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Self-diffusivity and interdiffusivity of molten aluminum-copper alloys under pressure,
derived from molecular dynamics
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We use molecular dynamics (MD) to simulate diffusion in molten aluminum-copper (AlCu) alloys. The self-
diffusivities and Maxwell-Stefan diffusivities are calculated for AlCu mixtures using the Green-Kubo formulas
at temperatures from 1000 to 4000 K and pressures from 0 to 25 GPa, along with additional points at higher
temperatures and pressures. The diffusivities are corrected for finite-size effects. The Maxwell-Stefan diffusivity
is compared to the diffusivity calculated from the self-diffusivities using a generalization of the Darken equation.
We find that the effects of cross-correlation are small. Using the calculated self-diffusivities, we have assessed
whether dilute hard-sphere and dilute Lennard-Jones models apply to the molten mixture. Neither of the two
dilute gas diffusivities describes the diffusivity in molten Al and Cu. We report generalized analytic models
for the self-diffusivities and interdiffusivity (mutual diffusivity) that fit the MD results well. The MD-derived
transport coefficients are in good agreement with the available experimental data. We also report MD calculations
of the viscosity and an analytic fit to those results. The ionic thermal conductivity is discussed briefly.
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I. INTRODUCTION

The mixing of dissimilar fluids is important to a wide
variety of natural and industrial processes. The mixing of
fuel and air in combustion [1], the mixing of hormones in
signaling processes in biological cells [2], and the mixing
of pollutants and other particles in the atmosphere [3] are
but a few of the processes of great importance and under
active study. In metallic systems there is interest in mixing
in planetary interiors [4] and alloy processing [5]. Even
the deuterium-tritium mixtures at the conditions for inertial
fusion energy are dense metallic fluids and mixing affects the
threshold for ignition [6]. Mixing generally involves stirring
and diffusion. Stirring results from the advective flow of one
fluid into another due to conservation of momentum and the
forces imparted to the fluids; diffusion is the interpenetration
of the fluids at the atomic level as the system seeks to lower its
chemical potential through a random walk of the atoms that
tends to reduce concentration gradients.

In this article we mainly consider diffusion in molten
aluminum-copper alloys. We use the aluminum-copper system
as an example of transport in molten metal mixtures at
high temperature and high pressure, examining how the
diffusivity changes with compression, temperature, and con-
centration. There are several reasons why diffusion in the
molten aluminum-copper system is interesting. It combines the
challenges of dense fluids, fluid mixtures, molten metals, and
material-specific properties. While diffusion in dilute gases
has been studied extensively and is well understood in many
respects [7], the theory of diffusion in dense fluids is not as
advanced; in particular, the analytic models of diffusion in
dense fluids are typically limited to relatively narrow ranges
of thermodynamic conditions such as along the melt curve.
Molten aluminum and copper comprise a dense system with
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each atom in constant interaction with its neighbors through
metallic bonds. The properties of the aluminum and copper
atoms in the mixture are not trivial. Aluminum and copper have
atomic volumes that differ at ambient pressure, with the vol-
ume of aluminum about 50% greater than that of copper. The
two are completely miscible as liquids [8], whereas the solid
binary alloys show a remarkably complex phase diagram due
in part to the volume mismatch. Some of these phases are very
important for industry because copper-rich phases precipitate
and strengthen aluminum alloys. The molten alloys we study
show no tendency to phase segregate or form molecules. There
is a weak but non-negligible chemistry as the internal energy
for the mixed state is slightly preferable to the phase-separated
state, with the mixed state further promoted by the entropy
of mixing. Some experimental measurements of transport
properties have been made for these metals [9–18]. This
combination of properties makes the molten aluminum-copper
system interesting as an archetype for transport properties in
dense fluids, especially molten metal alloys.

We have used the aluminum-copper system to study atomic-
scale effects in hydrodynamic flows [19], such as in the
Kelvin-Helmholtz instability in which ripples grow on the
interface between two fluids flowing past each other [20].
As the instability enters the nonlinear regime, the ripples
transition to well-defined vortices that continue to grow in
size. The billows (commonly known as waves) that form on
the top of water as air blows across it are a familiar example
of a manifestation of such a shear instability. In a shear layer
the vortices that form stir the fluids, moving one fluid into
the other through advection. Diffusion further promotes the
mixing. The simulations of the Kelvin-Helmholtz instability
at the atomic scale using molecular dynamics (MD) were
extremely expensive in terms of computational resources. A
specific motivation of the work presented here is to construct a
model of the diffusive part of the mixing for use in continuum
fluid instability simulations and analysis of the large MD
simulations.
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Diffusivity in fluid mixtures is not well understood except
in certain limits. In particular, only in these limits are models
available that describe the diffusivity across a broad range of
temperatures and pressures. In the dilute gas limit, diffusion
involves long ballistic trajectories with occasional binary
collisions. Diffusivities can be calculated analytically in terms
of scattering integrals using Chapman-Enskog theory. The
expressions for self-diffusivities due to Chapman and Cowling
are well known [7,21,22]. In the other extreme, diffusion in
solids involves long oscillations in the potential well associated
with one lattice site punctuated by rare events in which the
diffusing species hops to another well before continuing its
oscillations there [23]. That process is typically described by
transition state theory [24], and a theory has been developed
that relates the diffusivity to excess entropy [25,26]. Dense
fluids are between the dilute gas and solid limits. Diffusion of
molecules in the fluid is impeded by a cage of surrounding
molecules, and there is a time scale associated with the
persistence of that cage that controls diffusion [27–29].

Diffusion has been studied in experiments involving a
variety of molten metals [30], often over a small range of
temperatures at ambient or near-ambient pressure or near
the solidification curve (liquidus) under pressure. The use of
inelastic scattering to infer dynamic correlation functions, and
hence the diffusivity, has proved very valuable. Hard-sphere
numerical studies using molecular dynamics [31] and Monte
Carlo [32] approaches have been used as standard reference
systems to infer the equation of state and transport behavior
of fluids under these conditions [30,33,34]. Such reference
systems have proved to be very valuable in understanding the
fluid behavior in the relatively narrow range of conditions near
the solidification curve. More realistic interatomic potentials
have also been used in MD to study diffusion at low
pressure [35–40]. Mode coupling theory [41] has provided
a sophisticated statistical mechanics framework to understand
diffusivity experiments, and especially glassy systems. In all of
this work there is no theoretical prediction for the diffusivity
of dense fluids that has been tested over a broad range of
temperature, pressure, and concentration.

Here we use molecular dynamics [31,42] with forces
derived from classical interatomic potentials to simulate
diffusion in homogeneous molten aluminum-copper (AlCu)
alloys. To the best of our knowledge, this work is the
first study to use MD with material-specific interactions to
quantify diffusion processes in dense fluid mixtures across
a broad range of conditions. Prior classical and quantum
MD simulations with material-specific forces have been used
to calculate diffusivities at specific thermodynamic condi-
tions [43–45]. The terms classical and quantum here and
throughout the article refer to how the forces are computed,
either from a classical potential or from explicitly solving
quantum-mechanical equations for the electrons (in both the
ions typically are evolved according to classical equations
of motion). The self-diffusivities (tracer diffusivities) and
Maxwell-Stefan diffusivities are calculated using fluctuation-
dissipation relations (Green-Kubo formulas). Here we use that
approach for the molten alloy at various copper fractions.
These calculations concentrate on a range of temperatures
from 1000 to 4000 K and pressures from 0 to 25 GPa,
with some additional calculations at higher temperatures and

pressures. This represents a significant pressure range and
temperatures that are not restricted to near the solidification
curve. The Maxwell-Stefan diffusivities are used to estimate
the interdiffusivity (also termed the Fickian diffusivity and the
mutual diffusivity), which is compared to that predicted by a
generalization of the Darken equation. Analytic models of the
self-diffusivity and interdiffusivity are constructed. Also, the
viscosity and thermal conductivity are discussed.

II. CONTINUUM FLUID MECHANICS

Species diffusion in response to concentration gradients
is one contribution to how fluids evolve in time. They also
respond to pressure gradients, thermal gradients, forces, and
boundaries in a way that respects conservation of mass,
momentum, and energy, as well as conserving numbers of
atoms (perhaps evolving the species populations according
to the kinetic laws associated with chemistry and/or nuclear
transformations). In the AlCu system, nuclear transformations
and chemical reactions leading to changes in molecular
populations are not important.

