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Force chains and contact network topology in sheared packings of elongated particles
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By means of contact dynamic simulations, we investigate the contact network topology and force chains in
two-dimensional packings of elongated particles subjected to biaxial shearing. The morphology of large packings
of elongated particles in quasistatic equilibrium is complex due to the combined effects of local nematic ordering
of the particles and orientations of contacts between particles. The effect of elongation on shear behavior and
dilatancy was investigated in detail in a previous paper [Azéma and Radjai, Phys. Rev. E 81, 051304 (2010)]. Here,
we show how particle elongation affects force distributions and force-fabric anisotropy via various local structures
allowed by steric exclusions and the requirement of force balance. We find that the force distributions become
increasingly broader as particles become more elongated. Interestingly, the weak force network transforms from
a passive stabilizing agent with respect to strong force chains to an active force-transmitting network for the
whole system. The strongest force chains are carried by side-side contacts oriented along the principal stress
direction.

DOI: 10.1103/PhysRevE.85.031303 PACS number(s): 45.70.−n, 83.80.Fg, 61.43.−j

I. INTRODUCTION

Most remarkable properties of granular materials are
closely related to their specific disorder induced essentially
by steric exclusions and the force balance condition for each
particle. The broad and strongly inhomogeneous distribution
of contact forces, as a hallmark of granular disorder, has been
a subject of extensive investigation [1–10]. In spite of particle
mobility and disorder, granular materials exhibit a finite shear
strength due to a genuine anisotropic two-phase organization
of the contact network involving strong force chains propped
by weak forces [11].

The robustness of these microstructural features with re-
spect to particle geometry and interactions has been addressed
only recently by discrete-element numerical simulations. For
example, it is found that in highly polydisperse systems
the force chains are mainly captured by large particles so
that the shear strength of a noncohesive granular material
is practically independent of particle-size distribution [12].
As another important example, a parametric study shows that
when the particles interact by both sliding friction and high
rolling resistance at their contacts, the nature of the weak
network is affected by the formation of columnar structures,
which do not need to be propped by a particular class of weak
contacts [13].

The particle shape is another major characteristic of
granular material. Most applications of real granular materials
involve some degree of deviation with respect to simple
circular or spherical shapes often used in simulations by the
discrete-element method. While the numerical treatment of
large packings of complex particle shapes was until very
recently out of reach due to demanding computational re-
sources, there is presently considerable scope for the numerical
investigation of complex granular packings. This is not only
due to the enhanced computer power and memory but also
because during more than two decades of research in this field,
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many properties of granular media have been investigated for
model packings composed of circular and spherical particle
shapes. Such properties thus provide a rich guideline for the
analysis of specific behaviors arising from particle geometry.

Systematic studies of particle shape dependence in gran-
ular materials have been recently reported for polygonal
and polyhedral [14–17], elliptical and ellipsoidal [18–21],
and nonconvex shapes [22]. The force chains are found
to be reinforced in packings of polygonal and polyhedral
particles, leading to enhanced shear strength [15,18,23]. The
effect of shape elongation was investigated for packings of
rectangular-shaped particles deposited under gravity [24,25].
The preparation under gravity has strong influence on the
particle orientations and thus on the force distributions. On
the other hand, a systematic study of the shear behavior of
two-dimensional (2D) packings of rounded-cap rectangles
(RCR) under homogeneous boundary conditions indicates
that the shear strength increases with elongation whereas the
packing fraction varies unmonotonically [18], as also found
for packings of ellipsoidal shapes [20,21].

In all reported cases, the networks resulting from various
shapes appear to be highly complex and hardly amenable to
simple statistical modeling. In this paper, we investigate the
contact and force networks in sheared granular packings of
elongated particles in two dimensions with increasing aspect
ratio. The numerical samples are composed of RCR particles
and basically identical to those used for the investigation of
the effect of particle elongation on the shear and volume-
change behavior in a previous paper [18]. In this work, we
focus more specifically on the organization of the contact force
network in correlation with the fabric anisotropy described
in terms of branch vectors joining particle centers. Our data
reveal a bimodal force network as in disk packings but with
qualitatively different roles of fabric and force anisotropies.
This behavior involves a short-range nematic ordering of the
particles with side-side contacts that capture stronger force
chains. On the other hand, the friction mobilization is shown
to be anisotropic and it plays a major role in the stability of
elongated particles.
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FIG. 1. Shape of a rounded-cap rectangle (RCR).

In the following, we first summarize our numerical proce-
dures as described in more detail in Ref. [18]. Some salient
results of that work will be recalled, too. Then, we analyze the
microstructure of the samples in terms of the branch vectors
and their correlations with the contact forces. Finally, we
present a detailed analysis of the partial stresses and fabric
anisotropies sustained by force subnetworks. We conclude
with a summary of the main results of this work and its possible
applications.

II. BRIEF DESCRIPTION OF NUMERICAL PROCEDURES
AND PREVIOUS WORK

The simulations were carried out by means of the contact
dynamics (CD) method as a discrete element model (DEM)
of rigid particles [10,26–35]. As described in more detail in
Ref. [18], we model the RCR particle as a juxtaposition of
two half-disks of radius R′ with one rectangle of length L and
width 2R′ as shown in Fig. 1. The shape of a RCR particle is
a circle of radius R′ for L = 0. To represent the deviation of
the particle shape from a circle, we define the dimensionless
parameter η given by

η = �R

R
, (1)

where R = L/2 + R′ is the radius of the circle circumscribing
the particle and �R = R − R′ = L/2. η varies from 0 for a
circle to 1 for a line.

