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Two liquid states of matter: A dynamic line on a phase diagram
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It is generally agreed that the supercritical region of a liquid consists of one single state (supercritical fluid).
On the other hand, we show here that liquids in this region exist in two qualitatively different states: “rigid”
and “nonrigid” liquids. Rigid to nonrigid transition corresponds to the condition τ ≈ τ0, where τ is the liquid
relaxation time and τ0 is the minimal period of transverse quasiharmonic waves. This condition defines a new
dynamic crossover line on the phase diagram and corresponds to the loss of shear stiffness of a liquid at all
available frequencies and, consequently, to the qualitative change in many important liquid properties. We
analyze this line theoretically as well as in real and model fluids and show that the transition corresponds to
the disappearance of high-frequency sound, to the disappearance of roton minima, qualitative changes in the
temperature dependencies of sound velocity, diffusion, viscous flow, and thermal conductivity, an increase in
particle thermal speed to half the speed of sound, and a reduction in the constant volume specific heat to 2kB per
particle. In contrast to the Widom line that exists near the critical point only, the new dynamic line is universal:
It separates two liquid states at arbitrarily high pressure and temperature and exists in systems where liquid-gas
transition and the critical point are absent altogether. We propose to call the new dynamic line on the phase
diagram “Frenkel line”.
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I. INTRODUCTION

Our current understanding and discussion of basic states of
matter such as solid, liquid, and gas is illustrated by “tempera-
ture, pressure” (T ,P ) or “temperature, density” (T ,ρ) phase di-
agrams. Crossing a line on such diagrams corresponds to ther-
modynamic phase transitions, leading to qualitative changes in
the physical behavior of the system. Below, we show that, for
one basic state of matter, the liquid phase, an equally important
qualitative change in system behavior exists, which is related
to the change in its dynamics rather than thermodynamics.
Consequently, we propose that all liquids have two qualita-
tively different states, and that a new additional crossover line
(narrow zone) should be added to the phase diagram which
separates the two states. This line does not correspond to any
thermodynamic phase transition, i.e., it is a crossover, and
there is no discontinuity of any physical properties along the
line. We called it the “Frenkel line” as discussed below.

More specifically, a typical (T ,P ) diagram [Fig. 1(a)]
implies that a liquid is separated from a gas by the boiling
line ending at the critical point. The diagram further implies
that only one single state (frequently called “supercritical
fluid”) exists for all pressures and temperatures above the
critical point. On the other hand, we propose that an important
qualitative change in a fluid behavior takes place on crossing
our new line. Importantly, this dynamical crossover line
extends for arbitrary values of pressure and temperature above
the critical point [Fig. 1(a)]. In addition, the new line is not
related to the critical point from the physical perspective and,
therefore, exists in systems where the liquid-gas transition is
absent altogether as is the case in some soft-matter subjects
with short-range attractive forces as well as in the model
soft-sphere system [Fig. 1(b)].

*brazhkin@hppi.troitsk.ru

We begin our discussion with the paper of Frenkel [1], who
provided a microscopic description of Maxwell phenomeno-
logical viscoelastic theory of liquid flow [2] by introducing
liquid relaxation time τ : τ is the average time between two
consecutive atomic jumps in a liquid at one point in space.
Each jump can approximately be viewed as a jump of an atom
from its neighboring cage into a new equilibrium position with
subsequent cage relaxation. These atomic jumps give a liquid
its ability to flow. The relaxation time τ is a fundamental
flow property of a liquid, and it defines liquid viscosity η and
diffusion coefficient D.

The above picture implies that the motion of an atom in a
liquid consists of two types: quasiharmonic vibrational motion
around an equilibrium position as in a solid and diffusive
motion between two neighboring positions where typical
diffusion distances exceed vibrational distances by about a
factor of 5–10 [ Figs. 2(a)–2(c)]. Therefore, atomic motion
in a liquid combines both elements of the short-amplitude
vibrational motion as in a solid and the large-amplitude
ballistic-collisional motion as in a gas. One should mention
that Frenkel’s ideas were discussed and used for the past 20
years by Wallace [3] and Chisolm and Wallace [4] to calculate
the thermodynamic and dynamic properties of a liquid.

In this paper, we propose that the point at which the solid-
like oscillatory motion ceases, leaving only the gaslike motion,
marks the change in the most important properties of a fluid.

II. THE FRENKEL LINE ON THE PHASE DIAGRAM

The value of τ decreases with temperature increase,
spanning many orders of magnitude. On the other hand, the
minimal (Debye) vibration period, τ0 (τ0 ≈ 0.1–1 ps), is weakly
temperature dependent and is mostly defined by interactions
in a given system. At certain high temperatures, the solidlike
vibration character ceases [Figs. 2(a), 2(d), and 2(e)]. This
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FIG. 1. (Color online) Pressure-temperature phase diagrams (in
arbitrary units) of (a) an ordinary substance and (b) a system without
the boiling line and liquid-gas critical point. In both cases, there exists
a dynamic line separating rigid and nonrigid liquids.

point is reached when τ becomes comparable to τ0,

τ ≈ τ0. (1)

The sign of the approximate equality means that the values
can differ by tens of percent. In the following discussion,
we consider τ as the average time it takes an atom to move
the average interparticle distance a. Then, τ quantifies the
motion envisaged by Frenkel where an atom jumps distance
a during time τ between two equilibrium positions at low
temperatures as well as the motion at high temperatures where
two equilibrium positions are absent altogether and the motion
between collisions is ballistic as in a gas.

