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The behavior of thermodynamic response functions and the thermodynamic scalar curvature in the supercritical
region have been studied for a Lennard-Jones fluid based on a revised modified Benedict-Webb-Rubin equation
of state. Response function extrema are sometimes used to estimate the Widom line, which is characterized by
the maxima of the correlation lengths. We calculated the Widom line for the Lennard-Jones fluid without using
any response function extrema. Since the volume of the correlation length is proportional to the Riemannian
thermodynamic scalar curvature, the locus of the Widom line follows the slope of maximum curvature. We
show that the slope of the Widom line follows the slope of the isobaric heat capacity maximum only in the
close vicinity of the critical point and that, therefore, the use of response function extrema in this context is
problematic. Furthermore, we constructed the vapor-liquid coexistence line for the Lennard-Jones fluid using
the fact that the correlation length, and therefore the thermodynamic scalar curvature, must be equal in the two
coexisting phases. We compared the resulting phase envelope with those from simulation data where multiple
histogram reweighting was used and found striking agreement between the two methods.
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I. INTRODUCTION

Supercritical fluids are widely used in industrial processes
like extraction and separation. Their behavior away from
the critical point is therefore an important practical question
because it might affect their applicability in the considered
technological process. Therefore, the localization and physico-
chemical interpretation of the extrema of thermodynamic
properties have been the subject of many investigations [1–5].

Fluids in their supercritical state are both dense and com-
pressible, and it is commonly said that there is no difference
between a liquid and a gas state. The thermodynamic properties
of supercritical fluids vary continuously with changes in
pressure or temperature. However, supercritical fluids exhibit
peculiar properties that are sometimes similar to those of
gases and sometimes to those of liquids. In the vicinity of
the critical point, several thermodynamic response functions
show extrema when the pressure or temperature is changed.
The lines of these extrema form a whole set of “ridges” in
the phase space and can be regarded as extensions of the
vapor-liquid coexistence line into the supercritical region.
In contrast to the traditional picture of supercritical fluids,
Simeoni et al. [6] recently discussed how the locus of
the maxima of the correlation length ξ for thermodynamic
fluctuations, i.e., the Widom line, could be considered as a
boundary that separates the supercritical region into gaslike
and liquidlike regions. Because of the lack of a theoretical
method for the construction of the Widom line, the locus of
extrema of the constant-pressure specific heat cp was used as
an estimation for the Widom line. Different dynamic regimes
in supercritical argon were identified on crossing the estimated
Widom line. In a different study [7], the maxima of the
isothermal compressibility βT , thermal expansion coefficient
αP , and heat capacity cp were used to estimate the Widom line

of a Lennard-Jones (LJ) system. Since the lines of maxima
should merge into one line near the critical point, the three lines
were thought to coincide if the temperature of the different
lines differed by less than 1%. However, in both studies, the
estimation of the Widom line is unsatisfactory because it is
a priori unclear how far from the critical point the lines of
extrema of response functions follow the exact Widom line.
It is worth noting that especially in the temperature-density
projection of the phase space, a rapid widening of the bunch of
extrema lines can be observed upon departure from the critical
point.

Fortunately, in a very recent study Ruppeiner et al. [8]
proposed a construction of the Widom line by using a novel
approach based on Riemannian geometry. Ruppeiner [9]
established a connection between the Riemannian thermo-
dynamic scalar curvature R of the thermodynamic metric
and the volume of the correlation length ξ , to wit, |R| ∝ ξ 3.
Consequently, the locus of the maximum of |R| describes the
locus of the Widom line.

Moreover, Ruppeiner et al. could describe how the vapor-
liquid phase transition can be calculated by using the fact that
the correlation length ξ must be the same in the two coexisting
phases. Thus, the first-order vapor-liquid phase transition curve
can be estimated from the equality of R calculated in the two
coexisting phases. Ruppeiner et al. called the procedure the
R-crossing method and applied it to a van der Waals (vdW)
fluid [8]. It is of great interest to apply this approach to a more
realistic system, such as a LJ fluid. The concept of Riemannian
geometry provides the first theoretical construction of the
Widom line without the need for any thermodynamic response
function and a novel way of characterizing first-order phase
transitions.

