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Polymerlike statistical characterization of two-dimensional granular chains
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Statistical behaviors of packing collections of granular chains in a two-dimensional container have been
investigated experimentally. On compaction from their own gravity, the longer chains pack into a structure with
lower packing density due to the prevalence of backbone loops. The packing of chains can be considered as
the jamming of the granular system. The structure factor of packing chains shows scaling behavior g(q) ∼ q−2

in good agreement with dense polymer solutions. In addition, we compute various probability distributions of
distances and estimate three crucial contact exponents, finding that the scaling behavior from granular chains is
in accord with the theoretical expectation of polymers. Finally, an orientational anticorrelation of granular chains
is observed by bond-bond correlation function, which agrees with the results in the two-dimensional model of
compact polymers.
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I. INTRODUCTION

Static packing structure of granular materials remains a
puzzle of fundamental interest studied by many theoretical [1]
and experimental [2] works. Recently Zou et al. investigated
the static packing structure of granular chains in a three-
dimensional cylinder by x-ray tomography, and found that
the low packing density of long chains originates from the
jamming of myriad semirigid rings [3]. They suggested that
the packing of granular chains showed a close similarity to
that in the glass transition of real polymers, that is, the glass
transition in real polymers might parallel a jamming transition
in granular chains. Thus the research on the static packing
of granular chains is probably helpful for understanding the
structural properties of the compact polymer materials.

Inspired by the insights in Zou’s findings, one naturally
speculates that some characterizations of two-dimensional
granular chains are supposed to be, at least to some extent,
similar to polymers in two dimensions as well. It is well
known that static scaling laws for two-dimensional polymers
have been theoretically established [4,5]. For example, the
size R(N ) of dense polymers suggested by de Gennes can be
scaled as N ≈ RD(N ) where R2(N ) is the average square
end-to-end reduced distance, D is the spatial dimension, and
N is the chain length, respectively. Furthermore, computer
simulations provide a theoretical analysis of static and dynamic
behaviors of two-dimensional polymers [6–10]. In spite of
substantial theoretical progress achieved as noted above,
polymers confined to two dimensions are experimentally
difficult to be realized [11]. However, we indeed know that
static and dynamic structures of two-dimensional granular
chains can be directly visualized [12–14]. It is therefore
plausible that the experimental research on static behavior
of two-dimensional granular chains should assist the progress
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in indirect validation of polymer theory if the analogy with
two-dimensional polymers can be drawn.

In this paper we initially establish a static granular chain
system to create and observe a variety of conformations of
compacted granular chains. After recording every conforma-
tion by a high-resolution digital camera, we compute the
packing density of granular chains as a function of the chain
length. By extracting ball-center coordinates of every spherical
grain on the chain precisely, we calculate the structure factor
for different chain lengths, finding the scaling exponent in
agreement with the result of two-dimensional dense polymer
solutions. We also calculate scaling probability distribution
functions for long chains, and discuss the similarity of scale
behavior between granular chains and polymers. Finally, the
bond-bond correlation from long granular chains is obtained
to show the absence of long-range orientational order.

II. EXPERIMENTAL SETUP

Our experimental establishment consists of granular chains
confined in a two-dimensional rectangular glass container
(300 mm long, 150 mm high, and 3.28 mm wide), shown in
Figs. 1(a) and 1(b). The inner surface of the container is cleaned
as smooth as possible to diminish the friction. The granular
chains with free ends are composed of metal spheres and rods.
The spheres with a diameter of 3.06 ± 0.15 mm connect
to each other via a rigid rod with a diameter of 0.70 mm.
The rod between two spheres can stretch out and draw back
freely, and the maximum length of the rod connecting two
neighboring spheres is about 1.28 mm as shown in Fig.
1(c). The spheres can freely rotate around rigid rods, and
the maximum bone-flex angle between adjacent spheres is
denoted by θmax. For convenience, the amount of spheres
required to form a smallest possible ring is used to characterize
the stiffness of the granular chain instead of θmax. In our
experiment, the maximum bone-flex angle θmax = 51.4◦ and
the minimum amount ξ = 2π/θmax ≈ 7 are shown in Fig. 1(d).
To ensure a sufficient number of spheres for data statistics,
and leave space appropriate for spatial exchange of chains,
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FIG. 1. (Color online) (a) Photograph of a close-packed collec-
tion of a single long chain (N = 2048) confined in a two-dimensional
container. The dyed spheres indicate both free ends. (b) Container
dimensions. (c) Illustration of the length of the rod connecting two
nearest spheres. (d) Minimum number of spheres required to form a
loop on a semirigid chain, and the maximum bone-flex angle.

chains are purposely filled to about 2/3 volume of the container
[Fig. 1(a)]. Then we take advantage of a compaction method,
which has been successfully applied to the compaction of
granular chains [14]. When the compaction is achieved, a
high-resolution digital camera is used to take snapshots to
capture static packing configuration of chains in the container.
After repeating the compaction method many times, we record
packing configurations, and from these photographs extract the
coordinates of every ball center for following data statistics.