Eight different packings of 13 000 RCR particles are
prepared with η varying from 0 to 0.7 by steps of 0.1. The
radius R of the circumscribing circle defines the size of a
RCR particle. A size polydispersity is also introduced by
taking R in the range [Rmin,Rmax] with Rmax = 2Rmin with a
uniform distribution in particle volume fractions. The samples
are prepared by random sequential deposition in a rectangular
box [36–38], followed by isotropic compaction. Figure 2
displays snapshots of the packings for several values of η at the
end of isotropic compaction. The isotropic samples are then
sheared by applying a low velocity on the top wall at constant
velocity for a constant confining stress acting on the lateral
walls.1 The friction coefficient μ between particles is set to
0.5 and to 0 with the walls. The shear is essentially quasistatic
so that the kinetic energy is negligible compared to the applied
lateral stress.

In Ref. [18], the stress-strain behavior was studied in detail
as a function of particle elongation. The stress tensor σ in the
volume V is an arithmetic mean involving the branch vectors �c

1See [http://cgp-gateway.org/ref010 for video samples].

η = 0.3

η = 0.6

η = 0.1

FIG. 2. (Color online) Examples of the generated packings at the
initial state.

(joining the centers of the two touching particles) and contact
force vectors f c at contact c, and it is given by [39,40]

σ = 1

V

∑
c∈V

f c
α �c

β . (2)

Hence, the internal angle of friction ϕ of a granular sample in
the course of its evolution is given by

sin ϕ = q

p
= σ1 − σ2

σ1 + σ2
, (3)

where σ1 and σ2 are the principal stresses. Starting with an
initially dense state, the shear stress tends to a nearly constant
value corresponding to the critical state, which is independent
of the initial packing configuration. In parallel, all packings,
which are prepared initially by isotropic compaction in a dense
state, dilate monotonically and tend to a constant packing
fraction in the critical state.

It was shown in Ref. [18] that sin ϕ, evaluated in the
critical state for different samples, increases linearly with η.
The “microscopic” origin of this behavior was analyzed by
means of an additive decomposition of the stress tensor. It
was shown that the increasing mobilization of friction force
and the associated anisotropy are the key effects of particle
shape elongation. In the critical state, the proportion of sliding
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contacts increases with η in correlation with a local nematic
ordering of the particles tending to be oriented perpendicular to
the major principal stress direction. Another interesting finding
was the rather counterintuitive result that the packing fraction
first increases with particle elongation but then declines to
lower values for more elongated particles. Remarkably, the
coordination number does not follow this trend but increases
with elongation, so that the packings of the most elongated
particles are loose but well connected.

In this paper, the simulation data are exploited in order to
characterize more specifically the effect of shape elongation
with respect to the contact network and force transmission
in the critical state. We present a detailed description of the
distributions of branch vectors, contact forces, and friction
mobilization. Then, we focus on the weak and strong force
networks and their properties as functions of elongation.

III. DISTRIBUTIONS OF CONTACT FORCES AND
BRANCH VECTORS

A common approach used by various authors is to express
branch vectors and contact force orientations in terms of the
contact direction, that is, in the local contact frame (n,t), where
n is the unit vector perpendicular to the contact plane and t
is the orthonormal counterclockwise unit vector as shown in
Fig. 3. The components of the branch vector and contact force
are expressed in the following frame:

� = �nn + �t t,
(4)

f = fnn + ft t,

where �n and �t are the normal and tangential components of
the branch vectors, and fn and ft the normal and tangential
components of the contact force. Note that only for disks or
spherical particles do we have � = �n, where � is the length
of the branch vector.

A specific feature of the contact network of a packing
of elongated particles is that the length � of branch vectors
strongly varies throughout the network depending on the
relative particle orientations. From the definition of η [Eq. (1)]
and for given values of Rmin and Rmax, it is easy to see that

�

Rmax
∈

[
2

Rmin

Rmax
(1 − η),2

]
. (5)

In our simulations, since Rmin/Rmax = 0.5, we have (1 −
η)Rmax � � � 2Rmax. With increasing elongation η, the range
of � becomes significant and its statistics can be used as a
meaningful characterization of the texture as a function of

f

n

t

FIG. 3. (Color online) Local contact frame (n,t).

η. On the other hand, the correlation of � with the total
reaction force f between neighboring particles seems to be
a good descriptor of the organization of forces for particles
of noncircular shape. The branch vectors are also important
as they enter the expression of the stress tensor given by
Eq. (2). In Ref. [18], a different point of view was adopted: The
contact forces were projected along and perpendicular to the
branch vectors and their statistics were investigated. The same
framework was used for the decomposition of the total stress
tensor. Here, we focus on the distribution of contact forces and
their correlation with the branch vector as η is increased.