We note that, for τ > τ0 where dynamics is mostly
vibrational, the atomic jumps take place by activation over
the barrier created by the potential energy of interaction
[1]. Therefore, the transition from solidlike vibrations to
continuous gaslike ballistic motion takes place when kinetic
energy K of a particle becomes comparable to the potential
energy of their interaction. Hence, condition (1) implies that
approximately,

3kBT/2 ≈ Epot. (2)

For most substances, the ratio of kinetic to potential energy
K/Epot at the melting temperature is significantly lower than
1. In this case, the particles are primarily within the range of
the action of the quasiharmonic potential and, after melting,
relatively long-lived regions with a well-defined vibration
spectrum and short-range order remain. We will elaborate on
this below.

Condition (1) is achieved on a certain new crossover line
on the phase diagram. Below, we show that crossing this line
leads to important qualitative changes in the system behavior
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FIG. 2. (Color online) Examples of particle trajectories (x coor-
dinate) for the LJ liquid at different conditions, presented in LJ units
(ρc = 0.314, Tc = 1.31). Panels (b)–(e) show selected fragments from
(a). Cases (b) and (c) correspond to the rigid state where vibrations
are present (thin lines); (d) and (e) correspond to collisional motion in
the nonrigid state (thick lines). Time and displacement are in standard
LJ units.

as witnessed by the change in its elastic, structural, dynamic,
diffusive, and thermodynamic properties.

III. SOLIDLIKE ELASTIC AND STRUCTURAL
PROPERTIES OF A LIQUID

An important insight from the introduction of relaxation
time is that, if observation time is smaller than τ , the local
structure of a liquid does not change and is the same as that
of a solid. This enabled Frenkel to predict that a liquid should
maintain solidlike shear waves at all frequencies ω > 2π/τ

[1]. This prediction was later confirmed experimentally for
different kinds of liquids [5–8].

The maximum oscillation frequency available in the system
is ω0 = 2π/τ0. Therefore, solidlike shear waves exist in the
range of 2π/τ < ω < 2π/τ0. Consequently, condition (1)
(τ ≈ τ0) corresponds to the complete loss of shear waves and,
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therefore, to the loss of shear resistance, or rigidity, at all
frequencies existing in the system.

We note that the condition of the crossover (1) and
other conditions considered below correspond to approximate
equality. Moreover, there are wide distributions of the τ and τ0

values, and we consider their average values. Nevertheless, in
all liquids, there are definite T ,P conditions corresponding to
the loss of transverselike vibrations in the excitation spectra,
hence, we can speak about the definite line or, at least, about
the narrow crossover instead of a wide crossover.

Usually, the sharp transition in the macroscopic system
is associated with some divergent value. The condition (1)
defines the crossover in the dynamics of a system. To propose
a more or less strict criterion of the transition, one can
consider the analogy with percolation. Let us consider the
high-temperature state of a fluid. If, for time τ , the projection
of the particle momentum on its total displacement changes
sign at least once, then this particle is considered an oscillating
one. A small fraction of these particles will be present
even in the low-density gas state. The proportion of such
particles increases with the temperature decrease, and at a
certain temperature, the infinite percolation cluster consisting
of these particles appears. We can assume that this temperature
corresponds to the appearance of the first high-frequency
transverse-like excitations in the fluid. Of course, depending
on the shape of the distributions of the τ and τ0 values,
this percolation occurs at τ ≈ τ0 where the proportionality
coefficient can differ from 1 by a dozen percent.

The ability of liquids to flow is often associated with
zero rigidity, or shear resistance, that markedly distinguishes
liquids from solids. However, this implies zero rigidity at
low frequencies only, whereas, at higher frequencies, a liquid
supports shear stress. On the other hand, condition (1) marks
the qualitative change, from the physical point of view, in
system elastic properties: shear resistance is lost completely at
all frequencies available in the liquid. Therefore, condition (1)
marks the crossover between a “rigid” liquid where rigidity
exists in a certain frequency range and a “nonrigid” liquid
which cannot sustain rigidity at any frequency.

The crossover (1) has important implications for the ability
of liquids to undergo phase transitions, an emerging and
fast-developing area of research [9–11]. When τ > τ0 at
low temperatures, local structure or definite short-range order
structure (SROS) of the liquid remains unchanged during times
shorter than τ . In this case, pressure and temperature changes
can induce a phase transition in a liquid, accompanied by
the change in the SROS and dynamics. On the other hand,
when τ < τ0 at high temperatures, only the random packing
structure type can exist because atoms are in the continuous
gaslike state of motion. In this case, pressure can only induce
a change in density but not a phase transition with a change in
SROS. Therefore, the Frenkel line demarcates the regions on
the phase diagram where phase transitions in a liquid operate.

IV. DYNAMICS AND SOUND PROPAGATION

The qualitative change in atomic dynamics, defined by
Eq. (1), has important consequences for sound propagation and
diffusion. Let us approach the liquid from low temperatures
where τ > τ0. The speed of sound in a liquid or a solid Vs

is defined from the dispersion relation ω = Vsk. Using linear
Debye approximation and taking maximum frequency ω as
Debye frequency ω0 = 2π/τ0 and kmax = π/a gives Vs =
2a/τ0. Let us now approach the fluid from high temperatures
where the oscillatory motion is lost and recall that τ is the
time between two consecutive collisions over distance a. Then,
Vth ≈ a/τ , where Vth is the particle thermal velocity. Therefore,
condition (1) implies

Vs ≈ 2Vth. (3)

In condensed phases, such as solids and liquids, the speed
of sound is primarily determined by the interactions between
atoms: The sound velocities are given by elastic moduli. In
dense liquids, moduli vary insignificantly with temperature
along isochors [12], and sound velocities are weakly temper-
ature dependent. On the other hand, the thermal velocity of
a classical particle increases with temperature without bound.
Therefore, a temperature range must exist where the speed of
sound and thermal velocity become comparable in magnitude.
The physical meaning of condition (3) is that particles cease
to feel elastic resistance of the medium and start moving in a
ballistic way.