The details of the way in which the full set of equations
of fluid mechanics are formulated determine the diffusion
equations and the diffusivity. To show that dependence we
consider the equations here. The conservation laws and
dissipative fluxes are described by the Navier-Stokes equations
for multicomponent fluids. The complete set of these equations
is complicated and given in standard texts (for example, see
Ref. [7], Ch. 19). Here we consider the binary fluid case
and write only the equations that are relevant to diffusion.
The conservation equations for mass and momentum and the
equation for the species flux (neglecting body forces other than
gravity) are

Dρ

Dt
= −ρ ∇ · v, (1)

ρ
Dω

Dt
= −∇ · j + r, (2)

ρ
Dv
Dt

= −∇p − [∇ · τ ] + ρg, (3)

j = −ρD12[∇ω + (kT /T )∇T + (kp/p)∇p], (4)

where Df/Dt is the comoving derivative (e.g., Dρ/Dt =
∂tρ + v · ∇ρ). Here v(x) is the velocity field, ρ(x) is the den-
sity, g is the gravitational acceleration, ω(x) is the mass fraction
of one species (here taken to be copper), D12 is the interdiffu-
sivity (the transport coefficient for Fickian species diffusion),
kT is the thermal diffusion ratio, kP D12 is the barodiffusion
coefficient, kT D12 is the thermal diffusion coefficient. The rate
of production of mass of one species due to chemical reactions
is r , which we will take to be zero. The equations are written
in the form suitable for binary mixtures. For higher-order
mixtures, the mass fraction, mole fraction, reaction rate, flux,
and associated transport coefficients are species-dependent
and carry an additional index that we have suppressed. The
equation of state is a specified function p(ρ,T ,ω).

Here τij is the energy-momentum tensor (related to the
stress tensor σij by τij = ρvivj − σij ). The other fields are
the internal energy per unit mass, E, pressure p = − 1

3σii , and
temperature T . In Newtonian fluids the viscous stress tensor
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is given by

σ ′
ij = η

(
∂ivj + ∂jvi − 2

3δij ∂kvk

) + ζ δij ∂kvk, (5)

where η is the shear viscosity and ζ is the bulk viscosity.
The full stress tensor is related to the viscous part by σij =
−pδij + σ ′

ij . A suitable set of boundary and initial conditions
is also needed to fully specify a flow.

We are principally interested in Fick’s Law, which is
implied by Eqs. (2) and (4) and corresponds to the case where
there is no density variation, no temperature gradient, and no
stress:

0 = ∂t (ωρ) + ∇ · (ωρv + j), (6)

j = −ρD12 ∇ω. (7)

For some generality, we have retained the velocity v.

III. TRANSPORT COEFFICIENTS

A. Self-diffusivity, viscosity, and thermal conductivity

There are three transport coefficients of fluids that have been
studied extensively and may be formulated as the integral of
certain time autocorrelation functions suitable for calculation
in MD using the Green-Kubo formalism [34,45–47]: the self-
diffusivity Di , shear viscosity η, and thermal conductivity,
λ. The Green-Kubo formulas for these coefficients involve
integrals over autocorrelation functions [see McQuarrie [46],
§§21–28):

Di =
∫ ∞

0
dt 〈ẋi(0) ẋi(t)〉, (8)

η = Vtot

kBT

∫ ∞

0
dt 〈σxy(0) σxy(t)〉, (9)

λ = Vtot

kBT 2

∫ ∞

0
dt

〈
J e

x (0) J e
x (t)

〉
, (10)

where the index i labels the species. By self-diffusivity we
mean the diffusivity for species i in the mixture; we do not
imply that the fluid is pure species i. The autocorrelation
function that enters the expression for the self-diffusivity Di

depends only on the velocities of species i. Here we are
following the usual convention, but we emphasize the point
because the terminology can lead to some confusion. Vtot is the
total volume of the simulation, kB is the Boltzmann constant,
T is the absolute temperature, ẋ(t) is the velocity in the x

direction, σij (t) is the (virial) stress, and J e
x (t) is the energy

current:

σij = − 1

Vtot

(∑
μ

mμẋμi ẋμj +
∑
〈μν〉

xμνiFμνj

)
, (11)

J e
i = 1

Vtot

[∑
μ

ẋμi(eμ − 〈h〉)

+
∑
〈μν〉

xμνi

(
ẋμ + ẋν

2

)
· Fμν

⎤
⎦ , (12)

eμ = 1

2
mμ|ẋμ|2 + Uμ, (13)

〈h〉 =
(

1

N

∑
μ

eμ

)
+ p V, (14)

where μ and ν label atoms and the sums over 〈μν〉 sum distinct
pairs of atoms. The relative separation is xμνi = xμi − xνi .
Here mμ is the mass of atom μ and Uμ is its potential energy.
In practice these formulas converge more rapidly if averaged
over the different independent components of velocity, stress,
and current.

The Green-Kubo formula for self-diffusivity (8) involves
an integral over the velocity autocorrelation function

Zi(t) = 〈ẋi(t)ẋi(0)〉 (15)

= 1
3 〈ẋi(t) · ẋi(0)〉. (16)

This autocorrelation depends on the species i, as well as the
pressure, temperature, and copper fraction. The autocorre-
lation function starts with a value of Zi(0) = kBT/mi and
decreases to zero as time progresses, perhaps with oscil-
lations. The Green-Kubo expression for the self-diffusivity
in a homogeneous system is equivalent to the following
definition:

Di = lim
t→∞

1

6t
〈|xi(t) − xi(0)|2〉. (17)

The Green-Kubo expression can be recovered by replacing
x in this expression with the time integral of the velocity
(cf. Ref. [34], §7.2).

B. Interdiffusion

The interdiffusivity is also of interest, and it requires a
different Kubo formula. Interdiffusion is the process described
by Fick’s equation (2). It moves one species with respect to
the others. For example, it controls the rate of broadening
of the interface between regions of different concentration.
As such, it can be calculated directly with nonequilibrium
molecular dynamics. We return to this point below. It can also
be calculated using linear response theory and fluctuation-
dissipation relations, similar to how the self-diffusivity is
calculated.

The interdiffusion current involves the relative transport of
mass. In a binary system the mass flow of one component
relative to the other is given by (see Refs. [7,34]):

jc = ρ1v1 − ρ2v2 (18)

= ρ1ρ2 (v1 − v2) /ρ + (ρ1 − ρ2) v (19)

= ω1ω2 ρ (v1 − v2) , (20)

where ρi and vi are the mass density and the center-of-mass
velocity of species i. The third expression is valid in the
center-of-mass frame (v = 0). Often the interdiffusivity is
written as a number flux instead of the mass flux given here,
and in that case the flux is the same up to a mass-dependent
constant [34]: X1X2 n (v1 − v2), where n is the number
density.

The relation between interdiffusivity and self-diffusivity
may be presented in terms of Maxwell-Stefan diffusivity.
For a binary mixture, the Maxwell-Stefan equations take the
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form [7]:

X1X2 (v1 − v2)

-D12
= X1

kBT
∇μ1, (21)

where vi is the mean velocity of species i and μi is the chemical
potential of species i. -D12 is the Maxwell-Stefan diffusivity,
which is related to, but not equal to, the interdiffusivity.
Rearranging Eq. (21), reexpressing the velocity difference in
terms of the mass flux, and using the chain rule for the gradient
we have

jc = ρ -D12
m1m2

X1m1 + X2m2

X1

kBT

∂μ1

∂X1
∇X1 (22)

= ρ -D12
X1

kBT

∂μ1

∂X1
∇ω1, (23)

where mi denotes the species mass. Comparison of this
equation with the continuum fluid equations (7) shows the
interdiffusivity to be

D12 = -D12�, (24)

� = X1

kBT

∂μ1

∂X1
. (25)

Here � is called the thermodynamic factor [45]. It can be
expressed in terms of the activity as

� = 1 + d log f1

d log X1
, (26)

where fi is the activity coefficient of species i [51]. The activity
vanishes for ideal fluid mixtures, so the thermodynamic factor
is equal to unity in that case.

