) [8] to
evaluate wave propagation, starting from an appropriate elastic
energy and assuming that the anisotropy is predominantly
stress-induced. As shown in Ref. [9], the propagating velocities
of elastic waves as a function of the applied external stress are
well accounted for. When the medium is being sheared, two
additional effects need to be included: The associated slipping
and jiggling of the grains and the softening of the granular
contacts.

The macroscopic stress is maintained by the elastic de-
formation of the grains. When the grains slip and jiggle,
they briefly loose contact with one another, during which
some of their elastic deformation is lost, and the macroscopic
stress relaxes, leading to an enhanced damping mechanism
characteristic of the granular system. For ω/γ̇ � � (i.e., when
the effect is too strong), the collective modes of elastic waves
become diffusive and no longer propagate. Mathematically
speaking, this is analogous to propagation of electromagnetic
waves in conductors.

When granular contacts soften, and the effective elastic
stiffness decreases by the factor (1 − α)2 in GSH (with α of
the order of 0.8; see Ref. [10]), the wave velocity ∼1 − α

is reduced by a factor of five. Microscopically, this may be
related to force chains being disrupted by shear rates, as the
system is softer when less force chains are present. (A minimal
number of force chains remain robust, as these are needed to
maintain the system’s mechanical stability.) Mathematically,
this is analogous to a dielectric permeability of (1 − α)−2.

In a system containing a shear band, an elastic wave
propagates in the static solid region and traverses the shear
band. The propagation in the static region remains unchanged
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from that in a static system without a shear band. In the
shear band—assuming it is in the continually deforming,
stationary critical state—elastic waves will propagate but are
subject to the above two effects. The behavior is similar to an
electromagnetic wave propagating in vacuum and traversing
a conducting layer with a large dielectric permeability. In a
time-of-flight experiment, if the shear band is narrow, the
wave is in the solid region most of the time. Therefore, the
averaged velocity should not change much by the presence of
the shear band. Neither should the amplitude change much due
to the enhanced damping mechanism. So generally speaking,
propagation of elastic waves is not a sensitive probe for the
presence of shear bands. On the other hand, the significantly
reduced wave velocity in the shear band implies that there
will be considerable reflection at the rim of the shear band,
or the elastic-plastic boundary, which should further reduce
the magnitude. Unfortunately, this is not easily observed:
Due to considerable multiple scattering in granular media,
the wave velocity is usually measured at the leading edge,
while the coda wave, containing almost all of the wave energy,
is neglected [2]. Observing a further reduction of the already
strongly diminished leading edge requires cleaner experiments
than is usually given.

Previously, Khidas and Jia have performed similar exper-
iments [11] in the same setup. The differences are twofold:
First, the two-leg shear they applied is avoided here, which
eliminates a source of uncertainty; second, though the experi-
mental data are comparable, they seem to have concluded that
the presence of shear band is felt by the velocity of the elastic
wave, which is in contradiction to our main conclusion.

The experiments and simulation of Hostler and Brennen
[12] concentrate on sound in granular media, but they probed
the depth of its complexity by varying a number of conditions,
including: grain size and form, glass and PVC, the duration
of pulse, frequency, and transducer geometry. Most notably,
they observed sound propagation while the granular bed is
being shaken. When aiming to interpret their results using
GSH, one needs to be aware that although GSH includes
all dissipative mechanisms, especially plastic deformations
such as rearrangements of grains and force chains, it is a
macroscopic theory that holds only in the robust and universal
limit of long wave lengths, in which individual force chains,
however fragile and ephemeral, are averaged over. This is the
same limit of coherent wave propagation in different force
chains that Jia et al. studied [2]. Most of the data in Ref. [12]
are not in this limit. Moreover, although GSH gives the sound
velocity as a function of Tg and the static stress, shaking the
granular bed (the upper side of which is open) changes Tg

and the static stress at the same time, without any separability.
This renders a comparison to GSH’s results difficult. Also,
the finding that pressure change is detected at the second
transducer up to a shaking acceleration of 2g unfortunately
does not discriminate whether the pressure pulse is being
propagated or diffused—the two limits of our theory; see
Sec. III B—again making a comparison difficult.