The condition for thermal velocity of the particles becoming
half the speed of sound as a condition for the change in atomic
dynamics is quite natural. The factor of 2 arises from the fact
that the neighboring particles move in opposite phases at the
highest frequency, and their relative thermal velocity equals
the speed of sound.

The speed of sound in the nonrigid liquid is defined by
thermal velocity, such as in a gas, and this speed should
increase with the temperature on isobars. On the other hand, the
speed of sound in the rigid liquid decreases with temperature
due to the decrease in the bulk modulus on isobars. Thus, on
isobars near the line defined by the conditions (1) and (3), the
qualitative change in the temperature dependence of the sound
velocity should take place.

We note that Eq. (3) is based on the same physical
grounds as Eq. (2). Indeed, the speed of sound is governed
by the elastic moduli, which are, in turn, proportional to the
potential energy of the system per unit volume. However,
the proportionality coefficient in Eq. (2) may be significantly
(several times) different from 1. Indeed, the elastic moduli
are the second derivatives of the potential energy, i.e., the
nature of the interparticle interaction is very important for the
proportionality coefficient. For example, in Ref. [13], it was
shown that a van der Waals fluid near the critical point holds
kBT ≈ Epot, while a Coulomb plasma with a compensating
background near the critical point holds 3kBT ≈ Epot.

Another interesting consequence of Eq. (1) is related
to the phenomenon of “high-frequency sound” or positive
dispersion of sound velocity, which is the increase in the
speed of sound at high frequencies. Frenkel predicted [1]
that this effect should exist for frequencies ω > 2π/τ . If,
as he argued, shear waves kick in at frequency 2π/τ , the
speed of sound increases from (B/ρ)1/2 to [(B + 4G/3)/ρ]1/2,
where B is the bulk modulus and G is the shear modulus of
a liquid because G becomes nonzero at this frequency. For
viscous liquids, such behavior has been indeed observed many
times in the past 50 years (see, for example, Ref. [8]). The
viscoelastic model was later developed in detail, including
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FIG. 3. (Color online) Schematic dispersion curves for longitude
excitations in a liquid at different temperatures and fixed pressure.
Curves 1–3 correspond to temperatures below, in the vicinity, and
above the dynamical line, respectively (T1 < T2 < T3). The inset
shows the initial parts of the same curves where the black straight
dashed lines indicate initial slopes of the dispersion curves.

memory function formalism, nonlocal mode coupling theory,
etc. [14–18]. Following the prediction, the high-frequency
sound was recently observed in numerous simple nonviscous
liquids, receiving particular attention since the development of
inelastic x-ray techniques [19–22]. We now observe that the
proposed crossover (1) marks the point at which the positive
dispersion disappears completely because, as discussed above,
this crossover corresponds to the complete loss of shear
waves that can exist in a liquid and corresponding loss of
the high-frequency sound (see Fig. 3).

Another important feature of the liquid excitation spectra is
the presence of a rotonlike minimum of the dispersion curve
in a second pseudo-Brillouin zone [19] (see Fig. 3). At the
crossover, defined by the condition (1), the contributions of
jumping “ballistic” atoms and “vibrating” atoms become com-
parable to each other, and the rotonlike minimum disappears
(see Fig. 3 for the illustration of the general trend).

V. DIFFUSION, VISCOSITY, AND THERMAL
CONDUCTIVITY

The change in the character of atomic diffusion in the liquid
at the crossover (1) occurs at a particular value of diffusion
constant D∗. D can be estimated as D = a2/6τ . When τ ≈ τ0

at the crossover (1), we have

D ≈ D∗ ≈ a2/6τ0. (4)

Taking a ≈ 1 Å and τ0 ≈ 0.1 ps gives D∗ ≈ 10−8 m2/s. The
condition D = D∗ provides a good estimation of the dynamic
line defined by condition (1) because it is fairly insensitive to
the increases in pressure and temperature. Indeed, both a2 and
τ0 decrease with pressure only slightly, and their ratio becomes
even less sensitive to pressure and temperature. We note that
the D∗ value is consistent with the experimental values of
diffusion near critical point Dc [12]. Indeed, not far from the
critical point, liquids are known to lose their elastic properties,
and the relaxation process changes its nature from an activation

to a collisional one [23,24], hence, the near equality of D∗ and
Dc is not surprising in our picture. Thus, for a rather crude
estimation of the crossover (1) at moderate pressures, we can
use the condition,

D ≈ Dc. (5)

In this sense, the proposed dynamic line starts not far from
the end of the liquid-gas transition. However, it is important
to stress that all basic conditions above, Eqs. (1)–(4), are not
related to the liquid-gas transition and to the existence of a
critical point from the physical point of view and continue to
operate in systems where the critical point is absent altogether.
We will further comment on this below.

Importantly, condition (1) corresponds to the crossover
between two different qualitative temperature dependencies
of diffusion D and viscosity η. Indeed, when τ > τ0 at
low temperatures, τ ∼ exp(U/T ), where U is the effective
activation barrier. Then, D ∼ a2/τ ∼ exp(−U/T ). On the
other hand, when τ < τ0 at high temperatures, τ quantifies
thermal motion as discussed above: τ ∼ 1/Vth ∼ 1/T 1/2, giving
D ∼ T 1/2 for a low-density gas or D ∼ T α , where α is almost
constant for a dense fluid [25]. Therefore, condition (1) gives
the crossover of D from exponential to power-law temperature
dependence.