A. Contact forces and friction mobilization

The probability density function (PDF) of normal forces
normalized by the mean normal force 〈fn〉 is shown in Fig. 4
in log-linear and log-log scales at large strains (the data are
cumulated from several snapshots in the critical state) for all
simulated values of η. As usually observed, in all packings the
number of forces above the mean 〈fn〉 falls off exponentially
whereas the number of forces below the mean varies as a power
law:

P (fn) ∝
{

e−αn(η)(fn/〈fn〉), fn > 〈fn〉,(
fn

〈fn〉
)βn(η)

, fn < 〈fn〉, (6)

where αn(η) and βn(η), whose variations are shown in the
insets, are functions of η. We see that αn decreases with
increasing η, implying that the inhomogeneity of normal forces
becomes higher as the particles become more elongated. On the
other hand, βn declines from 0.1 to −0.4 with η, which means

(a)

(b)

FIG. 4. (Color online) Probability distribution function of normal
forces fn normalized by the average normal force 〈fn〉 in log-linear
(a) and log-log (b) scales for different values of η.
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(a)

(b)

FIG. 5. (Color online) Probability distribution function of tan-
gential forces ft normalized by the average tangential force 〈ft 〉 in
log-linear (a) and log-log (b) scales for different values of η.

that the proportion of weak contacts (carrying a normal force
below the mean) increases with elongation. The proportion of
weak forces grows from 60% for η = 0 to 70% for η = 0.7. In
other words, while the proportion of strong contacts declines
with increasing η, stronger force chains occur at the same time.

Figure 5 shows the PDF P (ft ) of tangential forces nor-
malized by the mean tangential force 〈|ft |〉 in each packing.
These distributions show also an exponential falloff for the
forces above the average force 〈|ft |〉 and a power law for the
forces below 〈|ft |〉:

P (ft ) ∝
{

e−αt (η)(|ft |/〈|ft |〉), |ft | > 〈|ft |〉,( |ft |
〈|ft |〉

)βt (η)
, |ft | < 〈|ft |〉, (7)

the corresponding exponents αt (η) and βt (η) decreasing with
η. We observe that, in contrast to αn and βn, the exponents αt

and βt saturate beyond η = 0.4. This means that the friction
forces do not follow the normal forces as η increases. In
other words, the most mobilized (largest) friction forces do not
occur necessarily at the contacts where the normal forces are
higher.

In order to investigate the properties of friction mobi-
lization, we consider the friction mobilization index Im =
|ft |/μfn. Its average IM = 〈 |ft |

μfn
〉 increases from 0.4 for η = 0

to 0.6 for η = 0.7 as we see in Fig. 6. This increase underlies
to a large extent the increase of the shear strength with η,
as we see in Sec. IV. However, the friction force is not
uniformly mobilized at all contacts. Figure 7 shows a map
of weak (fn < 〈fn〉) and strong (fn > 〈fn〉) normal forces,
represented by the thickness of vectors joining the particle

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
η

0.3

0.4

0.5

0.6

0.7

I M

FIG. 6. Friction mobilization IM averaged in the critical state as
function of η.

centers to the contact points, and the corresponding values of
Im, represented by circles with diameters proportional to Im

for η = 0.1 and η = 0.7. Visual inspection reveals that most
mobilized contacts belong to the weak force network. In fact,
the average friction mobilization Imf defined as the average by
force class, plotted as a function of fn in Fig. 8 for all values
of η, declines as fn increases. We also see that the friction
mobilization increases with η at all force levels.

Figure 9 displays the pdf of Im for different values of η in
the critical state. For the disks, the PDF is a nearly decreasing
linear function of Im, which means that the proportion of
weakly mobilized contacts is larger than that of strongly

(a)

(b)

FIG. 7. (Color online) A snapshot of the force-bearing particles
at η = 0.2 (a) and η = 0.7 (b) and normal forces represented by the
thickness of the segments joining the particle centers to the application
point of the force. The strong and weak forces are in black and red
(dark gray), respectively. The diameter of the yellow (light gray)
circle is proportional to Im at the contact.
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FIG. 8. (Color online) Friction mobilization Imf as the average
by force class, as a function of fn for all η.

mobilized contacts. As η is increased the distribution becomes
more uniform, and at even larger η a class of highly mobilized
contacts (with Im close to 1) appears, whereas the distribution
is nearly uniform for all other contacts. This class belongs
to weak force network, as was shown previously, so that not
only the friction mobilization Im but also the number of highly
mobilized contacts are larger in the weak force network. A
class of very weak forces was also evidenced in Ref. [41] in
a packing of disks deposited under gravity and tilted toward
its angle of stability. This subclass of the weak network can
be defined as the class of contacts where the normal force is
below the mean but the friction is highly or fully mobilized.

This enhanced friction mobilization implies that the equili-
bration of the particles is more complex than in disk packings.
In particular, the nematic ordering due to the “geometrical”
chains of side-side contacts between particles means that the
statistics of forces and the mobilization of friction are closely
related to the equilibrium of such chains rather than that of
individual particles. These chains are evidenced in Fig. 10
for η = 0.7 where the force-bearing particles belonging to the
chains are represented by a color level proportionally to their
orientations. The friction needs to be highly mobilized inside
the chains in order to ensure their stability.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
I
m
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η = 0.2
η = 0.3
η = 0.4
η = 0.5
η = 0.6
η = 0.7

FIG. 9. (Color online) Probability distribution function of the
friction mobilization index Im.