In order to obtain accurate predictions for the LJ fluid, we
used a phenomenological equation of state (EOS) obtained
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by means of a modified Benedict-Webb-Rubin (MBWR)
equation [10,11] in our study. There are other high-quality
EOSs for the LJ fluid, but we used this MBWR EOS because
it was the most commonly quoted EOS in the literature.
Using extensive simulation data for a LJ fluid at 348 state
points from the thesis of Meier [12], we recalculated the
multiparameter MBWR EOS. Meier’s data were the best data
we could find for the LJ fluid concerning the density of state
points and the quality. From this accurate analytical EOS, we
then constructed the loci of extrema at constant pressure and
temperature for the isothermal compressibility βT , the thermal
expansion coefficient αP , and the isobaric heat capacity cp.

It was shown elsewhere [13] that the use of different
ansatz functions in an EOS can cause different courses of
the extremal lines. To validate the revised MBWR EOS, we
compared our results with those of another high-quality EOS,
the Kolafa-Nezbeda (KN) equation [14] which uses a different
ansatz. The overall agreement between the two equations is
very good for the entire range of density and temperature, and
both equations indicate different results from those recently
published [7] in which the line of extrema for the isobaric heat
capacity approaches the critical isochore when the temperature
is increased. Brazhkin et al. [7] concluded from this that
a vdW fluid represents a fairly universal behavior of the
Widom line for a liquid-gas transition, in which the locus
of constant-pressure specific heat extrema exactly follows the
critical isochore [15]. Our results for the LJ fluid are different.

Based on the MBWR EOS, we calculated the state
point dependence of the Riemannian thermodynamic scalar
curvature R for a large region in phase space. This is interesting
because R carries information about the interaction of the fluid
system [16,17]. Using R, we then calculated the course of the
Widom line for a LJ fluid and we showed that only the extrema
of constant-pressure specific heat cp follow the Widom line in
the close vicinity of the critical point.

Finally, we calculated the vapor-liquid coexistence line by
using the R-crossing method of Ruppeiner et al. [8]. We
compared our results to those obtained by Shi and Johnson
[18], who used multiple histogram reweighting to compute
the phase envelope. We can show that the overall agreement
between the two methods is very good.

II. A REVISED MBWR EQUATION OF STATE

The MBWR EOS with 33 adjustable parameters has been
used successfully by Nicolas et al. [10] and by Johnson et al.
[11] to fit the thermodynamic data of a LJ fluid, and by others
to fit the data of a core-softened fluid [19]. Most of the fitting
data of Johnson et al. belonged to the supercritical region. In
Meier’s thesis [12], the thermodynamic simulation data of a LJ
fluid for a large number of additional state points are given. We
used Meier’s data to calculate the parameters of the MBWR
EOS. The EOS for the pressure p as a function of density ρ

and temperature T is formulated with 32 linear parameters xi

and one nonlinear parameter γ :

p(ρ,T ) = ρT + ρ2(x1T + x2T
1/2 + x3 + x4T

−1 + x5T
−2)

+ ρ3(x6 T + x7 + x8T
−1 + x9T

−2)

+ ρ4(x10T + x11 + x12T
−1)

+ ρ5x13 + ρ6(x14T
−1 + x15T

−2) + ρ7(x16T
−1)

+ ρ8(x17T
−1 + x18T

−2) + ρ9(x19T
−2)

+ exp(−γρ2)[ρ3(x20T
−2 + x21T

−3)

+ ρ5(x22T
−2 + x23T

−4) + ρ7(x24T
−2 + x25T

−3)

+ ρ9(x26T
−2 + x27T

−4) + ρ11(x28T
−2 + x29T

−3)