Similar to D, temperature behavior of viscosity η changes
at the crossover (1). Indeed, when τ > τ0, η decreases with
temperature almost exponentially, which can be seen most
easily by applying the Maxwell relation η = G∞τ , where G∞
is the instantaneous shear modulus having weak temperature
dependence in comparison with the exponential decrease in
τ . On the other hand, when τ < τ0, η ∼ T 1/2. This follows
from applying either the Stokes-Einstein-Debye relationship
η ∼ T /D or the Maxwell relationship η = G∞τ , where τ ∼
1/T 1/2 from above and recalling that G∞ is proportional to
the kinetic ∼T term in this regime [26]. We, therefore, con-
clude that condition (1) corresponds to the qualitative change
in the temperature behavior of viscosity as it crosses over
from the exponential decrease at τ > τ0 to the power-law
increase at τ < τ0.

Thermal conductivity κ is another important physical
property that should have a minimum close to the crossover
(1). Indeed, usually, thermal conductivity behaves similar to
viscosity. The value κ can be estimated as κ ∼ cV V L, where
cV is the constant-volume specific heat, V ≈ Vs for the rigid
liquid, V ≈ Vth for the nonrigid liquid, and L is the free path
length of the phonon or atom, correspondingly. When τ > τ0, κ
decreases with temperature because L and cV decrease. On the
other hand, when τ < τ0, κ ∼ Vth ∼ T 1/2 since L and cV values
have a weak temperature dependence in the nonrigid liquid.

We, therefore, conclude that three important physical
values—viscosity, thermal conductivity, and sound velocity
should have minima on the isobars in the vicinity of the
crossover line.

VI. THERMAL ENERGY AND SPECIFIC HEAT

Experimentally, constant-volume specific heat of liquids at
ambient pressure decreases from about 3kB per particle around
the melting temperature to about 2kB at high temperatures
[12,27]. A further decrease in specific heat with a temperature
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increase up to gaslike values 3kB/2 is observed at high
pressures in the supercritical region [12]. This behavior
was quantitatively explained on the basis of decreasing the
contribution of transverselike modes to liquid energy with the
temperature [28]. In this model, the liquid thermal energy per
atom is

E

N
= kBT

[
3 −

(
τ0

τ

)3]
. (6)

According to Eq. (6), when τ considerably exceeds τ0 at
low temperatures, liquid energy is close to 3kBT per atom,
giving the Dulong-Petit value of specific heat of 3kB. When
τ approaches τ0 at high temperatures, liquid energy becomes
2kBT per atom, giving the specific heat of 2kB, consistent with
the experimental results. At this temperature, shear waves are
completely lost at all frequencies, and longitudinal modes only
contribute to the heat capacity. Therefore, the crossover from
a rigid to a nonrigid liquid at τ ≈ τ0 is accompanied by the
decrease in the specific heat from its solid-state value to the
value of 2kB,

cV ≈ 2kB. (7)

Equation (7) gives the minimal value of specific heat that
a rigid liquid can possibly have. A further decrease in heat
capacity corresponds to the loss of longitudinal modes as the
temperature is increased until the dense gas state (nonrigid
liquid) is reached with cV = 3kB/2.

Having discussed the main physical properties that change
at the crossover (1), we now provide numerical and experi-
mental evidence supporting our proposal.

VII. EVIDENCE FROM MOLECULAR DYNAMICS
SIMULATIONS AND EXPERIMENTAL DATA

We have drawn the lines determined by conditions (1),
(2), (3), (5), and (7), for real substances (Ar, Ne, and N2)
and model particle systems with Lennard-Jones (LJ) and soft-
sphere potentials (SSps) (Figs. 4 and 5). Details of molecular
dynamics (MD) simulations are given in the Appendix.

It is well known that the LJ potential adequately represents
the behavior of many molecular and rare gas liquids, whereas,
SSp systems describe a behavior of many real substances at
very high pressures where an attractive term of the interparticle
potential can be neglected. We have calculated points on the
phase diagram that correspond to strict equalities τ = τ0,
3kT /2 = Epot, Vs = 2Vth, D = Dc, and cV = 2kB, hence,
moderate differences between the lines are not unexpected as
discussed above.

According to Fig. 4, the position of the crossover line
[condition (1)] for the Lennard-Jones system agrees with the
line determined by condition (5) at moderate pressures P <

10 − 102Pc and with the lines determined by conditions
(3) and (7) at high pressures P > 10Pc. At low pressures,
the lines determined by conditions (3) and (7) shift from
the crossover line (1) due to critical point anomalies and
loss of Debye approximation at low densities. As discussed
above, condition (2) is not directly based on condition (1),
and the proportionality coefficient in Eq. (2) differs from 1
significantly [for LJ particles, 3kT /2 ≈ 5Epot, for SSp particles
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FIG. 4. (Color online) (a)–(c) (T ,P ) phase diagram and (d) (T ,ρ)
phase diagram of the LJ liquid in the relative critical coordinates.
Panels (a) and (d) present calculated lines defined by different
criteria (see the text). Panel (b) presents some experimental data from
Ref. [12]. Stars in panel (b) correspond to known experimental points
where the liquid loses shear waves and positive dispersion (open
symbol for Ar [20] and solid symbol for N2 [22]). Experimental
critical isochors are also shown in panel (b) (dashed olive line for Ne
and dashed-dotted olive line for Ar). Experimental data for criterion
(3) for nitrogen and points (solid circles) from the simulation of the
LJ system in Fig. 2 (with the same color) are shown in panel (d). Panel
(c) illustrates a narrow crossover zone according to different criteria
for the LJ system and real liquids. In all cases, number I corresponds
to the rigid liquid, and number II corresponds to the nonrigid one.
In panel (d),the density from the liquid side is shown for the melting
curve.