The expression for the Maxwell-Stefan binary diffusivity
may be derived from linear response theory, and it involves
the autocorrelation function of the interdiffusion current (18):
-D12 ∝ ∫ ∞

0 dt 〈jc(0) · jc(t)〉 [48–50]:

-D12 =
∫ ∞

0
dt ZMS(t), (27)

ZMS(t) = X1X2N

3
〈[v1(0) − v2(0)] · [v1(t) − v2(t)]〉, (28)

where N is the total number of atoms.

C. Relating self-diffusion to interdiffusion

The Maxwell-Stefan diffusivity contains cross-correlation
contributions that are not contained in the self-diffusivity.
It is interesting to consider whether those cross-correlation
terms are important. There is an approximate expression for
the interdiffusivity in terms of the self-diffusivities that was
developed for diffusion in solid metals by Darken [51–54].
It is an approximate relation, but it often works well in
practice [55]. The high-temperature molten metals studied
here are expected to be described well by this approximate
relation.

A derivation of the expression [48] starts with
the Maxwell-Stefan diffusivity (27) and then eliminates

cross-correlations:

-D12 = X1X2N

3

∫ ∞

0
dt 〈[v1(0) − v2(0)] · [v1(t) − v2(t)]〉

= X1X2N

3

∫ ∞

0
dt

〈[
1

N1

∑
i∈1

ẋi(0) − 1

N2

∑
j∈2

ẋj (0)

]

·
[

1

N1

∑
i∈m

ẋm(t) − 1

N2

∑
n∈2

ẋn(t)

]〉
(29)

≈ X1X2N

(
1

N1
D1 + 1

N2
D2

)
(30)

= X2D1 + X1D2, (31)

where in going from (29) to (30) it was assumed that the
cross-correlations vanish: 〈ẋi(0) · ẋj (t)〉 = 0 unless i = j .
This equation relates the Maxwell-Stefan diffusivity -D12 to
the self-diffusivities Di . It is a form of the Darken equation
[51]. All of these transport coefficients are evaluated at the
relevant conditions: -D12(T ,p,ω) and Di(T ,p,ω). For AlCu
interdiffusivity the Darken relation is then

D12 = [(1 − X)DCu + XDAl] �, (32)

where X is the copper mole fraction.
However, since the diffusion is taking place in the center

of mass frame, the motion of different atoms is not strictly
uncorrelated, even if one assumes that the motions of neighbor-
ing atoms are otherwise uncorrelated. This correlation causes
some ambiguity in the derivation of the Darken relation (31).
In the center-of-mass frame, the species velocities that enter
the autocorrelation function for the Maxwell-Stefan diffusivity
satisfy

v(t) = ω1v1(t) + ω2v2(t) = 0, (33)
so that

v1(t) − v2(t) = 1

ω2
v1(t). (34)

This expression is exact in the center-of-mass frame. Using this
relation, the Maxwell-Stefan diffusivity may be reexpressed as

-D12 = X1X2N

3ω2
2

∫ ∞

0
dt 〈v1(0) v1(t)〉 (35)

≈ X2

ω2
2

D1. (36)

The expression (35) is exactly equal to Eq. (27), but the ex-
pression that results when the cross-correlations are neglected
(36) can be quite different than the Darken expression (31).
Similar manipulations keeping v2 rather than v1 leads to the
approximation

-D12 ≈ (
X1/ω

2
1

)
D2. (37)

For two unequal species masses, the approximations (31), (36),
and (37) for -D12 can be significantly different.

This reductio ad absurdum leads us to consider the
derivation of a similar expression starting with the diffusion
equation and imposing the center-of-mass constraint. The
mass currents neglecting cross-correlations are given by the
following expressions in a frame moving with velocity v with
respect to the rest frame in which the self-diffusivities are

031202-4



SELF-DIFFUSIVITY AND INTERDIFFUSIVITY OF . . . PHYSICAL REVIEW E 85, 031202 (2012)

calculated:

j′1 = −ρD1�∇ω + ωρv, (38)

j′2 = −ρD2�∇(1 − ω) + (1 − ω)ρv, (39)

where the prime is used to distinguish the individual mass
currents from the total diffusive current. These equations are
similar to Darken’s starting point for analyzing diffusion in
solids [51]. By neglecting the cross-correlations, the mass
currents no longer balance, and a new center-of-mass frame
must be found. The condition that the total mass flux vanish
in the center-of-mass frame is given by

0 = j′1 + j′2 (40)

= −ρ (D1 − D2) �∇ω + ρv, (41)

and thus

v = (D1 − D2) �∇ω. (42)

Substituting this expression for the background velocity
into Eq. (38), we find the current

j = −ρ [D1 − ω (D1 − D2)] �∇ω. (43)

From this equation we read off the interdiffusivity:

D12 = [(1 − ω) D1 + ωD2] �, (44)

where for AlCu mixtures D1 = DCu, D2 = DAl and ω is
the copper mass fraction. This expression is similar to the
standard Darken relation (31), except that the self-diffusivities
are weighted by the mass fraction rather than the mole
fraction. We consider this expression below and compare the
Maxwell-Stefan diffusivity to both it and the mole-fraction-
weighted (conventional) Darken relation. The change in using
mass fraction weighting from mole fraction weighting can be
estimated as

D/D ≈ 1

4

m

m̄

D

D̄
, (45)

where m = m2 − m1 and D = D2 − D1 and m̄ and D̄ are
the corresponding averages. For the AlCu system this change
turns out to be <2%, so the differences are not very important.
We make a quantitative comparison below.

IV. MOLECULAR DYNAMICS

We now turn to the calculation of the diffusivity as
a function of copper fraction, pressure, and temperature.
For this purpose we have conducted MD simulations of
molten AlCu mixtures. The simulations are in the following
range of conditions: copper mole fraction X = 0–1, pressure
p = 0–25 GPa, and temperature T = 1000–4000 K and
additional simulations at higher temperatures and pressures.
MD simulates the motion of atoms interacting by forces
derived from an interatomic potential. We used the FEMD code
[56–58] with the Mason-Rudd-Sutton interatomic potential
for AlCu alloys [59], which is in the Finnis-Sinclair family
of potentials [60]. This AlCu potential has also been used to
study diffusion in solid AlCu alloys [59,61,62], and details of
how the potential was constructed are in those publications.
The potentials, like other Finnis-Sinclair and Embedded Atom
Method potentials, are many-body potentials, so the force

experienced by an atom depends on the density due to the
cluster of neighboring atoms and cannot be factorized into
pairwise interactions. In this formulation properties of the solid
including densities, cohesive energies, and elastic constants
agree with the experimental data (within the error bars on
those data). This level of agreement with experiment is not
possible with pair potentials (pairwise interactions).

The atoms move according to Newton’s Third Law (F =
ma), with the set of 3N coupled ordinary differential equations
integrated explicitly in time using a velocity Verlet time
integrator with a time step of 2 fs, reduced to 0.5 fs for
simulations with T � 20 000 K. The atomic configuration
for the self-diffusivity and viscosity calculations consisted of
N = 4000 atoms, generated from a well-equilibrated molten
Al system with a fraction of the atoms changed at random to
Cu to obtain the required mole fraction, scaling the velocity so
that the kinetic energy remained the same despite the change
in mass. The center-of-mass velocity was zero. The in-
terdiffusivity calculations were done for a subset of the
thermodynamic conditions with N = 256 000 atoms for 10
million time steps (∼20 ns), and the self-diffusivities and
viscosities were calculated for these runs as well, to confirm
the size scaling formulas described below. This procedure
for creating the initial configuration starts with a liquid that
is homogeneous at the microscopic level (up to statistical
fluctuations) and thus avoids the persistent microheterogeneity
that has been observed in some molten aluminum alloys
produced by melting weakly order solid alloys and not
subjected to a critical overheating beyond the liquidus [63].
The system was then re-equilibrated over ∼10 ps with a
thermostat (velocity renormalization) to obtain the desired
temperature and scaling the simulation box volume to obtain
the desired pressure [calculated with the virial stress formula
(11)]. The size of the cubic simulation box was 3.6 to 4.8 nm
on a side for the 4000 atom simulations (up to 16 nm for the
256 000 atom simulations), depending on the thermodynamic
conditions with a small number of larger simulations up to
16 nm on a side. Periodic boundary conditions were used.
Following the initial gross equilibration, the system was
further equilibrated at constant volume with a weak thermostat
(velocity renormalization every 100 time steps) for 100 ps.
Simulations were conducted at 165 combinations of mole frac-
tions and thermodynamic conditions: X = 0.0,0.1, . . . ,1.0,
T = 1000,2000,3000 K, and p = 0,2,4,10,25 GPa. A few
additional simulations were run in pure Al and pure Cu at
T � 4000 K.