II. EXPERIMENT

A schematic diagram of the experimental setup is shown in
Fig. 1. Our samples consist of randomly packed glass beads

FIG. 1. Experimental setup, with a typical emitted and received
signal.

of diameter d = 1.7–2.0 mm in a direct shear apparatus, S =
70 × 70 mm. The total inner height of the cell is 49 mm,
separated into two parts with the top part of 26 mm and the
lower one of 23 mm. The total mass of the glass beads is M =
355 ± 0.5 g. Samples are prepared by tapping the sidewall of
the box to reach a compact packing of the volume fraction
0.648 ± 0.002. The density of glass bead is 2441 kg/m3. A
normal load N , corresponding to the apparent pressure in the
range of 183–366 kPa is applied to the top cell. At such a load
level, the influence of gravity can be neglected.

The lower cell sitting on a steel ball bearing is pushed by a
motor at a constant speed, v0 = 13.3 μm/s, while the top part
is connected to a fixed digital ring force gauge. The stiffness
coefficient of the force gauge is 5.25 × 105 N/m. The shear
stress is measured by the ring force gauge. Two dial gauges are
used to measure the displacements of the upper and lower cells.
Figures 2(a) and 2(b) show variations of the shear stress σxz

and averaged density ρ = M/hS, where h is the momentary
height of the shear box, measured by the top force gauge, with
the shear displacement of x = v0t . The stress variations are
similar to illustrations in soil mechanic textbooks. They have a
peak value that increases linearly with the top load, after which
the stress approaches a stationary value (not fully reached). As
all our samples have high initial densities, they dilate with
shearing.

A large wave transducer (of diameter 45 mm) is placed at
the center of the inner surface of the top cell, and a smaller
receiver (of diameter 10 mm) is fixed to the center of the inner
surface of the bottom cell. A sinusoidal pulse of frequency
f = 50 kHz, generated every 0.02 second, is emitted from
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FIG. 2. Evolution of the shear stress (a), the average density (b),
and sound velocity (c) for the shear box experiment.

the transducer through the granular bed to the receiver. The
emitted and received signals such as rendered in Fig. 1, are
recorded by an oscilloscope. In our experiment, the wavelength
is approximately 2 cm � d . Since it is much larger than the
particle diameter, the scattered waves are quickly attenuated.
We measure the time-of-flight of the coherent wave tf and
divide it by the traveled distance L, the thickness of the
granular bed, obtaining velocity c = L/tf .

The longitudinal sound velocity is measured for four
different top loads, N = 0.183, 0.244, 0.305, and 0.366 MPa,
while the transverse velocity is measured only for one top load,
0.244 MPa. Initial densities of the samples vary slightly from
1579 to 1582 kg/m3. The experimental results are shown by
symbols in Fig. 2(c). The measured velocities decrease about
10% as the shear stress σxz varies from 0 to its maximum σM

and then increases slightly (<2%). The transverse velocity has
a similar behavior but is about half the speed of the longitudinal
ones—consistent with the observation in Ref. [11].

III. EVALUATION OF WAVE VELOCITIES

We use a purely elastic approach to calculate the velocity
of elastic waves for the solid region. In the present experiment
of constant normal pressure and shear rate, the shear stress and
density vary with time. As the initial density is consolidated,
the stress undergoes a maximum. The wave velocity is
evaluated assuming a series of static states with the same
pressure, stresses, and density. And the results agree well.

A. In a static granular medium

According to the elasticity theory, for the case of plane
waves propagating in a sample of uniform stress, the velocities
are given by the square roots of the eigenvalues of the following
matrix [13] (summation on repeated foot indices is assumed),

Sij = Mimnj k̂mk̂n/ρ, (1)

where ρ is mass density, k̂n = kn/
√

kiki the unit wave vector,
and Mimnj the stiffness tensor, given as the derivation of the
stress σim with respect to the elastic strain unj ,

Mimnj = ∂σim/∂unj . (2)

Moreover, the stress is given by deriving the elastic energy
density w = w(ρ,uij ),

σim = −∂w/∂uim. (3)

Using Eqs. (1)–(3), wave velocities can be calculated as
functions of density and stress, c = c(ρ,σij ), after the w(ρ,uij )
is given. For the simplest case, w is a quadratic function of uij ,
implying linear elasticity, for which c is independent of the
stress σij . The elasticity of granular matter is nonlinear, and
wave velocities depend on both the density and stress.