FIG. 10. (Color online) A snapshot of the force-bearing particles
at η = 0.7 and normal forces represented by the thickness of the
segments joining the particle centers to the application point of the
force. The color level for the particles is proportional to the orientation
of the major particle axis for the particles with at least one side-side
contact. The particles having no side-side contacts are in gray. The
strong and weak forces are in black and red (dark gray), respectively.

B. Branch vectors

The branch vectors in a packing of elongated particles
reflect both the relative orientations of the particles in contact
and their size distribution. The latter may be integrated out
by simply dividing the branch vector length � between two
touching particles by the sum R1 + R2 of the radii R1 and
R2 of their circumscribing circles. This reduced branch-vector
length �r = �/(R1 + R2) varies in the range [1 − η,1]. We
have �r = 1 at η = 0 (for disks). For elongated particles,
�r = 1 corresponds to a cap-cap contact between two aligned
particles, Fig. 11(a), whereas �r = 1 − η corresponds to a
centered side-side contact between two parallel particles,
Fig. 11(b). Such contact configurations, when they exist, can
be evidenced from the probability density function of �r and
its possible modes at �r = 1 or �r = 1 − η.

Figure 12 displays the PDF of reduced branch-vector
lengths for all values of η in the critical state. These PDFs
are nothing but normalized radial functions with �r varying in
a limited range as only the touching particles are considered.
They are similar for all values of η. The first mode, centered
on �r = 1 − η, reveals the presence of a broad population
of side-side contacts with a peak increasing in amplitude
with η as displayed in Fig. 13(b). We also observe a less
pronounced mode, centered on �r � 1, corresponding to a
distinct population of aligned cap-cap contacts, also marked
in Fig. 13(a). The intermediate mode occurs approximately at
�r � 1 − η/2, which is the midpoint of the interval [1 − η,1].
This length corresponds to an orthogonal side-cap contact as
shown in Fig. 11(c). The presence of such a distinct mode,
through decreasing in amplitude as η increases, is a clear
proof of the occurrence of orthogonal layers, some of which

(a) (b) (c)

FIG. 11. Principal contact modes: cap-cap (a), side-side (b), and
cap-side (c).
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FIG. 12. (Color online) Probability distribution function of the
reduced branch-vector lengths �r for all values of η in the critical
state.

are observed in Fig. 13. This mode is also characterized by a
broad extension reflecting the intermediate angles between the
orientations of touching particles.

We expect the branch vector lengths to be correlated with
contact forces because of either the contact configurations they
represent or simply the fact that force chains tend to be captured
by larger particles (hence, longer branch vectors) [12]. This
correlation can be estimated with the Pearson coefficient,
which for two random variables x and y is defined by the
scalar

Cxy = 〈(x − 〈x〉)(y − 〈y〉)〉√
〈(x − 〈x〉)2〉

√
〈(y − 〈y〉)2〉

, (8)

Note that C = 1 corresponds to a full interdependence whereas
C = 0 means full statistical independence of the two variables.
Figure 14 shows the Pearson coefficients Cf �r

, between the
force amplitude f and �r , as well as Cf �, between f and �, as a
function of η. Both coefficients decrease with η from positive
values for η � 0.3 to negative values down to −0.22. The

FIG. 13. (Color online) A snapshot of cap-cap modes contact
(blue [black]), side-side modes contacts (red [dark gray]), and cap-
side modes contacts (green [light gray]).

FIG. 14. (Color online) Correlation C�Rf and C�f as a function
of η averaged in the critical state.

positive correlation (larger forces at longer branch vectors)
is a consequence of the fact that the distribution of branch
lengths at low values of η is governed by particle sizes. On the
other hand, the negative correlation (larger forces at shorter
branch vectors) reflects the effect of the increasing number of
side-side contacts as the particles become more elongated.

Further insight into this force and branch-length correlation
can be obtained from the average force amplitude 〈f 〉�r

,
calculated by taking the average force in a class of contacts
in the interval [�r − ��r/2,�r + ��r/2], as a function of �r ,
shown in Fig. 15(a) for all values of η. This plot shows
that for all contact classes the associated mean force 〈f 〉�r

is nearly equal to the global mean force 〈f 〉 except to the
class of the shortest branch vectors (side-side mode), which

(a)

(b)

FIG. 15. (Color online) Linear correlation between contact force
f and branch length � as a function of η.
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concentrates a mean force above 〈f 〉, and the class of the
longest branch vectors (cap-cap mode), which seem to carry a
considerably lower force on the average. In his way, the rather
weak correlation between the reduced branch length and force
appears here to be governed by the two aforementioned modes.
In order to evidence the effect of particle size distribution, let us
consider the average force amplitude 〈f 〉� as a function of � as
shown in Fig. 15(b) for all values of η. For η � 0.3, the contact
force is on the average an increasing function of �. For disks
(η = 0), the variation of � is a consequence only of the particle
size distribution and, therefore, the increase of the mean force
with � means that the larger particles, involved in the longer
branch vectors, capture higher forces. The same effect seems
thus to underly also the increasing mean force with η for
elongated particles with η � 0.3. But at larger elongations,
the trend is reversed, and we see that the mean force declines
as � increases, reflecting thus the effect of the side-side contact
mode as discussed previously.