+ ρ13(x30T
−2 + x31T

−3 + x32T
−4)]. (1)

We used normal conventions for all reduced LJ parameters
[11]: The reference density is m/σ 3 where m is the particle
mass and σ is the LJ atomic diameter; the reference pressure
is ε/σ 3 where ε is the LJ well depth, which is the reference
energy; ε/kB is the reference temperature where kB is
Boltzmann’s constant. All quantities quoted in this work are
in terms of the reduced quantities. Unless otherwise noted,
all thermodynamic functions will be considered as functions
of density and temperature in the following. The residual
(configurational) internal energy uE which is a reduced energy
per particle is related to the pressure by

uE =
∫ ρ

0

(
p − T

∂p

∂T

)
dρ

ρ2
. (2)

Our procedure for calculating the unknown parameters is
similar to the description given elsewhere [11,19] and will
therefore not be repeated here. We explicitly make use of
critical point data obtained from Shi and Johnson [18] in the
course of our fitting procedure. We used the critical values
of ρc = 0.316 and Tc = 1.3145 for a long-range corrected
potential with a reduced cutoff value of 5.0. The nonlinear
parameter is set to γ = 3; compare Johnson et al. [11]. The
first five parameters x1–x5 are the same as in this paper [11];
they were generated from exact second virial coefficients.
The remaining parameters were calculated with Meier’s data
without weighting because no uncertainties for pressure and
energy are given in Meier’s thesis. The final values of the 32
parameters xi are presented in Table I.

In Fig. 1(a), the density dependence of the pressure at
different constant temperatures ranging from 1.1 to 6 is shown;

TABLE I. New parameters for the MBWR EOS regressed from
Meier’s data [12].

i xi i xi

1 0.862 308 509 750 7421 17 −12 849.646 945 560 7240
2 2.976 218 765 822 098 18 9.969 125 083 269 407 38
3 −8.402 230 115 796 038 19 −163 99.834 972 062 1627
4 0.105 413 662 920 3555 20 −256.926 076 715 047 884
5 −0.856 458 382 817 4598 21 −145 88.020 393 359 6368
6 1.447 873 188 137 063 22 22 −12 849.646 945 560 7240
7 −0.310 267 527 929 454 501 23 9.969 125 083 269 407 38
8 3.267 007 738 566 634 08 24 −16 399.834 972 062 1627
9 4402.402 104 295 189 02 25 −256.926 076 715 047 884
10 0.016 537 538 935 922 5696 26 −14 588.020 393 359 636
11 7.421 502 018 692 505 59 27 88.308 296 074 852 1799
12 −40.796 710 691 412 2298 28 −6417.298 420 881 501 44
13 16.453 782 538 214 1350 29 121.307 436 784 732 417
14 12.838 907 122 793 5610 30 −4461.883 327 409 137 56
15 −1407.065 802 596 428 97 31 −507.183 302 372 831 804
16 −33.225 173 894 770 5988 32 37.238 579 454 630 5178
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(a)

(b)

(c)

FIG. 1. (a) Comparison between simulated pressure data and EOS
at different constant temperatures; here symbols represent Meier’s
simulation data [12] and continuous lines are calculated from the refit
of the MBWR EOS. T = 6.0, 4.0, 2.5, 1.5, 1.35, and 1.1 (from top
to bottom). (b),(c) Deviation plots for pressure, where pMD denotes
Meier’s simulation data [12] and pEOS denotes the MBWR EOS
calculation. In (b) the solid circles are for T < Tc, the open circles
are for Tc < T < 2.5, and the crosses are for T � 2.5. In (c) the solid
circles are for ρ < 0.2, the circles are for 0.2 < ρ < 0.5, and the
crosses are for ρ � 0.5.

symbols represent the simulation data of Meier [12] and
continuous lines are calculated from our current fit of the
MBWR EOS. The overall agreement for the entire range of
density and temperature is good. In Figs. 1(b) and 1(c) we
show the deviations for the pressure, pMD − pEOS, where pMD

denotes Meier’s simulation data [12] and pEOS is calculated
from the MBWR EOS. The deviations are much smaller than
in [11]; this is an argument for the quality of the simulation

data of Meier, and we believe that our revised MBWR EOS
can be used properly for further analysis.