A simple yet fairly realistic elastic potential w for cohe-
siveless granular matter is [8,10]

w = B0Bρ

√
	

(
	2 + 3u2

s /2
)
, (4)

where 	 ≡ −ukk and us ≡
√

u∗
ij u

∗
ij (with u∗

ij ≡ uij + 	δij /3)

are bulk and shear strain, respectively. Bρ is a density-
dependent factor:

Bρ =
(

ρ/ρc − ρ1

1 − ρ/ρc

)0.15

. (5)

It accounts (i) for the softening of the granular matter when
it becomes looser; and (2) for the fact that the density of
granular solids cannot go below the random loose packing
density ρ� and cannot exceed the random close packing density
ρc. (Note 9ρ1 = 20ρ�/ρc − 11; see Ref. [8] for details.) We
take ρ� = 0.85ρc, with ρ1 = 0.67, B0 = 2.36 GPa, and ρc =
1585 kg/m3.

When analyzing the wave velocities in a shear box as
outlined above, density and stress inhomogeneities in the sam-
ples, together with the associated fluctuation of the velocity,
are neglected. However, in a time-of-flight experiment, one
measures the averaged velocity, which may approximately be
taken as a function of the averaged stress and density.

Given the stress and density, the nonlinear elasticity ren-
dered by Eqs. (1)–(5) describes completely the wave velocities.
For the shear box we use, only two components of σij , the top
load σzz = N and the shear force −σxz = F (as shown in
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FIG. 3. A failure geometry used for estimation of stresses inside
the shear box.

Fig. 3), can be measured. The other components need to be
estimated, usually by assuming that the principle axis of the
maximum stress has the angle θ = 450 + ϕ/2 with respect to
the shear band, where ϕ is the internal friction angle. (This is
a widely adopted assumption in soil mechanics [1].) The other
two principle stresses we take to be degenerate. Consequently,
our samples are subject to the isotropic stress: σij = Nδij for
F = 0. These circumstances are shown in Fig. 3, in which
x ′,y ′,z′ denote axes of principle stresses with z′ being the
maximal one, and x,y,z the coordinates for computing sound
velocities. From the principle stresses σ1 = σ2 = N − F cot θ
and σ3 = N + F tan θ � σ1, we obtain the following stress
tensor in x,y,z:

σij =

⎛
⎜⎝N + F

(
sin2 θ
cot θ − cos2 θ

tan θ

)
0 −F

0 N − F
tan θ

0

−F 0 N

⎞
⎟⎠ . (6)

For glass beads, we choose a typical value ϕ ∼ 270 for the
internal friction angle. Using the stress tensor Eq. (6), the wave
velocities c(ρ,N,F ) are calculated. The results are rendered

FIG. 4. Variation of wave velocities with shear stress, for the
shearing process described in the legend of Fig. 2. Symbols are
measurements; full curves are results of GSH.

FIG. 5. Dashed curve, sound velocity at constant density. Sym-
bols and full curve are the same as described in the legend of Fig. 4.

as full curves in Fig. 4, as function of the measured ρ,N,F

from Fig. 2. The agreement is good.
Figure 5 illustrates the effect of density dependence, which,

if taken as constant (the initial density of 1581 kg/m3, in
addition to N = 0.305 MPa), would not yield the curves
of Fig. 4. Rather, the wave velocity as depicted decreases
monotonically with F . The measured curve has a turning point,
around which there are two velocities for the same F , though
at different densities.