IV. WEAK AND STRONG FORCE NETWORKS

The complex network of contact forces in a packing of
elongated particles can also be analyzed by considering the
contribution of various classes of forces and/or branch vectors
to stress transmission. Indeed, according to Eq. (2), the stress
tensor is expressed as an average involving branch vectors
and contact forces, so that partial summations allow one to
define partial stress tensors that have been applied in the past to
investigate the scale-up of local quanties [11]. For example, the
subset of contacts carrying a force below a threshold reveals the
respective roles of weak and strong force chains with respect
to the overall shear strength of granular materials [11]. In this
section, we apply this methodology to analyze the stress and
other texture-dependent quantities in view of elucidating the
effect of particle elongation.

In what follows, we consider various fabric and force
parameters for the “ξ networks” defined as the subsets S(ξ )
of contacts which carry a force below a cutoff force ξ

normalized by the mean force (i.e., fn/〈fn〉 ∈ [0,ξ ]), where
ξ is varied from 0 to the maximal force in the system.
The weak network corresponds to S(1) whereas the strong
network is its complement. In Sec. III, we focused on scalar
descriptors of granular texture such as the distributions and
correlations of force magnitudes and branch lengths. Beyond
these low-order quantities, the granular texture is characterized
by a disordered but anisotropic structure of both the contact
and force networks, which require higher-order description in
terms of various fabric and force tensors. We analyze below
different parameters pertaining to this tensorial organization
of our packings as a function of ξ and for increasing
elongation η.

A. Granular texture

A relevant description of granular texture is given by the
probability distribution P (n) of the contact normals n; see
Fig. 3. In two dimensions, the unit vector n is described by
a single angle θ ∈ [0,π ]. The distribution Pθ (θ ) of contact
orientations can be evaluated from the numerical data at
different stages of its evolution. In our simulations, all

π/2

0

FIG. 16. (Color online) Distributions of contact orientations
(symbols) in polar coordinates for η = 0.5 and several values of
the force cutoff ξ together with their Fourier fits (11) (full lines).

numerical samples are prepared in an isotropic state so that
Pθ = 1/π in the initial state. This distribution evolves with
shear strain and becomes increasingly more anisotropic as the
critical state is approached. By restricting the data to those
belonging to the ξ networks, we obtain a continuous family of
distributions Pθ (θ,ξ ) that describe the geometrical state of the
system. In practice, however, such functions can be estimated
with meaningful statistics only in the critical state where
the data can be cumulated from independent configurations
representing all the same state.

Figure 16 shows the distributions Pθ (θ,ξ ) in polar coordi-
nates for η = 0.5 and for several values of ξ . The distributions
are similar with nearly the same privileged direction aligned
with the principal stress direction θσ = π/2 but with increasing
anisotropy as a function of ξ . They all can be approximated
by their truncated Fourier expansion [11,13,15]:

Pθ (θ,ξ ) = 1

π
{1 + ac(ξ ) cos 2(θ − θσ )}, (9)

where ac(ξ ) is the amplitude of contact anisotropy in the ξ

network. In practice, it is more convenient to estimate ac(ξ )
through the partial fabric tensors F(ξ ) defined by [42]:

Fαβ(ξ ) =
∫ π

0
nα(θ )nβ(θ )Pθ (θ,ξ )dθ, (10)

where α and β design the Cartesian components. By definition,
we have tr(F(ξ )) = 1. Introducing the harmonic expression (9)
in (10), we get

ac(ξ ) = 2(F1(ξ ) − F2(ξ )) cos 2[θc(ξ ) − θσ ], (11)

where the subscripts 1 and 2 refer to the principal values of
F(ξ ) and θc(ξ ) represents the privileged direction of the partial
fabric tensors F(ξ ). Note that, up to statistical fluctuations, the
principal directions of the fabric and stress tensors coincide in
the critical state for each ξ network, so that the phase factor
cos 2[θc(ξ ) − θσ ] is either equal to 1 when θc(ξ ) = θσ or equal
to −1 when θc(ξ ) = θσ + π/2.

Figure 17 displays ac as a function of ξ for all values
of η. For the disk packings (η = 0), the anisotropy of weak
contacts is negative but increases in absolute value and reaches
its peak value at ξ ∼ 1. This negative value indicates that in
disk packings the weak contacts are orientated preferentially
perpendicular to the major principal stress direction [11]. As
more contacts come into play with increasing ξ , the partial
anisotropy ac(ξ ) becomes less negative and finally changes
sign, showing that the strong contacts are mainly along the
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FIG. 17. (Color online) Partial fabric anisotropy ac as a function
of force cutoff ξ normalized by the mean force 〈f 〉 for different values
of η.

major principal stress direction. This bimodal behavior of
stress transmission is a nontrivial organization of the force
network and holds also in three dimensions (3D), in the case
of sphere packings [16]. However, it is remarkable that for
elongated particles (η > 0), the partial anisotropies of both
weak and strong networks are positive, as observed in Fig. 17.
This means that, in contrast to the disk packings, the weak
and strong contacts in packings of elongated particles cannot
be differentiated on the basis of their roles in the ξ networks.
Physically, this behavior may be interpreted by stating that
the static equilibrium of the chains of elongated particles
does not require the stabilizing effect of the weak contacts. A
similar result was observed by Estrada et al. for disk packings
at large values of rolling resistance, which allows for the
equilibrium of long chains of particles interconnected by only
two contacts [13]. But, as we see below, for our elongated
particles the differentiation between the two networks operates
via the forces carried by the ξ networks.