Once the system was equilibrated, the simulation was run
for an additional 6.4 ns, calculating the velocity autocorrelation
function on the fly. Each 4000-atom run took about 10 hours
on 8 CPUs on the Zeus supercomputer at Lawrence Livermore
[64], and we conducted a total of 383 such runs, with more
than one run at each set of conditions in order to improve
statistics. Each 256 000-atom run took about 16 h on 64 CPUs
on the Atlas supercomputer at Lawrence Livermore [64] for
a simulated time of 1 ns. For each atom the initial velocity
was saved. The autocorrelation function was calculated as the
simulation progressed:

Zi(t) = 1

3

1

Ni

∑
α∈i

ẋα(0) · ẋα(t), (46)
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where i indicates the type of atom (Al or Cu) and Ni

is the number of that type. The simulation was run on a
parallel supercomputer, so the initial velocity was part of the
information that had to be communicated if the atom moved
from the spatial domain associated with one processor to
that associated with another. Since the velocity is used rather
than the position, no special bookkeeping is required if an
atom diffuses around the periodic boundaries. The correlation
function was saved as a table with an entry per time step.
After a sufficiently long period (10 ps), the autocorrelation
function was zero apart from statistical noise, so a new
initial velocity was saved and additional contributions to the
autocorrelation function were calculated, further reducing the
statistical noise. This approach is similar to earlier calculations
of self-diffusivities in MD (see Ref. [65]).

The self-diffusivity was then calculated as an integral (sum)
over the velocity autocorrelation function by postprocessing:

Di =
∫ ∞

0
dt Zi(t)

≈
[∑

k

ak t Zi(tk)

]
+ tmax

α − 1
Zi(tmax), (47)

where the coefficients ak give the Simpson’s rule approxima-
tion to the integral. The integral/sum was terminated to account
for a power-law t−α decay in the correlation function following
Bastea [44]. In particular, the long-time tail contribution was
included through the final term in Eq. (47). It is well known
that velocity autocorrelation functions exhibit long-time tails
[66], where the exponent derived for hard spheres in three
dimensions is α = 3/2. In practice for our simulations at these
elevated temperatures the long-time tail contribution was small
(6% or less). The tails are discussed more in Sec. IV A.

In principle the integral for the Maxwell-Stefan diffusivity
should be terminated similarly to account for the long-time tail
of its kernel. In practice, the correlation function ZMS is not
converged as well as ZAl and ZCu, and noise in the tail leads to
noticeable noise in -D12. We find that in practice a more rapidly
convergent expression for -D12 is

-D12 ≈
[∑

k

ak t ZMS(tk)

]
+ tmax

α − 1
ZD(tmax), (48)

where ZD(t) is a correlation function suggested by the Darken
relation that is discussed below (54).

As the size of the simulation box approaches the interatom
separation, there are corrections to the self-diffusivity since
the hydrodynamic flow of the atoms needed to accommodate
the diffusion is impeded. The formula for this correction for a
cubic periodic box with edges of length L is [67]

Di = DPBC + ξPBC kBT/(6πηL), (49)

where ξPBC = 2.837297. This formula gives the correction that
must be added to the self-diffusivity calculated in a finite
system with periodic boundary conditions DPBC to get the
actual self-diffusivity Di . A more approximate version of the
formula results from use of the Stokes-Einstein relation [34]

Di = kBT

2πηrgmax
(50)

(slip boundary conditions), where rgmax is the typical in-
teratomic separation. This value may be taken to be the
location of the first peak in the radial distribution function.
Substituting it into Eq. (49), the relation becomes Di ≈
DPBC/(1 − γ rgmax/L) where γ = ξPBC/3 = 0.9457657. Since
the Stokes-Einstein relation is not exact [68], the formula may
be further approximated by taking γ ≈ 1:

Di ≈ DPBC/(1 − rgmax/L), (51)

which is good for quick estimates of the finite-size correction.
For the AlCu system, the constant in the denominator of the
Stokes-Einstein relation (50) is about 2.1 rather than 2, but that
is a small correction to a small correction, and Eq. (51) is a
good approximation for many purposes. We have verified the
finite-size correction formula (49) by comparing the results of
the 4000 atom and 256 000 atom simulations.

It should be noted that we are taking an approach based on
classical MD using an available AlCu interatomic potential.
Quantum molecular dynamics could be used to verify the
accuracy of the classical potential, or even to calculate a few
diffusivities directly. It is beyond the capabilities of existing
computers to repeat these calculations exactly with quantum
MD, but it might be possible in the future.

A. MD self-diffusivity results

We have used MD to calculate the velocity autocorrela-
tion functions and self-diffusivities across a broad range of
conditions. Velocity autocorrelation functions are shown in
Figs. 1 and 2 for aluminum. Figure 1 shows the autocorrelation
function ZAl(t) at various volumes per atom (�) at T = 2000 K
(solid curves) and T = 20 000 K (dashed curves). The curves
at the lower temperature and the lower volumes show more
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FIG. 1. (Color online) The velocity autocorrelation function for
pure Al at the temperatures 2000 K (solid curves) and 20 000 K
(dashed curves). The curves correspond to the following volumes
and pressures: 14 Å3, 29 GPa (87 GPa); 16 Å3, 14 GPa (60 GPa);
18 Å3, 5.8 GPa (44 GPa); 20 Å3, 1.4 GPa (33 GPa); and 21 Å3,
0.12 GPa (29 GPa). The pressures at T = 20 000 K are in parentheses.
At the higher temperature much of the structure visible in the
autocorrelation functions at 2000 K has disappeared except at 14 Å3.
The autocorrelation function was calculated out to a time of 1 ps (not
shown).
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FIG. 2. (Color online) The velocity autocorrelation function for
pure Al at various temperatures on the 18 Å3 isochore. The curves
correspond to the following temperatures and pressures: 2000 K,
5.8 GPa; 5000 K, 14 GPa; 10 000 K, 26 GPa; 20 000 K, 44 GPa;
50 000 K, 87 GPa; and 100 000 K, 150 GPa. The initial point of the
curve ZAl(0) increases linearly with the temperature. The autocorre-
lation function was calculated out to a time of 1 ps (not shown).

structure (oscillations) due to correlated motion in the cage
of neighbors. That structure is absent from the curves for the
20 000 K simulations at volumes of 18 Å3 per atom and greater
for aluminum. Figure 2 shows ZAl(t) at � = 18Å3 for a range
of temperatures from 2000 to 10 000 K. Again the structure
at lower temperatures is absent at the higher temperatures,
with no minimum in the correlation function at t < 0.1 ps for
temperatures above ∼10 000 K. The autocorrelation functions
are well converged. The statistical error in the self-diffusivity is
less than 0.1% as determined from the standard deviation of the
self-diffusivity calculated from subsets of the data compared
to the reported value. The long-time tails are visible in the plot
in Fig. 3, even at the elevated temperature of 20 000 K. The
tails are stronger at lower temperature, but the structure in the
correlation function persists to later times, so the scaling is less
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FIG. 3. (Color online) The diffusivity for pure Cu at the tempera-
ture 20 000 K. The dashed line goes like t−3/2 for comparison to show
to what extent the long-time tails have that power-law dependence.
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FIG. 4. (Color online) Self-diffusivity of Al and Cu in AlCu
molten mixtures at ambient pressure and several temperatures: 1000,
2000, and 3000 K (lower, middle, and upper bands, respectively) as
calculated by the Green-Kubo formula (8). One point at 4000 K is
also shown.

clear. For our simulations, we find the power-law scaling t−α

varies from the hard-sphere exponent of α = 3/2 up to α ∼ 2
at higher pressures, and the expression for the diffusivity is
terminated accordingly.