III. LINES OF EXTREMA OF THERMODYNAMIC
RESPONSE FUNCTIONS

In previous work [6,7], the extrema of thermodynamic
response functions were used for an estimation of the Widom
line. In order to study their relation to the exact Widom line,
we have calculated the maxima of the thermal expansion
coefficient

αP =
∂p

∂T

ρ
∂p

∂ρ

, (3)

the isobaric heat capacity

cp = T
(

∂p

∂T

)2

ρ2 ∂p

∂ρ

+ ∂u

∂T
, (4)

and the isothermal compressibility βT from

1/βT = ρ
∂p

∂ρ
(5)

for both constant temperature and constant pressure. The
density dependence of these quantities is given in Fig. 2. In
the left column we show results at constant temperature and in
the right column at constant pressure.

The response functions exhibit a strong increase in the
vicinity of the critical point; therefore all response functions
are plotted logarithmically in Fig. 2. The maximum of
the isothermal compressibility βT at constant temperature
vanishes quickly in the supercritical region, whereas the
maxima of the thermal expansion coefficient αP and of the
isobaric heat capacity cp also exist at higher temperatures.

The extrema of the curves in Fig. 2 determine the lines of
response function maxima in Fig. 3 where the ρ-T projection
[Fig. 3(a)] and the p-T projection [Fig. 3(b)] of the lines at
constant temperature are shown; the corresponding courses of
lines at constant pressure are given in Figs. 3(c) and 3(d).
The lines of the maxima of βT at constant temperature
[Fig. 3(a)] and at constant pressure [Fig. 3(c)] correspond
in both cases to a decrease in the density with temperature
increase. The same is true for the line of the αP maxima at
constant temperature [Fig. 3(a)], whereas the line of the αP

maxima at constant pressure [Fig. 3(c)] corresponds to an
increase in density with temperature increase before αP,max
passes through a maximum at about ρ = 1.75ρc. Except in
the vicinity of the critical point, the line of cp maxima at
constant temperature [Fig. 3(c)] runs away from the critical
isochore. It should be mentioned that the description of the
thermodynamic behavior in the close vicinity of the critical
point based on the MBWR EOS is uncertain. However, an
interesting result of this presentation is that the cp line of
maxima at constant temperature [Fig. 3(a)] does not turn
back to the critical isochore as was shown elsewhere [7].
Similarly to αP,max, the line of cp,max at constant pressure
passes through a maximum at about ρ = 1.65ρc [Fig. 3(c)].
In the p-T projection, the lines of the maxima of βT and
cp at constant temperature [Fig. 3(b)] correspond to an
increase in pressure with temperature increase, whereas the

031201-3



HELGE-OTMAR MAY AND PETER MAUSBACH PHYSICAL REVIEW E 85, 031201 (2012)

(a) (b)

(c) (d)

(e) (f)

FIG. 2. Thermodynamic response functions of the LJ fluid: Thermal expansion coefficient αP as a function of density ρ at (a) different
constant temperatures T = 1.4, 1.5, 1.7, 2, 2.5, 3, 4, and 5 (from top to bottom) and at (b) different constant pressures p = p∗pc with p∗ = 1.1,
1.2, 1.4, 1.6, 2, 3, and 4 (from top to bottom). Isothermal compressibility βT as a function of density ρ at (c) different constant temperatures
T = 1.32, 1.33, 1.34, 1.36, 1.38, 1.4, 1.42, and 1.44 (from top to bottom) and at (d) different constant pressures as in (b). Isobaric heat
capacity cp as a function of density ρ at (e) different constant temperatures T = 1.4, 1.45, 1.6, 1.8, 2.1, 2.5, and 3 (from top to bottom) and at
(f) different constant pressures as in (b). The solid circles in (a) and (e) show results from the NVEPG ensemble method [20–22].