B. Influence of shear band

For a brief estimation of influence of shear band on the
above elastic results, we start with two basic equations of
GSH:

ρ∂tvi − (1 − α)∇mKimklukl = 0, (7)

∂tu
0
ij − (1 − α)v0

ij = −λTgu
0
ij . (8)

(For simplicity, we concentrate on shear waves, assuming
v�� ≡ 0.) The first equation accounts for the conservation
of momentum and the second for the motion of the elastic
stress [8]. For α,Tg = 0, they reduce to the simple elasticity
theory employed in the last subsection.

The granular temperature Tg quantifies the excitation of
grains, how they slip and jiggle. For small shear rates γ̇

(such as accompanying an elastic wave through a static
granular medium), we have Tg ∼ |γ̇ |2, and we may neglect
the quadratically small relaxation term −λTgu

0
ij . For larger γ̇ ,

we have Tg ∼ |γ̇ |, and we may again neglect the variation in
|γ̇ | that accompanies an elastic wave, because the dynamics
of Tg is too slow to follow the oscillation of the wave.
The off-diagonal Onsager coefficient α = α(Tg) vanishes for
Tg ∼ γ̇ 2 → 0 and quickly saturates at constant shear rates γ̇

(for both shear rates of the experiment because of the minimal
number of force chains mentioned above).

Taking α ≈ 0.8 and rewriting λTg = λ
√

η/γ |v0
ij | ≡

�|v0
ij |, with � ≈ 102, we combine Eqs. (7) and (8) to obtain

the telegraph equation

∂2
t ū = (c2∇x − �γ̇ ∂t ) ū, (9)
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for the amplitude ū ∼ eiqx−iωt , of an eigenvector for the elastic
wave, propagating along x̂, where the new wave velocity c,
denoted as

c = (1 − α)cstatic, (10)

is reduced by the above factor from its static value c2
static, given

by the eigenvalues of Eq. (1) [14].
Inserting ū ∼ eiqx−iωt into Eq. (9), we find

c2q2 = ω2 + iω�γ̇ , (11)

implying, for the high-frequency limit ω � �γ̇ ,

q ≈ ±ω

c

(
1 + i

�γ̇

2ω

)
= ±

(
ω

c
+ i

�γ̇

2c

)
, (12)

and simple diffusion for the low frequency limit, ω � �γ̇ ,

q ≈ ±
√

ω�γ̇

c

1 + i√
2

. (13)

With the shear rate of the experiment γ̇ � 1/s, and the
frequency of the elastic wave ω � 103/s, the condition of the
high-frequency limit ω � �γ̇ is satisfied. Inserting Eq. (12)
into ū ∼ eiqx−iωt , the wave form is

exp

[
−iω

(
t ∓ x

c

)
t ∓ x

�γ̇

2c

]
. (14)

The first term accounts for wave propagation, the second a
frequency-independent decay length 2c/�γ̇ . In contrast, the
reduction of c is rate-independent. It is worth it to note that
the reduction is not observed by the present time-of-flight
experiment because the shear band is too thin in comparison
with the height of shear box. The decay in the Eq. (14) may

exist in The received signal, but we cannot separate it out
because it is too complicated by multiple scattering.

IV. DISCUSSION AND CONCLUSION

The propagation of elastic wave depends on the stress,
density, and the level of granular jiggling quantified as Tg . Our
measurements of wave velocities employing the time-of-flight
method are capable of showing the first two dependencies
but proves less appropriate for probing the influence of Tg ,
which according to GSH changes both the velocity and the
damping. Since Tg is present only inside the shear band, which
is rather narrow, we may neglect its influence on the velocity
in a time-of-flight experiment. The comparison of theory and
experiment presented above shows the validity and accuracy
of the present setup for determining the elastic potential and
its parameters employed in GSH.

The influence of Tg on damping is measurable, and with
it also the influence on the received total signal strength. We
observe a change of the signal due to the presence of the shear
band, where especially the amplitude of the signal’s first cycle
decreases by a factor of three. Although the received signal is
dispersed and complicated (see the inset of Fig. 1), with the first
cycle being a very small portion of the total signal, this behav-
ior seems suggestive of the reflection discussed in the last sec-
tion. However, before any conclusions may be drawn, we need
to return, in a future paper, to undertake a more detailed study.
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