(n = 6), 3kT /2 ≈ 0.3Epot]. For a soft-sphere system, the lines
determined by conditions (1), (3), and (7) match well over the
entire pressure range (Fig. 5) as no critical point and associated
anomalies exist for this system.
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simulated soft-sphere systems with (a) and (b) n = 12 and (c) and
(d) n = 6. This figure presents calculated lines defined by different
criteria including those for the minimum of viscosity η along the
isochor in panel (b). In panels (b) and (d), the density from the liquid
side is shown for the melting curve. Pressure, density, and temperature
are in standard soft-sphere units.

In addition to model systems, we find good agreement
between the theoretical predictions and experimental data for
liquid Ar, Ne, and N2 (Fig. 4). In particular, we observe a good
match between the region of the disappearance of the positive
dispersion of sound velocity in liquid Ar [20] and N2 [22] and
the dynamic line (Fig. 4).

Despite the approximate way in which conditions (2), (3),
(5), and (7) correspond to condition (1), all the lines defined
by different conditions are located within quite a narrow
range. We note that these lines are located at temperatures
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FIG. 6. (Color online) Experimental [12] isobaric temperature
dependences of sound velocity, viscosity, and thermal conductivity
of neon. Asymptotes for viscosity at low and high temperatures
correspond to exponents of inverse temperature and power law,
respectively. Arrows indicated the corresponding temperatures of
condition (1), τ = τ0. The exponent α = 0.59 at P = 10Pc, 0.52
at P = 30Pc, and 0.32 at P = 100Pc.

that are significantly above the melting line, implying that
the new line separates two distinct liquid states. We also
note that this Frenkel line is located significantly below the
isochore, in contrast to the Widom line discussed below in
more detail. Importantly, the lines of all conditions [with the
exception of condition (5), which is approximate and is valid
only at moderate pressures] lie almost parallel to each other
in the whole range of pressures and temperatures. Notably,
pressure in this range varies by almost 4 orders of magnitude.
We further observe that, by only a slight variation in the
proportionality coefficients in criteria (1), (3), and (5), namely,
by a factor of 1.3–1.4, the lines defined by these conditions
practically coincide, which testifies to the commonality of
physical mechanisms underlying the above criteria. The line
of criterion (7) coincides with the main line [criterion (1)] for
cV = 1.9kB, which differs from cV = 2kB by 5% only.

The qualitative change in the temperature dependence of
sound velocity Vsl, viscosity η, and thermal conductivity κ

for real substances (Ne, N2) also occurs near the crossover
line (Figs. 6 and 7). In fact, condition (1) holds close to the
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FIG. 7. (Color online) Experimental [12] isobaric temperature
dependences of sound velocity, viscosity, and thermal conductivity
of nitrogen. Asymptotes for viscosity at low and high temperatures
correspond to exponents of inverse temperature and power law,
respectively. Arrows indicated the corresponding temperatures of
condition (1), τ = τ0. The exponent α = 0.59 at P = 10Pc, 0.53
at P = 30Pc, and 0.31 at P = 100Pc.

temperature where the deviation from the exponential viscosity
decrease starts. It means that activated behavior operates even
if a particle exhibits one oscillation before jumping to another
position.

The temperature dependencies of the constant-volume heat
capacity for Ar (along isobars) and for the LJ liquid (along
isochors) are presented in Fig. 8. The dynamic crossover
in both cases is located at condition (7) when cV =
1.9kB.

One can mention that, in most of real metallic, covalent,
and ionic liquids, the Frenkel line lies at extreme experi-
mental conditions, e.g., ∼10 GPa and ∼104 K, and only
shock-wave experiments can be used for its study. However,
for molecular and rare-gas liquids, the line is situated at
the “static pressure” experimental conditions. For example,
condition (1) for Ne at P ∼ 3 GPa should take place at
T ∼ 1100 K (approximately five to six times higher than
the melting temperature). For many soft-matter systems, such
as colloidal systems, macromolecules, etc., the dynamic line
lies in the accessible range of pressures and temperatures as
well.
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FIG. 8. (Color online) The dependencies of heat capacity versus
temperature for the LJ liquid along the isochor (for ρ = 1) (orange cir-
cles with interpolation lines) and for Ar along isobar P = 50Pc (blue
solid line). The arrows indicate the points of intersection of the cor-
responding curves by the Frenkel line according to the condition (1).

VIII. THE FRENKEL LINE AND THE MELTING LINE

Interestingly, all crossover lines correspond to a density
increase with increasing temperature: The relation ρ ∼ T k

is met, where k ≈ 0.25 for liquid N2, Lennard-Jones, and
soft-sphere systems with n = 12 (Figs. 4 and 5). We recall
that, for any system of particles with a uniform potential, there
are scaling relations for physical values [29]. In particular,
ρn/3/T = const along the melting line for the soft-sphere
system, giving ρ ∼ T

1/4
m for the melting temperature Tm for

n = 12 [29]. The similarity in the dependence of ρ(T ) for the
melting and dynamic lines implies similar scaling relations
for the dynamic line. This point will be discussed in detail
elsewhere. As a result, the region of the rigid liquid does not,
under any pressures, disappear (Figs. 4 and 5). Consequently,
the Frenkel line continues for arbitrarily high pressures and
temperatures.