αP,max line changes its behavior at a temperature of about
T = 2.5 Tc. The lines of maxima of αP , cp, and βT at constant
pressure [Fig. 3(d)] first correspond in all three cases to an
increase in pressure with temperature increase, but then, in
contrast to the behavior at constant temperature [Fig. 3(b)],
cp,max and αP,max pass through a maximum at higher
pressure.

It is well known [13] that the use of different EOSs can
cause different courses of extrema lines. We compared our
results with those of the KN EOS [14]. The results for the
lines of maxima of αP , βT , and cp obtained from the KN
EOS are shown as solid symbols in Figs. 3(c) and 3(d). The
agreement between the two EOSs is very good, although the
ansatz functions for them are very different, and it especially
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(a) (b)

(c) (d)

FIG. 3. (a),(b) Lines of maxima at constant temperature of the LJ fluid for the thermal expansion coefficient αP , isothermal compressibility
βT , isobaric heat capacity cp , and Riemannian thermodynamic scalar curvature R in the ρ-T phase diagram (a) and the p-T phase diagram (b).
(c),(d) Lines of maxima at constant pressure of the LJ fluid for the thermal expansion coefficient αP , isothermal compressibility βT , isobaric
heat capacity cp , and Riemannian thermodynamic scalar curvature in the ρ-T phase diagram (c) and the p-T phase diagram (d). The solid
circles are calculated from the Kolafa-Nezbeda EOS [14]. Isc denotes the critical isochore.

suggests that the course of the line of maxima of cp is not an
artifact of the MBWR EOS.

We also compared the response functions calculated from
the MBWR EOS with NVEPG ensemble simulation data
[20–22]; from this method thermodynamic derivatives could
be obtained directly. Since these calculations are very CPU
intensive, we present results for only one isotherm. The
isotherm at T = 2.5 was chosen, because at this temperature
there are greater differences from other studies [7]. The values
for αP and cp at T = 2.5 are shown as solid circles in Figs. 2(a)
and 2(e). The difference between the two methods is less than
1.3% for cp and less than 3.5% for αP ; this indicates the high
quality of the EOS.

IV. RIEMANNIAN THERMODYNAMIC SCALAR
CURVATURE R AND THE WIDOM LINE

The Widom line is defined by the locus of points of
maximum correlation length ξ . In a recent paper, Ruppeiner

et al. [8] established a new method for the construction of
the Widom line based on the relation |R| ∼ ξ 3 [9] between
the Riemannian thermodynamic scalar curvature R and the
volume of the correlation length. Therefore, the Widom line
can be constructed from the maximum of |R| where R is
calculated from the thermodynamic metric.

If we use as before ρ-T coordinates as state variables,
then the metric for these coordinates is diagonal, and the
line element d
 which characterizes the distance between
two neighboring thermodynamic states simply becomes
[16]

d
2 = gT T dT 2 + gρρdρ
2. (6)

We calculated the metric elements by using the free Helmholtz
energy f = u − T s, where u is the internal energy given
by

u = 3
2T + uE (7)
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(a) (b)

FIG. 4. Riemannian thermodynamic scalar curvature R of the LJ fluid: (a) −R as a function of density at different constant temperatures
T = 1.14, 1.25, 1.4, 1.6, 2, 3, and 5 (from top to bottom). The curves are broken at the vapor-liquid coexistence line. (b) −R as a function of
density at different constant pressures p = p∗pc with p∗ = 0.7, 1.1, 1.2, 1.4, 1.6, 2, 3, and 4 (from top to bottom).