The full set of self-diffusivities is shown in Figs. 4 and 5.
The first figure shows the self-diffusivities at zero pressure as
a function of the copper fraction. The values fall in bands
increasing with temperature at 1000, 2000, and 3000 K
(and one result at 4000 K). The second figure shows the
self-diffusivities at 3000 K as a function of the copper fraction.
In this case the bands correspond to different pressures, with
the self-diffusivity decrease with increasing pressure at 0, 2, 4,
10, and 25 GPa. The pressure dependence of the self-diffusivity
is plotted explicitly in Fig. 6. All of the self-diffusivities
are in the molten alloys; some of the 1000 K results are
in supercooled conditions. These calculations do not have
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FIG. 5. (Color online) Self-diffusivity of Al and Cu in AlCu
molten mixtures at a temperature of 3000 K and pressures ranging
from 0 to 25 GPa, as calculated by the Green-Kubo formula (8). The
diffusivity decreases with increasing pressure.
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FIG. 6. (Color online) Self-diffusivity of Al in pure molten Al
as a function of pressure at temperatures of 2000 K (diamonds) and
20 000 K (squares). These diffusivity values have been calculated
from the autocorrelation functions shown in Fig. 1 using the Green-
Kubo formula (8). The points correspond to volumes per atom of 14,
15, . . ., 21 Å3.

concentration gradients apart from local fluctuations, so the
numbers represent tracer diffusivities. They do not include
activity contributions.

In a few cases the tracer diffusivities of the pure metals
have been measured at the melting temperature. For copper,
the self-diffusivity was found to be 3.97 × 10−8 m2/s in
Refs. [9,11]; our value of 3.32 × 10−8 m2/s is about 16%
lower than the experimental value. This is good agreement,
especially since we have not tuned the interatomic potential
to the properties of the molten metal. We are not aware
of any high-pressure diffusivity experiments for copper or
any diffusivity experiments for aluminum. For Al there are
theoretical works to which we can compare. Our Al self-
diffusivity value at a temperature of 1000 K, 8.89 × 10−8 m2/s,
is 3% lower than the value of 9.2 × 10−8 m2/s reported in
Ref. [69] at a temperature of 1025 K, is 31% higher than the
value of 6.8 × 10−8 m2/s reported in Ref. [37] at a temperature
of 1000 K and experimental density, and is 71% higher than
the value of 5.19 × 10−8 m2/s reported in Ref. [40] at a
temperature of 973 K. Our result at 1000 K is in reasonable
agreement with the other theoretical results, with an admittedly
large scatter.

The general trend is for the self-diffusivities to increase
with temperature and to decrease with pressure as expected.
The diffusivities are higher for the more aluminum-rich
alloys, increasing convexly upward as the aluminum content
is increased. The number density of the aluminum is lower
than that of copper at a given pressure, as seen already in
the zero temperature lattice constants (aCu = 3.61Å vs aAl =
4.05Å). So the diffusivities are higher in the material with
the lower number density, as is reasonable. Similarly, the
Al self-diffusivities in all of the alloys are higher than the
corresponding Cu self-diffusivities. The self-diffusivities of
the different species do not converge at the end points (X = 0
and X = 1), so in the dilute limits the impurity diffusion is
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FIG. 7. (Color online) The radial distribution function g(r) for
Cu at a temperature of 3000 K, as calculated by MD.

not fully coupled to the majority particles. In mixed systems,
the self-diffusivities are not just linear interpolation in either
mass fraction or mole fraction of the values at the end points,
and furthermore the curvature is asymmetric. These properties
affect the form of the fitting functions we use below.

B. MD PBC correction results

We have also calculated the radial distribution function g(r)
needed to determine the correction due to finite-size effects for
a simulation box with periodic boundary conditions (PBC).
The radial distribution function was calculated at 1 ps intervals
during a total simulation time of 2 ns for pure Al and pure Cu
at pressures of 0, 2, 4, 10, and 25 GPa and temperatures of
2000 and 3000 K. The results for Cu at 3000 K are shown
in Fig. 7 with no smoothing. The results Al and for both at
2000 K follow the same trends.

The first peak in the radial distribution function g(r) was
used to calculate the nearest neighbor separation a needed for
the finite-size correction (51). The results are shown in Table I.
One interesting feature is that the value of a decreases as the
temperature is increased from 2000 to 3000 K, even though the
overall box size increases due to thermal expansion. The value
of a at the peak decreases even though the midpoint of the peak
increases due to the anharmonicity of the interatomic forces.
Using the values of a in Table I, we find that the corrections to
the self-diffusivity cause an increase by a small amount, ∼6%,
as shown in Fig. 8 for 4000 atoms. The correction is less than
2% for the 256 000 atom calculations. This correction is small
and may be neglected for many purposes. We will not use it to
modify the self-diffusivity values that are reported. However,
in some cases it may be useful to account for this correction.
For 4000 atoms, the expression

Di/D
PBC
i ≈ 1 + d̃1 − d̃2 � (T/T0)β (52)

describes the correction to an accuracy of 0.2% for pressures
from 0 to 25 GPa with the parameters d̃1(Al) = 0.075,
d̃1(Cu) = 0.078, d̃2(Al) = 6.31 × 10−4Å−3, d̃2(Cu) = 9.92 ×
10−4Å−3, β(Al) = 1/4, β(Cu) = 1/6, and T0 is a reference
temperature taken to be 2000 K. � is the atomic volume in Å3.
For N �= 4000, the coefficients d̃i are scaled by (N/4000)−1/3.
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TABLE I. Nearest-neighbor separation calculated from the first peak in the radial distribution function g(r).

Pressure aAl (2000 K) aAl (3000 K) aCu (2000 K) aCu (3000 K)

0 GPa 2.690 Å 2.661 Å 2.450 Å 2.433 Å
2 GPa 2.669 Å 2.642 Å 2.441 Å 2.423 Å
4 GPa 2.650 Å 2.629 Å 2.432 Å 2.414 Å
10 GPa 2.604 Å 2.583 Å 2.407 Å 2.391 Å
25 GPa 2.524 Å 2.504 Å 2.359 Å 2.345 Å

The tildes are used on the coefficients here to distinguish
them from other coefficients discussed later in the paper. We
have not calculated the correction for AlCu mixtures, and
the hydrodynamic correction formula (49) may not apply to
mixtures, but since the correction is small, linear interpolation
by mole fraction should be a good approximation.

C. MD Maxwell-Stefan diffusivity results

We have also used MD to calculate the center-of-mass
velocity autocorrelation functions and Maxwell-Stefan dif-
fusivities across a broad range of conditions. The center-of-
mass velocity autocorrelation function for the Maxwell-Stefan
diffusivity converges much more slowly than the velocity
autocorrelation function for the self-diffusivities. There is
only one center-of-mass mode for each species, whereas
there are many atoms. This leads to much better statistics
for the self-diffusivities. In a typical calculation the error
for the self-diffusivities is less than 0.1%, whereas for the
Maxwell-Stefan diffusivity it is 3–6%. Longer runs were used
to converge the results presented in this section (256 000 atom
simulations for 16 ns), bringing the error down to ∼1% or
less. Examples of the center-of-mass velocity autocorrelation
function ZMS(t) with mole fraction X = 0.5 are shown in
Fig. 9. The corresponding atomic velocity autocorrelation
functions Zi(t) are also shown. These examples were chosen
to show the differences between the correlations functions at
low temperature and high pressure, shown here at T = 2000 K
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FIG. 8. (Color online) The multiplicative correction due to finite-
size effects with periodic boundary conditions as a function of atomic
volume, �. The points are the correction obtained from Eq. (51) using
the values for the nearest neighbor separation a given in Table I. The
curves are the fits from Eq. (52).

and p = 25 GPa, and those at higher temperatures and lower
pressures, shown here at T = 3000 K and p = 0 GPa. As the
temperature increases or the pressure decreases to move away
from the melt curve, the structure becomes less pronounced.
The first minimum in the curve disappears. Since the starting
value Zi(0) is proportional to the temperature, the initial peak is
higher at higher temperatures. The width in time of the initial
peak increases as the temperature increases or the pressure
decreases. These trends apply to ZMS(t) as well as the atomic
velocity autocorrelation functions. The shape and structure of
ZMS(t) tends to be intermediate between ZAl(t) and ZCu(t),
although there are some differences, as has been observed in
previous studies [49]. At the point at which the ZAl(t) and
ZCu(t) curves cross, ZMS(t) is close, albeit not equal, in value.