It should be mentioned that the “softer” the repulsion
potential, the wider the region of existence of a rigid liquid
(Fig. 5). We have calculated the ratio between the kinetic
energy of the particles and the potential energy of the particle
interaction K/Epot along the melting curve for the soft-sphere
system with different repulsion coefficients n (see Fig. 9). This
ratio is almost constant along the melting curve and varies from
0 for n = 3 to infinity for n → ∞ (hard spheres). The value
of K/Epot near the melting curve is considerably larger than
1 for only very large coefficients n > 30. For even larger
values of n, the dynamic line can hide behind the melting
curve. Particularly, the condition (7), cV = 2kB, is fulfilled
near the melting curve with n ≈ 60 (see Fig. 10). Thus, for
n > 50–60, the dynamic line falls within the region of crystal
stability and separates a low-temperature almost harmonic
state of the crystal and a high-temperature strongly anharmonic
state. In the high-temperature state, a particle moves, most of
the time, in a ballistic way outside the region of the action
of the potential, similar to the behavior of the particles of a
hard-sphere crystal for which the potential energy is equal to
zero and cV = 3kB/2. In this case, the condition (1), τ ≈ τ0,
practically implies that a particle in the crystal spends similar
time moving (almost) harmonically and ballistically.
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FIG. 9. (Color online) Kinetic-to-potential energy ratio for the
SSp liquid at the melting curve (it is pressure independent) as a
function of the soft-sphere potential exponent n. The inset shows
the calculated pressure dependence of the kinetic-to-potential energy
ratio at the melting curve for the SSp liquid with n = 12 (the
uncertainty of the calculation is on the order of the symbol size).
Temperature and density are in standard soft-sphere units.

Formally, we note that particle motion for the hard-sphere
system in the undercooled region can also be tentatively split
into two types: a small amplitude motion inside the cages
and rare jumps over large distances. Despite the similarity of
this picture to the behavior of particle trajectories in a normal
liquid, there are considerable distinctions. The hard-sphere
motion inside the cages is of a purely collisional absolutely
nonharmonic character, and the jumps only involve geometry
restrictions rather than overcoming the activation barrier. In
this case of cV = 3/2kB, the speed of sound and thermal speed
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FIG. 10. (Color online) Relation between melting line (blue solid
line) and line corresponding to the condition cV = 2.0 (orange
symbols correspond to calculation, and orange dashed lines are
approximations) for the SSp liquids with n = 50 and 60.

are not independent quantities, the structure corresponds to the
random packing of spheres, and all transverselike excitations
are damped at wavelengths on the order of one wavelength.
Therefore, it is appropriate to treat the hard-sphere liquid as a
nonrigid liquid at all temperatures.

The above results are important for understanding the
difference between the liquid-glass transition and a jamming
transition, the question that has been widely discussed and
debated. For very large values, n > 100, the glass transition
in an undercooled metastable melt occurs in a nonrigid
liquid state and, like the hard-sphere glass transition, is
governed by geometrical confinement conditions, and there
is no temperature region with activated behavior.

It is known that the softer the repulsion potential, the lower
the glass transition temperature or Kauzmann temperature
[30,31]. Thus, the region of existence of the rigid liquid for the
soft potential is wider both in the stable state over the melting
temperature as well as in the metastable undercooled liquid
state.

It is known that, for particle systems with a narrow region of
the action of the potential, the liquid-gas equilibrium line in the
equilibrium phase diagram is absent. Instead, there is a solid
state crystal-crystal isostructural transition ending at the criti-
cal point [32–34]. In this case, the discussed Frenkel line, sep-
arating the harmonic and anharmonic states of the crystal, is, in
fact, a continuation of the above isostructural transition into the
supercritical region. Thus, for some colloidal and macromolec-
ular systems for which the boiling line is absent, the Frenkel
line can also lie in the region of stability of a solid phase.

IX. THE FRENKEL LINE AGAINST THE WIDOM LINE

It is interesting to note the recent attempts [20,21] to link
the change in the excitation spectrum to the “thermodynamic”
continuation of the boiling curve, the so-called Widom line, the
line of the maxima of thermodynamic properties in the vicinity
of the critical point [35]. In Ref. [20], the Widom line was
discussed for heat capacity only and, notably, experimental
data were extrapolated at very high pressures to give an
extrapolated thermodynamic line.

From the physical point of view, this extrapolated line is
qualitatively different from the Frenkel line proposed here.
Indeed, the proposed crossover line is not related to the
extrapolation of the boiling curve and exists in systems where
liquid-gas transition and the correspondent Widom line are
absent altogether, including, in the model soft-sphere system,
some colloidal systems, macromolecules, and so on [32–34].
In addition, there are several other important differences. First,
the maxima of heat capacity cP become smeared at T/Tc >

2.5 and P/Pc > 15 [12], and therefore, the extrapolation
into the high pressure range (P/Pc ≈ 100) performed in
Ref. [20] is not physically meaningful. Second, we have
recently calculated compressibility βT , expansion coefficient
αP , heat capacity cP , and density fluctuations ζ along the
isotherms for the Lennard-Jones particle system [36]. The
results, together with experimental data for Ar and Ne, are
summed up in Fig. 11. We observe that the thermodynamic
continuation of the boiling curve gives a single line within
10% departure in temperature from the critical point only.
Upon further departure, it represents a rapidly widening
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FIG. 11. (Color online) (T ,P ) and (T ,ρ) phase diagrams of the
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for thermal expansion α, fluctuations ζ , and isobaric thermal capacity
cP . The similar experimental data for Ar and Ne [12] are shown in
panel (a). The maximum of β becomes smeared at T > 1.1Tc, and its
line is not shown.