The information involved in the angular distribution Pθ may
be enriched by accounting for the branch vectors � which,
as seen in Sec. III, reflects both the particle size distribution
and local contact modes. We thus consider here the average
normal and tangential branch vector components 〈�n〉(θ,ξ ) and
〈�t 〉(θ,ξ ) defined in Eq. (4), obtained by averaging �n and �t

over the contacts oriented along θ within a centered angular
interval �θ . As for Pθ , we evaluate these functions in the
critical state, for different values of η and as ξ . Figure 18 shows
the functions 〈�n〉(θ,ξ ) and 〈�t 〉(θ,ξ ) in polar coordinates
for η = 0.5 and for several values of ξ . These functions
are anisotropic with an anisotropy which depends on ξ . We
introduce here their truncated expansion on an orthonormal
Fourier basis:

〈�n〉(θ,ξ ) = 〈�n〉(ξ ){1 + aln(ξ ) cos 2(θ − θσ )},
(12)〈�t 〉(θ,ξ ) = 〈�n〉(ξ )alt (ξ ) sin 2(θ − θσ ),

where aln(ξ ) and alt (ξ ) are the normal and tangential branch
anisotropies in the ξ networks. Note that by construction we
have alt = 0 for disks (η = 0). The analytical form of 〈�t 〉(θ,ξ )
results from the orthonormal nature of the Fourier basis and the
fact that the mean value of �t vanishes due to axial symmetry:∫ π

0
〈�t 〉(θ,ξ ) Pθ (θ,ξ ) dθ = 0. (13)

π/2

0

π/2

0

(a) (b)

FIG. 18. (Color online) Distributions of 〈�n〉(θ,ξ ) (a) and
〈�t 〉(θ,ξ ) (b) (symbols) in polar coordinates for η = 0.5 and several
values of the force cutoff ξ together with their Fourier fits (19) (full
lines). Note that the amplitudes are always negative for 〈�t 〉(θ,ξ ) as
shown in Fig. 19.

Figure 18 shows that this functional form provides a good
approximation of the data.

For the calculation of aln(ξ ) and alt (ξ ), we introduce the
following branch tensors [18]:

χln
αβ(ξ ) =

∫ π

0
〈�n〉(θ,ξ )nα(θ )nβ(θ )Pθ (θ,ξ )dθ,

(14)
χlt

αβ(ξ ) =
∫ π

0
〈�t 〉(θ,ξ )nα(θ )tβ(θ )Pθ (θ,ξ )dθ,

The following relations are then easily obtained:

aln(ξ ) = 2
χln

1 (ξ ) − χln
2 (ξ )

tr[χ ln(∞)]
− ac(ξ ),

(15)

alt (ξ ) = 2
χl

1(ξ ) − χl
2(ξ )

tr[χ l(∞)]
− ac(ξ ) − aln(ξ ),

where χ l = χ ln + χ lt and the subscripts 1 and 2 refer to
the principal values of each tensor. By construction, we have
trχ l = (χl

1 + χl
2) = 〈�n〉. Note also that the two partial branch

vector anisotropies aln and alt may be positive or negative.
Figure 19 shows the branch-vector anisotropies aln(ξ )

and alt (ξ ) as a function of ξ in the critical state for all
values of η. aln(ξ ) is positive for η = 0 and η = 0.1 and
increases slightly with ξ , but for more elongated parti-
cles it takes negative values, which means that the parti-
cles tend to form longer branch vectors with their neighbors
in the direction of extension. As ξ increases, this anisotropy
increases in absolute value and reaches a plateau after passing
by a peak value at a point in the range ξ ∈ [1,2]. This
behavior suggests that the particles touch preferentially along
their minor axes when the contact orientation is close to the
compression axis (in the strong network) and along their major
axis when the contact orientation is close to the extension axis
(in the weak network), in agreement with the fact that the
longest branches are in the weak network; see Sec. III. As for
alt (ξ ), its value is always negative and increases monotonically
with ξ in absolute value. Note also that, for all values of ξ ,
alt (ξ ) is much higher than aln(ξ ), while both remain weak
compared to ac(ξ ).