III. PACKING DENSITY AND STRUCTURE FACTOR

Here we define the static packing density as ρN = A0/A,
where A0 is the area occupied by all chains in the container,
and A is the total area including all chains and the voids
among them. After every data point is averaged by ten trails,
the packing density is plotted as a function of chain length, that
is, the number of spheres per chain, as shown in Fig. 2(a). We
clearly observe that ρN declines monotonically with increasing
N , from ρN ≈ 0.77 for N = 4 to a saturation value ρN ≈
0.62 at large N on the characteristic curve. The plot is
qualitatively similar to that of three-dimensional experiments
in Ref. [3], in which Zou et al. suggested that the glass
transition temperature of polymers, Tg , and the specific
packing volume, VN = 1/ρN , of granular chains should be
analogous quantities. The specific packing volume VN can
be described as the weighted sum of Ve and Vb, VN =
Vb − 2l(Vb − Ve)/N [3], where Vb is the specific packing
volume as N → ∞, Ve is the contribution from the ends
of chains, and l ∼ ξ is the correlation length of ends. The
form of the specific packing volume is identical to the Flory
law, commonly used to describe the dependence of the glass
transition temperature on chain length and chain configuration,

(a)

(b)

FIG. 2. (Color online) (a) Packing density as a function of chain
length N using a semilogarithmic scale. Each point with error bar is
the average of ten trials. (b) Plot of specific packing volume VN =
1/ρN , normalized by the bulk (N → ∞) value Vb, versus chain length
N . The solid line indicates unity.

Tg = Tg,∞ − K/N , where K is a polymer-specific parameter.
In the same way, we find that for the linear granular chains,
the specific packing volume shown in Fig. 2(b) can also be
described by VN = Vb − 2l(Vb − Ve)/N , where the best fit
gives l = ξ = 7, Vb = 1.60, and Ve = 1.49. In the spirit of
the jamming phase diagram [15] and the analogy proposed by
Ref. [3], we speculate that there might be a similar connection
between polymers and macroscopic chains. In this sense, the
specific packing volume of granular chains can presumably
be analogous to the glass transition temperature of polymers.
Nevertheless, it is noteworthy that the observations do not
prove that the polymer glass transition must be attributed to
the jamming of chains.

In order to illustrate detailed packing structures of chains
and over various length scales, we calculate the static structure
factor defined as

g(q) = 〈g(�q)〉 = 1

M2

M∑

i=1

M∑

j=1

〈exp[i �q · ( �Ri − �Rj )]〉. (1)

Here, �Ri is the location of the ith ball and M is the number
of balls in the system. We average g(�q) over all directions of
the wave vector �q and all conformations in the experiment to
obtain g(q). Figure 3 displays the structure factor g(q) for the
packings of granular chains from N = 4 to 2048. Usually, g(q)
for a linear polymer is expected to scale in the intermediate
wave vector regime as g(q) ∼ q−1/ν [4]. Linear polymers
in two dimensions of the dilute or semidilute solutions, or
long granular chains confined within a flat container, exhibit a
fractal scaling behavior with the exponent ν = 3/4 [5,11,12].

Here in Fig. 3 the exponent ν = 1/2, which indicates that
our granular chains still maintain a relatively dense packing
even though the avoided crossings are enough for long chains,
is in agreement with the result of two-dimensional dense
polymer solutions [4,16].
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FIG. 3. (Color online) Structure factor g(q) of the chains obtained
from the experiment as described in text, as a function of qd (d is
the diameter of spheres on the chain) for different chain lengths. To
characterize the decay in the intermediate regime of wave vector q,
our results are compared to a power-law exponent −2, indicated by the
blue dashed line to guide eyes. The peak near qd = 2π corresponds
to the average sphere spacing of chains.