bunch of lines instead of one single line, implying further
that the extrapolation of the thermodynamic Widom line
is not unique. Third, we observe that the lines of maxima
of all calculated properties rapidly decrease in magnitude
and become smeared at T > (2–2.5)Tc and P > (10–15)Pc

and, therefore, cannot be meaningfully extrapolated to higher
pressures and temperatures. This is in contrast to the proposed
Frenkel line, which, as discussed above, exists for arbitrarily
high pressures and temperatures. Finally, we note that, apart
from the line of the maxima of the heat capacity lying close to
the critical isochore, the lines of thermodynamic anomalies
correspond to the decrease in density with a temperature
increase, in strong contrast to the Frenkel line (Fig. 11).

X. OTHER CROSSOVER LINES AND CONCLUSIONS

To summarize, we introduced the new line separating
two liquid states with qualitatively different properties. We
proposed to call the line, defined by Eq. (1), the Frenkel line
to honor the contribution of Frenkel to the area of liquid
dynamics. The contribution started from the microscopic
definition and discussion of liquid relaxation time τ . On the
basis of this property, Frenkel made a number of important
predictions regarding flow, relaxation, as well as elastic and
phonon properties of liquids that subsequently formed the

microscopic basis of what is now known as the “viscoelastic”
picture of liquids [1].

We note that the past few decades have seen considerable re-
search into the undercooled metastable state of liquids related
to the problem of glass transition. Several dynamic crossovers
have been found that correspond to the mode-coupling
temperature, the breakdown of the Stokes-Einstein relation,
the crossover from exponential to nonexponential relaxation,
between the Arrhenius and the Vogel-Fulcher-Tammann laws,
and so on (see, e.g., Ref. [37] and references therein).

On the other hand, there have been no attempts to introduce
a dynamic crossover at high temperatures that corresponds to
a fundamental change in the character of atomic motion in a
liquid. We note that the line partially related to our condition
(2) was considered earlier, at least, at low pressures [38,39].
This line corresponds to percolation of “physical clusters.”
A cluster, by definition, is made of particles linked pairwise
where a pair of particles is linked if the sum of their relative
kinetic and interaction energies is less than zero. This line
may be not far from the Frenkel line only in the vicinity of
the critical point. Rosenfeld also discussed a possible change
in the nature of the dynamics of a simple liquid [40]. The
corresponding crossover in Ref. [40] is reflected in a change
from power law to exponential scaling of reduced transport
coefficients when plotted versus excess entropy. In particular,
Rosenfeld predicted a minimum of viscosity as a function
of temperature for all inverse-power potentials. The crossover
discussed in Ref. [40] has been obtained only at the low-density
region where a weakly coupled liquid is considered to be close
to a diluted gas with taking into account only first and second
virial coefficients. Nevertheless, for SSp systems, at least at a
small density region, the line of the crossover considered by
Rosenfeld lies close to the Frenkel line. We also note the earlier
paper of Hiwatari et al. [41], who found qualitatively different
behaviors of the velocity autocorrelation function C(t) depend-
ing on the temperature and density for the SSp fluids [41].
For these systems, Hiwatari et al. assumed the existence of
the critical reduced density that separated the liquidlike and
gaslike dynamical regimes. For SSp with n = 12, Hiwatari
et al. estimated the critical reduced density ρ∗ ≈ 0.54 close
to 0.58 found in our simulations for the same system. Unlike
in the paper of Hiwatari et al., the main parameter controlling
the crossover in our theory was not density but relaxation time
as given by our Eq. (1). In different systems, Eq. (1) gives
different values of reduced density at the crossover.

As mentioned above, the concept of the Frenkel line may be
applied to the colloidal liquids and macromolecular systems.
In such complex systems, different time scales are present.
There is some evidence of a mapping between long-time
molecular and Brownian dynamics [42]. It is obvious that the
dynamic rigid to non-rigid liquid transition should exist for the
Brownian dynamics as well.

In conclusion, we state that the proposed Frenkel line
separates a rigid liquid where solidlike shear waves exist
and the diffusion regime is jumplike and is activated as in
a solid from a nonrigid liquid where no shear modes exist and
diffusion is collisional as in a gas. This line can be mapped
in future experiments using several conditions for liquid
properties that we discussed, including the disappearance
of SROS peculiarities, the disappearance of the positive
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dispersion of sound velocity, as well as specific values of
diffusion constants, speed of sound, and specific heat: D ≈
Dc, Vs/Vth ≈ 2, and cV (T ) ≈ 2kB.
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APPENDIX

We have studied the LJ liquid and two soft-sphere (SSp) liq-
uids with n = 12 and n = 6 in a very wide range of parameters,
from temperature T = 0.6 (well below the critical point) to T =
100.0 and densities from 0.1 to 2.7 for the LJ liquid, T =
0.1–100 and density in the range of 0.1–3.33 for the SSp liquid
with n= 12, and T = 1.0–10 and density in the range of 0.5–4.5
for the SSp liquid with n = 6. We also have studied SSp liquids
with high values of n up to 100 for the calculation of Epot and
cV . An essential property of soft spheres is that the phase di-
agram corresponds to the equationγ = ρσ 3( ε

kBT
)3/n = const.