B. Force anisotropies

We now consider the angle-averaged normal and tangential
forces, 〈fn〉(θ,ξ ) and 〈ft 〉(θ,ξ ), in the ξ network. A second-
order Fourier expansion provides an adequate representation
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FIG. 19. (Color online) Partial normal and tangential branch
vector length anisotropies aln and alt as a function of force cutoff
ξ normalized by the mean force 〈f 〉 for different values of η.

of these distributions for all values of ξ as shown in Fig. 20:

〈fn〉(θ,ξ ) = 〈fn〉(ξ ){1 + af n(ξ ) cos 2(θ − θσ )}
(16)〈ft 〉(θ,ξ ) = 〈fn〉(ξ )af t (ξ ) sin 2(θ − θσ ),

where af n(ξ ) and af t (ξ ) are the amplitudes of normal and
tangential force anisotropies in the ξ networks. Notice that
we have 〈ft 〉 = 0 as a consequence of the balance of force
moments, which is also at the origin of the symmetry of the
stress tensor. More generally, 〈fn〉(θ ) and 〈ft 〉(θ ) behave like
the components σn(θ ) = σn.n and σt (θ ) = σn.t of the stress
tensor on a plane oriented along the direction θ , although they
do not derive from a single tensor. This analogy works also for
the peak value of 〈ft 〉(θ,ξ ), which occurs at an angle rotated
by π/4 with respect to that of 〈fn〉(θ,ξ ).

π/2

0

π/2

0

(a) (b)

FIG. 20. (Color online) Distributions of 〈fn〉(θ,ξ ) (a) and
〈ft 〉(θ,ξ ) (b) (symbols) in polar coordinates for η = 0.5 and several
values of the force cutoff ξ together with their Fourier fits (16) (full
lines). Note that the amplitudes are always positive for 〈ft 〉(θ,ξ ) as
shown in Fig. 21.

As for the branch length vectors, the calculation of the
anisotropy parameters af n(ξ ) and af t (ξ ) can be done by means
of the following force tensors [11,18]:

χ
f n

αβ (ξ ) =
∫ π

0
〈fn〉(θ,ξ )nα(θ )nβ(θ )Pθ (θ,ξ )dθ,

(17)
χ

f t

αβ (ξ ) =
∫ π

0
〈ft 〉(θ,ξ )nα(θ )tβ(θ )Pθ (θ,ξ )dθ.

With these definitions, the following relationships can easily
be established:

af n(ξ ) = 2
χ

f n

1 (ξ ) − χ
f n

2 (ξ )

tr[χf n(∞)]
− ac(ξ ), (18)

af t (ξ ) = 2
χ

f

1 (ξ ) − χ
f

2 (ξ )

tr[χf (∞)]
− ac(ξ ) − af n(ξ ), (19)

where χf = χf n + χf t and the indices 1 and 2 refer to the
principal values of each tensor. By construction, we have
tr(χf ) = χ

f

1 + χ
f

2 = 〈fn〉. The two partial force anisotropies
af n and af t may take positive or negative.

The normal and tangential force anisotropies are plotted in
Fig. 21 as a function of ξ for all values of η. A remarkable
feature of af n(ξ ) is that its value is negative in the weak
network (ξ < 1) for all elongated particles, that is, for all
values of η with the exception of η = 0, where it remains
positive for all ξ . Hence, the weak forces in a packing of
elongated particles occur at contacts preferentially oriented
orthogonally to the principal stress direction θσ whereas in a
disk packing they are parallel. As we saw before, an inverse

0 1 2 3 4 5 6 7 8
ξ

-0.2

-0.1

0.0

0.1

0.2

0.3

a fn

η=0.0
η=0.1
η=0.2
η=0.3
η=0.4
η=0.5
η=0.6
η=0.7
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0.2

0.3
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η=0.2
η=0.3
η=0.4
η=0.5
η=0.6
η=0.7

FIG. 21. (Color online) Partial normal and tangential force
anisotropies af n and af t as functions of force cutoff ξ normalized
by the mean force 〈f 〉 for different values of η.
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behavior occurs for the contact anisotropies; that is, the weak
contacts in the packings of elongated particles are parallel
to the principal stress direction and orthogonal for the disk
packings. af n(ξ ) increases in absolute value as ξ increases
and passes by a peak at exactly ξ = 1, then declines as more
contacts from the strong network with a positive contribution
to the anisotropy are included in the ξ network. At larger
values (beyond ξ � 2 for nearly all values of η), af n(ξ )
becomes positive as the strong forces tend to be parallel to the
principal stress direction. This unmonotonic behavior of the
partial force anisotropies for the elongated particles and the
partial contact anisotropies for the disk packings underlies
the differentiation between the weak and strong networks
according to the values of the normal contact forces with
respect to the mean force (ξ = 1). The difference between
the elongated particle packings and disk packings reflects the
formation of side-side contacts oriented along the principal
stress direction tending to capture the strong force chains.

The tangential force anisotropy af t (ξ ) is an increasing
function of both ξ and η. Its value is generally below af n(ξ )
but becomes comparable for the most elongated particles for
which the friction mobilization plays a key role, as discussed
previously. This is plausible as the tangential force anisotropy
represents friction mobilization at contacts oriented at π/4
with respect to the major principal stress direction.

C. Stress tensor

The physical importance of geometrical and mechanical
anisotropies becomes clear when it is considered in connection
with the stress tensor. As shown by Eq. (2), the stress tensor
is a function of discrete microscopic parameters attached to
the contact network. It is also possible to attribute a stress
tensor to each ξ network by restricting the summation to the
corresponding contacts:

σ (ξ ) = 1

V

∑
c∈V

f c
α (ξ )�c

β(ξ ). (20)

For sufficiently large systems, the dependence of volume
averages on individual discrete parameters vanishes [18,43]
and the discrete sums can be replaced by integrals as follows:

σαβ(ξ ) = nc

∫


fα(ξ )�β(ξ ) Pξ (� f )d f d�, (21)

where Pξ (� f ) is the joint probability density of forces and
branch vectors in the ξ networks, nc is the number density of
contacts for the whole system, and  is the integration domain
in the space (�, f ).