As the concentration is varied, the Maxwell-Stefan kernel
ZMS(t) varies from nearly equal to ZCu(t) for Al-rich mixtures
(low X) to nearly equal to ZAl(t) in Cu-rich mixtures (high X),
as shown in Fig. 10. This variation is in agreement with the
guidance from the Darken equation (31), which would suggest
the following relation:

ZMS(t) ≈ ZD(t), (53)

ZD(t) = (1 − X) ZCu(t) + X ZAl(t). (54)
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FIG. 9. (Color online) The velocity autocorrelation functions for
X = 0.5 AlCu at p = 25 GPa and T = 2000 K (solid curves) and
p = 0 GPa and T = 3000 K (dashed curves). The y axis has been
offset to separate the two sets of curves, with the arrows indicating
which vertical axis goes with which curves: 2000 K on the left and
3000 K on the right. The correlations functions for the Maxwell-
Stefan diffusivity ZMS(t) (28) and the self-diffusivities ZAl(t) and
ZCu(t) (16) are shown for comparison. The autocorrelation functions
were calculated out to a time of 1 ps (not shown).
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FIG. 10. (Color online) The velocity autocorrelation functions for
AlCu mixtures at a pressure of 0 GPa and the temperatures 3000 K.
The mole fractions range from 0.1 to 0.9, as indicated in the five
panels. The correlations functions for the Maxwell-Stefan diffusivity
ZMS(t) (28) and the self-diffusivities ZAl(t) and ZCu(t) (16) are shown
for comparison. As the concentration is changed, ZMS(t) varies from
nearly equal to ZCu(t) at X = 0.1 to nearly equal to ZAl(t) at X = 0.9.

The error in this approximation, quantified as |ZMS(t) −
ZD(t)]|/ZMS(0), is found to be less than 3% at all times for
AlCu at the conditions studied here. This error measure does
not guarantee anything about how well the Maxwell-Stefan
diffusivity is approximated by the Darken relation, and we
find below that the agreement is somewhat worse than this.

A comparison of the Maxwell-Stefan diffusivity -D12 and the
corresponding diffusivities derived from the Darken relations
based on mole fraction weighting (31) and mass fraction
weighting (44) of the self-diffusivities is shown in Fig. 11.
Both Darken expressions overestimate -D12 by 1–15%, so
by this measure the cross-correlations reduce -D12. In the
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FIG. 11. (Color online) Diffusivity plotted as a function of
pressure. The diffusivities plotted are the Maxwell-Stefan diffusivity
-D12 and the corresponding diffusivities derived from the Darken
relations based on mole fraction weighting (31) and mass fraction
weighting (44) of the self-diffusivities. The plotted values are for
X = 0.5 and the temperatures indicated: 2000 and 3000 K. The inset
shows the 3000 K curves at low pressure where the mole fraction
weighting gives a significantly better approximation to -D12.

majority of cases there is little difference between the mole
fraction weighting and the mass fraction weighting; i.e., the
magnitude of the cross-correlation effect considerably exceeds
the difference between mass- and mole-fraction weighting.
In those cases where there is a difference, the mass fraction
weighting gives a result that is closer to -D12 (such as at p = 0
and T = 3000 K).

V. ANALYTIC DIFFUSIVITIES

We next convert the results of the self-diffusivity calcu-
lations into an analytic form suitable for continuum Navier-
Stokes simulations. In the process we compare with functional
forms presented in the literature. The question of how the
diffusivity changes with pressure has been addressed in the
context of gases [21] and solids [70], but there has been
little work on high-pressure molten metals. We will consider
whether existing forms continue to apply in this different
regime. In particular we consider a form that arises in the
dilute gas limit from Chapman-Enskog theory [21] and a form
that arises from the analysis of dense hard-sphere systems
mechanics [46]. We also give an empirical fit motivated by the
hard-sphere model.

A. Dilute gas

We first assess whether the formula for diffusivity for
dilute gases due to Chapman and Cowling [21] provides a
good description of the MD-based values. Diffusion in dilute
binary gas mixtures has been studied extensively [7], with the
general trend that the self-diffusivity decreases with increasing
pressure and increases with increasing temperature. It is not a
strong function of the composition. The molten AlCu system
we study is in the dense fluid regime. The atoms interact via a
short-ranged potential, but even at the lowest densities studied
here there are more than a dozen atoms within the interaction
cutoff. As a result, the atoms are in constant interaction with
their neighbors, and the diffusive process is very different than
ballistic trajectories with occasional binary collisions. It may
be expected that the dilute-gas formula will disagree with the
MD results for the molten AlCu mixtures, but the magnitude
of the difference is not known a priori. The agreement may
be good enough. For this reason, we first consider dilute gas
models.

We consider the expressions for the diffusivity of a dilute
gas for two cases: hard-sphere and Lennard-Jones atoms. We
focus on pure aluminum for the initial assessment of whether
this approach is sufficiently accurate. The self-diffusivity
(tracer diffusivity) of a dilute gas of hard spheres is given
by [7]

DAA∗ = β

√
m kBT

ρ d2
dilute hard sphere, (55)

where d is the hard-sphere diameter and m is the mass. The
prefactor is given by β = 2/(3π3/2). Here we have made use
of the ideal gas law to eliminate the pressure. If instead a dilute
gas of Lennard-Jones atoms is considered, the self-diffusivity
(tracer diffusivity) is

DAA∗ = β

√
m kBT

ρ σ 2�D,AA∗
dilute Lennard-Jones, (56)
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FIG. 12. (Color online) Self-diffusivity (tracer diffusivity) of Al
pure molten Al at four temperatures: 1000, 2000, 3000, and 4000 K.
The points are values as calculated with MD using the Green-Kubo
formula (8). The lines are fit using the dilute hard-sphere formula
(55) with d = 2.4 Å. The dilute hard-sphere model does not provide
a highly accurate description of the diffusivity.

where σ is the Lennard-Jones radius (a species-dependent
constant) and �D,AA∗ is the scattering integral (a func-
tion of temperature and species). The prefactor is given
by β = 3/(8

√
π ). The temperature dependence of �D,AA∗

gives the Lennard-Jones self-diffusivity an overall scaling of
DAA∗ ∝ T 2 at low temperatures and DAA∗ ∝ T 1.65 at high
temperatures [7].

These forms do not provide a good description of the MD
diffusivities. The dilute hard-sphere result for pure Al is shown
in Fig. 12 with a hard sphere diameter of 2.4 Å. The tempera-
ture dependence of the dilute Lennard-Jones diffusivity is too
strong; that of the dilute hard-sphere diffusivity is too weak. In
both cases the scaling with atomic volume is linear, whereas
the MD diffusivities have an affine variation (varying like a
line with a nonzero intercept). We must turn to other models.

B. Hard-sphere liquid model

Dense hard-sphere systems have been studied extensively
and have been used as a reference system for transport
properties, equation of state, and other thermodynamic prop-
erties. The system consists of particles that do not interact
except for elastic collisions that occur when the centers of
two of the particles are separated by twice the hard-sphere
radius. Denoting the hard-sphere radius by σ , the system is
characterized by the packing fraction ξ = 1

6πσ 3/� where
� is the atomic volume. The hard-sphere equation of state
calculated by Alder and Wainwright [31] using molecular
dynamics is well described by the analytic form due to
Carnahan and Starling [33]

pH�

kBT
= 1 + ξ + ξ 2 − ξ 3

(1 − ξ )3
. (57)

The diffusivity of this system is given by [30,71]

DH = 1

48

(
πkBT

M

)1/2 (
6�

πξ 2

)1/3 (1 − ξ )3

ξ (1 − ξ/2)
. (58)

The naive hard-sphere equation of state does not describe our
AlCu system well, due to the attractive forces between the
atoms. This effect can be addressed by adding a uniform,
volume-dependent negative background potential [30,72],
shifting the pressure:

pH = p + f (�). (59)

There have been various suggestions of simple forms for this
correction [30,73]. We tried various simple forms for f (�)
that involved sums of terms that go like inverse fractional
powers of �, but the agreement with the MD results was poor.
Another generalization of the hard-sphere form was suggested
by Dymond [22], but this form also does not agree well with
our MD results.