The parameters γ for n = 12 and n = 6 systems were taken as
γ12 = 1.15 and γ6 =1.22 [30]. System size in the simulations
varied depending on the density reaching 4000 particles at the
highest density. The cutoff radius was set at 2.5σ for LJ and
SSp with n = 12 and half the box size for SSp with n = 6.
The equations of state were integrated by the velocity Verlet
algorithm. The temperature was kept constant during the equi-
libration by velocities rescaling. When the equilibrium was
reached, the system was simulated in NVE ensemble. The usual
equilibration period was 1.5 × 106 steps, and the production
run was 0.5 × 106 steps where the time step was dt = 0.001 LJ
units. The soft-sphere system was simulated in NVE ensemble.
The system consisted of 1000 particles, and the time step
was 0.0005. The equilibration and production periods were
3.5 × 106 and 0.5 × 106 steps, respectively. The simulations
and computation of properties were performed in the same way
as for the LJ system. We also use the data of the potential energy
and equation of state for the LJ fluid from Ref. [43] and the
melting line of the LJ system from Ref. [44]. Everywhere in the
text and in the figures, densities, temperatures, and pressures
of the LJ liquid are given in the units ρ/ρc, T/Tc, and P/Pc.
The following critical parameters, averaged from literature
sources, were used for the LJ system: ρc = 0.314, Tc = 1.31.

To calculate the Debye period τ0, we analyzed many
particle trajectories. At low temperatures, τ0 was obtained
as the average time of oscillatory motion at one equilibrium
position of an atom before jumping to another position. At high
temperatures, the oscillations disappear, and the motion of the
particle consists of collisional movement only. The value of
τ was calculated as the time it takes a particle to move the
distance close to the average interparticle separation. Then,
it can be estimated as τ = ρ−2/3

6D
, where D is the diffusion

coefficient. D was calculated from the long-time limit of mean
square displacement using the Einstein relation. We note that
τ0 can be obtained in the low-temperature limit where the
oscillations are well pronounced, whereas, τ can be calculated

from the diffusion value both at the low-temperature and at the
high-temperature limit where there is a ballistic-collisional
regime. It makes necessary to compute the values of τ0

and τ along the same isochors at different temperatures and
extrapolate the data to see the cross points. The accuracy of
the estimation of the temperature of crossover τ = τ0 is about
±20%–30%; the errors in the calculations of other values are
less than 10%.

The values of τ0 and τ as well as the temperature of
disappearance of solidlike vibration motion under heating also
were extracted from the analysis of the self-intermediate scat-
tering function Fs(q,t) and velocity autocorrelation function
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FIG. 12. (Color online) Self-intermediate scattering functions (in
the inset) and (a) their second-order time derivatives and (b) velocity
autocorrelation functions of the LJ liquid along the isochor ρ = 1.
Temperature T is pointed out in LJ units. One can see the maxima
of the second-order derivatives in panel (a). The maxima at shorter
times correspond to the presence of vibrations, whereas, the maxima
at larger times correspond to ballisticlike jumps. The disappearance
of the maxima at the short time region occurs at T between 30 and
50, and it corresponds to the rigid liquid nonrigid liquid transition.
Similarly, there are qualitative changes in the velocity autocorrelation
function behavior in the same temperature region. Oscillations in
the rigid liquid state take place, whereas, monotonic decay of
autocorrelation functions in the nonrigid liquid state is observed.
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C(t) [15],

Fs(q,t) = 1

N

〈
N∑

j=1

exp{i �q · [�rj (t) − �rj (0)]}
〉
,

C(t) = 〈v(0)v(t)〉,
at different temperatures (see Fig. 12). Usually, the function
Fs(q,t) is used to analyze the dynamics of glass-forming
undercooled liquids [45,46]. However, more detailed analysis
demonstrates that oscillating and ballistic-collisional regimes
also can be seen from the behavior of these functions [47].
From Fig. 12, one can see qualitative changes in the self-
intermediate scattering function and the velocity autocorrela-
tion function at the same temperature interval around T ≈ 30
for ρ = 1.

The kinetic energy is obtained as K/N = 3kBT /2, and
the potential energy is obtained as the total energy of the
interaction. In the case of the LJ liquid, there is a complication
associated with the attractive part and the sign change in
the potential energy at compression. That is why, in this
case, we estimated the potential energy as Epot = ELJ(V ) −
ELJ(V0)+P0(V0 − V ) where V0 corresponds to the volume of
minimal possible (negative) pressure P0 at zero temperature.

Infinite-frequency shear modulus G∞ was calculated as in
Ref. [26] where it was shown that G∞ for the pair-potential
systems can be obtained from the radial distribution function.
The bulk modulus B = β−1 = ρ( ∂ρ

∂P
)−1
T was obtained from

the equation of state. The longitudinal and transverse sound
velocities were calculated as Vsl = (B/ρ)1/2 and Vst =
(G∞/ρ)1/2. The heat capacities at constant volume were
obtained by differentiating the internal energy at isochors
cV = ( ∂U

∂T
)V .

The temperature corresponding to cV = 2.0 was deter-
mined from the dependence of the isochoric heat capacity
on the temperature along the isochors by linear interpolation
of the data. The same method was applied to construct other
lines presented in our paper. Shear viscosity was computed by
integrating the shear stress autocorrelation function.

The diffusion coefficients have been calculated from the
viscosity data using the Stokes-Einstein relationship. To prove
condition (3) for real liquids, we have taken the relationship Vsl

= 2.3Vth [where the coefficient 2.3 for the longitudinal sound
velocity instead of 2 for the shear sound velocity was taken to
match with condition (5) for the same systems at P ∼ 100Pc].
Thermodynamic and dynamic data for real fluids (Ar, Ne, and
N2) were taken from Ref. [12].
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