The integral appearing in Eq. (21) can be reduced by
integrating first with respect to the forces and branch vector
lengths. Considering the components of the forces and branch
vectors in contact frames (n,t), and assuming that branch-force
correlations can be neglected in each ξ network as in the whole
network (see Fig. 14), we get [16,18,43]

σαβ(ξ ) = nc

∫ π

0
{〈�n〉(θ,ξ ) nα(θ )

+〈�t 〉(θ ) tβ(θ )}{〈fn〉(θ,ξ )nα(θ )

+〈ft 〉(θ,ξ ) tβ(θ )}P (θ,ξ ) dθ. (22)
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FIG. 22. (Color online) Partial shear stress q/p as a function of
force cutoff ξ for different values of η (plain line) together with
approximation given by Eq. (23) (points).

The expression of the stress tensor by this equation makes the
average directional functions representing the fabric and force
states appear explicitly.

Using the harmonic approximation introduced before,
Eq. (22) can be integrated with respect to space direction θ

and we get the following simple relation:

q(ξ )

p
� 1

2
{ac(ξ ) + aln(ξ ) + alt (ξ ) + af n(ξ ) + af t (ξ )},

(23)

where the cross products among the anisotropy parameters
have been neglected. This relation expresses the normalized
shear stress as a half-sum of texture and force anisotropies.
Figure 22 displays the partial shear stress q(ξ )/p as a function
of ξ together with the approximation given by Eq. (23). As
we see, Eq. (23) provides an excellent fit to the data for
all values of ξ and η. Interestingly, q(ξ < 1)/p is zero for
disk packings, implying that strong forces carry the whole
deviatoric load. The partial stress deviator q(ξ = 1)/p in the
weak network increases slightly with η but remains in all
cases weak (below 0.1). This transition reflects a qualitative
change in the condition of local force balance in the presence of
clusters as shown in Fig. 10. In other words, for these packings
the weak network sustains also partially the deviatoric load
applied to the system. The weak values of q/p in the
weak network is a consequence of the large positive value
ac(ξ = 1) = 0.3, which compensates the negative values of
af n(ξ = 1), aln(ξ = 1) and alt (ξ = 1).

V. SUMMARY

In summary, using contacts dynamics simulations, we
analyzed the granular texture and topology of forces chains
in various packings composed of elongated particles under
biaxial compression. As compared to disk packings, the effect
of particle elongation is to enhance the heterogeneity of the
packings by the clustering of the particles according to their
contact modes. In particular, the side-side contacts tend to
capture strong force chains and be oriented orthogonally to the
major principal stress direction. These features are reinforced
as the particle elongation is increased. The probability densi-
ties of the normal forces become broader with stronger force
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chains characterized by an exponential distribution as in disks
packings and with higher number of weak forces decreasing
as a power law with the force.

An interesting finding of this work concerns the differ-
entiation between the strong and weak force networks for
elongated particles. In contrast to disks packings, where the
contacts in the weak network are on average perpendicular to
the contacts in the strong network, the contacts in a packing of
elongated particles are, on average, oriented along the major
principal stress direction both in the weak and strong networks.
However, the weak forces in the case of elongated particles
show a negative anisotropy in the sense that the average normal
force in the weak network has its maximum value in the
contacts perpendicular to the strong network. In other words,
while in the disk packings the strong forces chains are propped
by many weak lateral contact, for elongated particles the strong
force chains are laterally sustained by less contact but larger
weak forces. A harmonic decomposition of the stress tensor
shows, however, that for both disks and elongated particles, the
compensating effects of force and contact anisotropies lead to
small shear stress deviator carried by the weak network.

Our simulation data indicate that the larger global shear
strength of a packing of elongated particles increases with
elongation mainly due to the increase of friction mobilization
and friction force anisotropy. The normal force anisotropy is

large but nearly independent of elongation. On the other hand,
the correlation between contact forces and branch vectors
joining particle centers reveal a subnetwork of weak contacts
with high friction mobilization and small branch vector
length.

In conclusion, the packings of elongated particles in 2D
reveal a nontrivial texture allying the geometry of the particles
with the preferred orientations of the contacts induced by
shearing and equilibrium of particles. Some features are
reminiscent of disk packings but are strongly modulated by
the particle shape. More work is under way to clarify the
effect of particle shape by focusing on the local structures. On
the other hand, many aspects of the packings analyzed in this
paper are specific to two dimensions. The side-side contacts
in 3D between particles of spherocylindrical shape do not
give rise to nematic ordering, and the particle rotations and
forces moments play a major role in the equilibrium of such
particles. This point can be analyzed only by performing 3D
simulations of large packings of spherocylinders of varying
elongation. However, since the class of side-side contacts
controls to a large extent the specific behavior of elongated
particles in 2D, we believe that similar features should occur
in 3D for platy particles, which may give spontaneously rise
to geometrical chains of face-face contacts. Such simulations
require, however, much more computational effort.
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