To go beyond the simple forms we note that the hard-
sphere system solidifies at a packing fraction of ξc = 0.46, so
we can use f (�) to enforce ξ = ξc on the Lindemann melt
curve. Specifically, using a Grüneisen form for the equation
of state with the cold pressure p(T = 0K) = p0(�) [74], the
expression for f (�) is

f (�) = −p0(�) + 1

�
(φ(ξc) − 3γ0/η)kBTm, (60)

where φ(ξ ) = (1 + ξ + ξ 2 − ξ 3)/(1 − ξ )3 and the compres-
sion is η = �0/�. The melt temperature Tm is given by the
Lindemann expression [75]

Tm = Tm0e
2a(1−1/η)η2(γ0−a−1/3), (61)

where Tm0 is the melt temperature at ambient pressure, a

is a constant, and γ0 is the Grüneisen parameter at ambient
pressure. We have parameterized the Grüneisen equation of
state for the AlCu system [74]. All of the parameters have
been calculated independent of the diffusivity simulations, so
there are no free-fitting parameters in f (�).

The results for the diffusivity using this pressure correction
are much better than the simple forms gave, but the agreement
with the MD results is less than ideal. The case of pure
aluminum is shown in Fig. 13. We have taken the prefactor to
be a fitting parameter, so the form (58) of the self-diffusivity
is modified to be

DH = β

(
πkBT

M

)1/2 (
6�

πξ 2

)1/3 (1 − ξ )3

ξ (1 − ξ/2)
. (62)

In the fit the prefactor β was found to be 0.062 instead of
0.0206, so larger than the usual number by a factor of 3 [30].
Had we been interested in a narrower range of pressures near
ambient, the fit would have been considerably better. As is,
the MD diffusivity on the isotherms has a different functional
dependence on the volume (or equivalently density or pressure)
than the hard-sphere form (62). The MD results have less
curvature as the volume changes than implied by the hard-
sphere model. The qualitative trend of diffusivity increasing
with temperature is described fairly well, but the quantitative
level of agreement, while sufficient for many applications, is
not entirely satisfactory.

We consider these results to be the best we can do in the
context of a hard-sphere model. It is not surprising that the
hard-sphere approximation breaks down at higher pressures
and temperatures at which the classical turning point for the
potential has been reduced considerably from its low-pressure,
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FIG. 13. (Color online) Self-diffusivity (tracer diffusivity) of Al
pure molten Al at four temperatures: 1000, 2000, 3000, and 4000 K.
The points are values calculated with MD using the Green-Kubo
formula (8). The curves are fit to the dense hard-sphere formula (62).
The dense hard-sphere model is an improvement over the dilute model
shown in Fig. 12, but it still is not as accurate as desired.

melt-temperature value. The accuracy of the hard-sphere
model is not sufficiently good for our ultimate purposes
in analyzing the MD simulations of the Kelvin-Helmholtz
instability [19] mentioned in the introduction, so we are led
to pursue other forms that are empirical but motivated by the
hard-sphere forms.

C. Empirical model

The physics-based dilute gas and hard-sphere models have
not provided a satisfactory description of the MD results, so we
consider an empirical form. We are motivated here by the form
of the dilute hard-sphere diffusivity but modify the density
dependence to be an affine variation and the temperature
dependence to have a different exponent than the dilute hard
sphere (exponent 0.5) and the dilute Lennard-Jones (exponent
1.65–2.0).

We are thus motivated to describe the MD results with a
generalization of the dilute hard-sphere diffusivity (55):

DAA∗ = d0 + d1 (� − �0) (T/T0)n , (63)

where d0, d1, �0, and n are parameters to be fit. For
convenience, we have introduced a reference temperature T0

taken to be 2000 K. It is not an independent parameter. The
results for pure Al are better than the other models, as shown
in Fig. 14. This model achieves the level of accuracy we want.

Based on the promising results with pure Al, we fit the
entire set of MD results using the generalized dilute hard-
sphere formula (63), now taking the parameters d0, d1, �0,
and n to be quadratic functions of the mole fraction of copper
X. The values of the fit parameters are given in Table II.
The results of the fit are shown in Figs. 15 and 16. The fits
are good, with RMS errors of 6% and 12%, for Al and Cu
self-diffusivities, respectively. The larger errors come from
the supercooled region.

Compared to the dilute hard-sphere diffusivity (55), there
are several notable differences and similarities. In both cases
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FIG. 14. (Color online) Self-diffusivity (tracer diffusivity) of Al
pure molten Al at four temperatures: 1000, 2000, 3000, and 4000 K.
The points are values calculated with MD using the Green-Kubo
formula (8). The curves are fit to the generalized dilute hard-sphere
formula (63). This empirical fit is an improvement over the other
models.

the diffusivity increases linearly with the volume per atom, but
in the dilute hard-sphere diffusivity it is strictly proportional to
� ∝ 1/ρ, whereas in the generalization (63) there is a nonzero
intercept. They are both power laws in the temperature, but for
the dilute hard sphere the diffusivity is proportional to

√
T ,

whereas in the generalization it is almost linearly proportional
to T : It goes like T n with n ranging from 0.9967 to 1.12365
for Al and 0.963559 to 1.03212 for Cu.

The MD self-diffusivities fit to the generalized hard-
sphere diffusivity (63) with the parameters given in Table II
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FIG. 15. (Color online) Self-diffusivity (tracer diffusivity) of Al
as a function of copper fraction. The points are values calculated
with MD using the Green-Kubo formula (8). The curves are fit to the
generalized dilute hard-sphere formula (63). The upper band of four
curves is at 3000 K; the middle band of four curves is at 2000 K;
the lower band of four curves is at 1000 K. The circular points and
solid curves represent 0 GPa; square points and dashed curves, 2 GPa;
diamond points and dot-dashed curves, 4 GPa; triangular points and
dotted curves, 10 GPa. The curves and points end at a mole fraction
of 0.9 since the Al self-diffusivity is not defined at the next point (a
pure Cu system).
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TABLE II. Parameters for the generalized hard-sphere diffusivity (63) fit to the MD self-diffusivities as a function of the mole fraction of
copper X.

Species d0 (10−9 m2/s) d1 (10−9 m2/s Å3) �0 (Å3) n

Al −5.574 + 1.810X + 1.549X2 2.742 − 0.6729X + 0.06810X2 8.329 − 0.1079X + 0.3641X2 0.9967 + 0.004351X + 0.1226X2

Cu −6.021 + 2.068X + 1.177X2 2.432 − 0.4977X + 0.06156X2 7.725 + 0.1270X + 0.4212X2 0.9646 − 0.01898X + 0.0865X2

are our principal results. The self-diffusivities can then be
combined using the Darken equation (32) to determine the
interdiffusivity, which is plotted in Fig. 17. The comparison
of the Maxwell-Stefan diffusivity with the Darken diffusivity
has shown that the contribution of cross-correlations is a small
reduction in the diffusivity. We have made comparisons of
the analytic model with the interdiffusivity computed from the
rate of interface broadening in nonequilibrium MD simulations
with an initially sharp interface between regions of pure Al and
pure Cu [79]. The interdiffusivity from those simulations was
a few percent larger than the analytic model predicts; i.e., the
opposite direction from the change due to cross-correlations.
Presumably this increase in diffusivity results from activity
corrections (the thermodynamic factor, which we have not
calculated).

VI. VISCOSITY

While the principal focus of this work is on diffusivity, we
have also calculated the viscosity of molten AlCu mixtures.
These calculations were done using the Green-Kubo integral
of the shear stress autocorrelation function (9) for AlCu at tem-
peratures ranging from 1000 to 3000 K and pressures ranging
from 0 to 25 GPa over a the range of copper concentrations
0–1. The autocorrelation function was calculated for each of
the five independent components of shear stress and averaged.
Whereas the velocity autocorrelation function was calculated
on the fly as the simulations were running, the shear stress
autocorrelation function was calculated by postprocessing a
file containing the stress components written at each time
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FIG. 16. (Color online) Self-diffusivity (tracer diffusivity) of Cu
as a function of copper fraction, as in Fig. 15 except for Cu instead
of Al.

step. Finite-size effects are much weaker for the viscosity than
diffusivity, and negligible for the 4000 atom simulations.