IV. CONTACT EXPONENT

In order to extract universal features of the granular chain
structure, the probability distribution function of the distance
between two points which form a segment inside the same
chain is always considered [4]. It is noteworthy that the
distribution function in polymer science appears to be universal
in D dimensions [17,18] and can be described by [9]

Gi(�r) = R−D
i Fi(x), (2)

where i = 0,1,2, the scaling variable x = |�r|/Ri , �r is the
distance vector between two points, and R2

i is the second
moment of the respective distribution. The scaling probability
distribution functions Fi(x), which is universal as well, for
different chain length N and i are shown in Fig. 4. For the case
i = 0, F0(x) characterizes the end-to-end distance distribution
function with the segment S0 = N . When i = 1, F1(x) is the
distribution function of the distance between two points with a
segment S1 = N/2; i = 2, F2(x) is the distribution of an inner
segment space with S2 = N/4. In Fig. 4, Fi(x) for long chain
N = 1024,2048 almost overlap completely in every panel. It is
clearly shown that Fi(x) exponentially decays for long distance
(x > 1). For short distance (x < 1), the behavior of the
universal function Fi(x) in polymers is given by Fi(x) ∼ xθi

for x → 0 [17,18], where θi is the contact exponent. In our
experiment, fitting power functions are consequently used to
produce final estimations θ0 = 1.1, θ1 = 1.3, and θ2 = 1.5
for F0(x), F1(x), and F2(x), respectively. For three panels in
Fig. 4 we find that the scaling behavior measured from granular
chains is in a good accord with the expectation of theory of
polymers. In particular, in the region of x 
 1, the similar
scaling characteristics between granular chains and polymers
further imply a possible unifying connection. However, it is
important to point out that the contact exponents extracted
from the power-law fitting disagree with the self-avoiding walk

(a)

(b)

(c)

FIG. 4. (Color online) Log-Log plot of the scaling probability
distribution Fi(x) for different chain lengths N = 1024 (open square)
and N = 2048 (open circle) versus the scaling variable x = |�r|/Ri .
The contact exponent θi is estimated by fitting the approximate scaling
function xθi , as shown by solid lines. All data come from 1000 original
photographs.

(SAW) model (θR
0 = 11/24, θR

1 = 5/6, and θR
2 = 19/12) [17]

and the compact polymer model (θC
0 = 3/8, θC

1 = 1/2, and
θC

2 = 3/4) [9]. The discrepancies between these exponents are
serious enough to be noticed. Our estimate θ0 = 1.1 is larger
than θR

0 = 0.4583 and θC
0 = 0.375, which indicates that the

meeting possibility for two ends of compacted granular chains
is less than two models. Additionally, the “limiting ring closure
probability” exponent γ1 = (d + θ1)ν = 1.65 for a chain to
form a “tadpole” ring is different from γ R

1 = 17/8 in the
SAW model [17]. The compacted granular chains thus cannot
be exactly described by the SAW model and the compact
polymer model. Nevertheless, the qualitative similarity of
scaling probability distribution functions are clear enough to
imply that simple macroscopic granular chains can capture
some statistical characteristics of polymers.

V. BOND-BOND CORRELATION

We initially extract the coordinates of ball centers along a
single chain in order. Using these data, we calculate the bond-
bond correlation function P (n − n′) = 〈�b(n) · �b(n′)〉, which
is able to validate long-range orientational order in various
system, where n and n′ are sphere labels, and �b(n) is the bond
connecting sphere n and n + 1, as indicated in the inset of
Fig. 5. P (n − n′) is shown in Fig. 5 for long chains N = 1024
and N = 2048, respectively. Due to the local bending of the
chain, the correlation function falls rapidly from unity, vanish-
ing at n − n′ ≈ 7, and showing a maximum anticorrelation at
n − n′ ≈ 11. This local backfolding of the chain can be directly
visualized in the experiment, as illustrated in the inset of
Fig. 5. As (n − n′) � 1, the bond-bond correlation function
will eventually return to zero. This result suggests that there
is no long-range orientational order for static packing of long
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FIG. 5. (Color online) The bond-bond correlation measured along
a single long chain for N = 1024 (open square) and N = 2048 (open
circle). The correlation function shows a maximum anticorrelation at
n − n′ ≈ 11 due to the local bending of the chain. Inset: spheres are
arranged into a near-minimal loop.

linear chains, which is consistent with the observation in the
two-dimensional simulation of compact polymers [8].

VI. CONCLUSIONS

In summary, we experimentally investigate various static
properties of granular chains in two dimensions, and our results
exhibit important statistical information of chain systems at
macroscopic length scales. The long chains pack into a loose
structure and do not show a long-range orientational order. The
structure factor is calculated and the exponent ν = 1/2 agrees
with the result of dense polymers. The probability distribution
function of distance satisfies a scaling form that is expected
by the polymer theory. It is worth emphasizing that these
polymerlike characterizations do not provide a conclusive
proof where granular chains can be exactly analogous to
molecular chains, that is, polymers in static statistics. These
results imply that macroscopic granular chains are able to
capture some essential aspects of real polymers. In some
important respects such as the packing structure the similarity
suggests that if the analog between the two-dimensional
granular chains and polymers indeed exists, granular chains
would be a helpful tool to understand the underlying physics
which is difficult or inaccessible to the experiment of true
polymers.
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