The results are shown in Fig. 18. For example, the values
of the viscosity for the pure metals at 2000 K and 4 GPa
are ηAl = 0.00707 poise and ηCu = 0.0231 poise (1 poise =
0.1 Pa-s). These correspond to kinematic viscosities of
νAl = 2.86 × 10−7 m2/s and νCu = 2.95 × 10−7 m2/s. The
Schmidt number across the range of temperatures and densities
calculated varies from 3.7 to over 2000 where

Sc = η

ρD12
. (64)

The lower Schmidt numbers correspond to higher tem-
peratures and lower pressures, and the highest numbers
corresponding to supercooled liquids. There is variation with
concentration; e.g., at 2000 K and 4 GPa, the Schmidt number
ranges from 13.5 to 33.8 as the concentration goes from
0 to 1.

The combination of the viscosity, diffusivity and radial
distribution function results allow us to investigate whether
the Stokes-Einstein relation holds. Taking the atomic radius
R = 1

2 rgmax (half the distance at the first peak of the radial
distribution function), we have calculated the ratio

cSE = kBT

π η Di R
(65)

for pure Al and pure Cu. For spherical particles, cSE = 4 for
slip boundary conditions and 6 for no-slip. The results are
shown in Fig. 19, where the behavior of the fluid is nearly that
of the Stokes-Einstein relation with slip boundary conditions,
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FIG. 17. (Color online) AlCu interdiffusivity calculated in MD
from the self-diffusivity (63) and combined according to the general-
ized Darken equation (44). The line color and style follow the same
pattern as in Fig. 15.
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FIG. 18. (Color online) The viscosity as a function of concentra-
tion across a range of pressures and temperature. The solid curves
show the fit to Eq. (67), and the points show the results of the MD
simulations.

except for those points in the supercooled region. The average
value of cSE is 4.24, slightly greater for aluminum than copper,
and increasing slightly with volume and temperature. In the
supercooled region the value of cSE drops below 4.

We have fit an analytic expression to the viscosity values
calculated from MD. The form of the expression is motivated
by the Stokes-Einstein equation and the fact that the inter-
atomic separation does not vary strongly over the range of
temperatures and pressures we have studied. The viscosity is
fit to

η = kBT

4πDCu R(�,T )
, (66)

R(�,T ) = (�/VCu0)1/3 [R00 + R1 log(�/VCu0)], (67)

where VCu0 = 11.7525 Å3, the atomic volume of fcc copper at
zero temperature and pressure. The expression for DCu is given
by Eq. (63) with the values in Table II. In the Stokes-Einstein
equation R(�,T ) would be the radius of the atom, in particular
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FIG. 19. (Color online) The Stokes-Einstein coefficient (65). In
the Stokes-Einstein relation this number would be 4 for slip boundary
conditions (dot-dash line) and 6 for no-slip (dashed line).

TABLE III. Parameters for the analytic expression for viscosity
(67). The parameters are functions of the mole fraction of copper X,
as indicated.

R0 (Å) 1.09784 − 0.422212X + 0.401049X2

R1 (Å) 0.312254 + 0.74701X + 0.334005X2 − 1.31185X3

the copper atom since we are using DCu; however, we take it
to be a fitting function of the form shown that is intended to
capture variations in the atomic radius and cSE. The results of
the best fit are given in Table III.

There have been more experimental studies of the viscosity
of molten AlCu than of the diffusivity [12,80–82]. To the best
of our knowledge all of the work has been at ambient pressure.
The most extensive viscosity study of copper-aluminum
alloys was undertaken by Konstantinova et al. by measuring
the viscous damping of torsional oscillations of the molten
alloys in a crucible at high temperature [82]. They report
kinematic viscosity, ν = η/ρ, over a range of concentrations
at temperatures of 600 to 1400 ◦C. At 700 ◦C (near our 1000 K
results), they found that adding copper to aluminum increases
the viscosity, in agreement with our results. They also found an
anomaly at Al-25 at % Cu (near the stoichiometric composition
CuAl3) where there is a peak in the viscosity. We do not see
this peak, possibly because the peak is narrow and we have
not calculated the viscosity at X = 0.25. A more interesting
explanation is that there could be a propensity to form CuAl3
clusters in molten AlCu due to some special property of the
interatomic bonding that is not captured by the potential.
Earlier experiments had not found this peak. The numerical
values they report for kinematic viscosity at 700 ◦C range
from 4.99 × 10−7 m2/s−1 at X = 0.0 to 6.24 × 10−7 m2/s−1

at X = 0.4 with the peak 8.48 × 10−7 m2/s−1 at X = 0.25.
The MD values for kinematic viscosity at 1000 K range from
3.64 × 10−7 m2/s−1 at X = 0.0 to 4.40 × 10−7 m2/s−1 at X =
0.4. The MD is systematically low compared to the experiment,
but if the comparison is made at the same homologous
temperature the values agree to ∼10% apart from the peak
due to the MD giving a low value for the melt temperature.

There have also been some experimental measurements of
the viscosity of aluminum across a range of temperatures by
Kononenko et al. [12]. They fit their data with the formula

η = 12.32 × 10−8 exp(1278/T )Mρ (68)

with T in Kelvin, which gives η = 11 mP at T = 933 K [13].
This number is in reasonably good agreement with the MD
result of 9 mP at T = 1000 K.

VII. THERMAL CONDUCTIVITY

The thermal conductivity has been calculated using
Eq. (10). There are no electrons in our classical MD, so the
electronic contribution to thermal conductivity is neglected.
The thermal conductivity for pure Al is calculated to be
0.167 W/m K at T = 1964 K and p = 4.08 GPa, and for pure
Cu it is calculated to be 0.192 W/m K at T = 2000 K and
p = 4.23 GPa. Because electronic contributions dominate the
thermal conductivity of the real molten metals, it is difficult
to compare these numbers to experiment. For example, the
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thermal conductivity of pure molten aluminum at ambient
pressure is reported to be in the range of 95–98 W/m K at T =
1000 K based on experiment [76]. The thermal conductivity
increases with temperature to 164 W/m K at T = 1900 K
according to quantum MD calculations [77]. This value is
three orders of magnitude greater than the ionic contribution
we have calculated. The thermal conductivity of copper is also
dominated by electronic contributions, as typical for molten
metals. The experimental results do not effectively constrain
the value of the ionic contribution.

In order to make any comparison to a physical system,
we need to consider a nonmetallic liquid. As an example,
the thermal conductivity of water ranges from 0.554 to
0.680 W/m K as the temperature goes from 0 to 200 ◦C (it
increases and then drops as the temperature is increased [78]).
These values are somewhat larger than those we calculate for
Al and Cu, but of the same order of magnitude.

VIII. CONCLUSION

We have used classical molecular dynamics to investigate
the pressure and temperature dependence of diffusivity in
molten AlCu mixtures over a broad range of conditions.
The self-diffusivities were calculated using the Green-Kubo
formula based on velocity autocorrelation function for the
AlCu mixtures. Finite-size effects were addressed with a
hydrodynamic correction formula. Using the calculated self-
diffusivities, we have assessed whether dilute hard sphere and
dilute Lennard-Jones models apply to the molten mixture.
Neither of the two dilute gas diffusivities describes the
diffusivity in molten Al and Cu. We also considered a liquid
hard-sphere model, extended to include a better description of
the melt curve under pressure. This model is an improvement
over the dilute gas models, but it too failed to reproduce the
MD values sufficiently well. We have presented an empirical
analytic form motivated by the dilute hard-sphere diffusivity.
This new form gives good agreement with the MD self-

diffusivities across the range of temperatures (1000–3000 K)
and pressures (0–25 GPa) simulated here. The agreement
continues to be good up to the most extreme temperature
(100 000 + K) simulations.

The self-diffusivities have been combined using the Darken
approximation to arrive at a model of interdiffusion across
this range of thermodynamic conditions. The results have
been compared with Maxwell-Stefan diffusivities to account
for cross-correlation effects, which were found to make a
small contribution to the diffusivity. The viscosities have been
calculated from the shear stress autocorrelation function. An
analytic form that reproduces the MD viscosity values has
also been derived based on the Stokes-Einstein relation. The
MD-derived transport coefficients have been found to be in
good agreement with experimental data at ambient pressure.
At higher pressures experimental data are not available,
and the models make valuable predictions for transport
under these extreme conditions. In the future it would be
interesting to understand whether the functional forms used
in the analytic models of self-diffusivity, interdiffusivity, and
viscosity reported here are in any sense universal. They may
well apply to other molten metal alloys. It would be interesting
to see whether they do, and if so, whether the form, currently
empirical in nature, could be justified by further theoretical
developments.
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