and s is the entropy, which can be calculated from (compare
[23])

s = 3

2
ln T − ln ρ −

∫ ρ

0

(
∂p

∂T
− ρ

)
dρ

ρ2
. (8)

f , u, and s are dimensionless quantities per particle. The metric
elements are

gT T = − 1

T

∂2

∂T 2
(ρf ) , (9)

gρρ = 1

T

∂2

∂ρ2
(ρf ). (10)

The determinant g of the metric tensor becomes

g = gT T gρρ (11)

and the Riemannian thermodynamic scalar curvature R is

R = 1√
g

[
∂

∂T

(
1√
g

∂gρρ

∂T

)
+ ∂

∂ρ

(
1√
g

∂gT T

∂ρ

)]
. (12)

In our notation, R is a dimensionless quantity.
In Fig. 4 the density dependence of −R at constant

temperature [Fig. 4(a)] and at constant pressure [Fig. 4(b)]
is given. A logarithmic scale is used because −R strongly
increases near the critical point, where it becomes singular. As
can be seen from Fig. 4(a), the maximum vanishes for constant
temperature near T ≈ 5. Everywhere in the phase region
of Fig. 4, R < 0. Ruppeiner [16] indicates that attractive
interactions dominate if R is negative. It is a well-known
fact that the vapor-liquid transition is dominated by attractive
interactions whereas the fluid-solid transition is dominated
by repulsion, and, indeed, R becomes positive for the LJ
fluid on approaching the solid region. A detailed analysis
of this transition based on the Riemannian geometry is in
preparation.

In a similar way to the response functions, the extrema of
the curves in Fig. 4 determine the line of curvature maxima,
thus indicating the loci of correlation length maxima, e.g.,
the Widom line. In Fig. 3 we show the slope of |R|max at

constant temperature and constant pressure in the ρ-T and
p-T phase diagrams. The line of maxima of |R| always starts
at the critical point with a gradient very close to the gradient
of the line of cp,max in all projections of the phase space. But
the curves of |R|max and cp,max move away from each other
when the temperature is increased. The lines of maxima of |R|
at constant temperature [Figs. 3(a) and 3(b)] closely follow
the line of αP,max, whereas at constant pressure [Figs. 3(c)
and 3(d)] the Rmax line crosses the αP,max line.

As a comparison, we also analyzed the vdW fluid. The
reference temperature is now the critical temperature Tc, the
reference density is the critical density ρc, the reference energy
is kBTc, and the dimensionless pressure as a function of
dimensionless density and temperature becomes

p = 3

8

ρ

3 − ρ
(8T − 9ρ + 3ρ2), (13)

and the dimensionless internal energy per particle is

u = 3
2T − 9

8ρ. (14)

We show the course of the ridges for αP , βT , and cp as well
as those of |R| for a vdW fluid in the ρ-T and the p-T
projections at constant temperature [Figs. 5(a) and 5(b)] and
at constant pressure [Figs. 5(c) and 5(d)]. Obviously, there are
differences between the two fluids, e.g., the slope of cp,max

at constant temperature follows the critical isochore in the
ρ-T phase diagram in contrast to its behavior in the LJ fluid
[compare Figs. 3(a) and 5(a)]. Furthermore, the slope of the
|R|max line closely follows the αP,max line for the LJ fluid at
constant temperature in the ρ-T plane but not for the vdW
fluid [compare Figs. 3(a) and 5(a)]. The loci of αP,max and
cp,max at constant pressure describe a right turn for the LJ fluid
[Figs. 3(c) and 3(d)] which is very different from the behavior
in the vdW fluid [Figs. 5(c) and 5(d)].

But there are some obvious similarities between the slopes
of the |R|max line for the LJ fluid and the vdW fluid. The slope
of the |R|max line does not follow the slope of any quantity
that is shown in Fig. 3 or Fig. 5 except very near to the critical
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(a) (b)

(c) (d)

FIG. 5. (a),(b) Lines of maxima at constant temperature of the vdW fluid for the thermal expansion coefficient αP , isothermal compressibility
βT , isobaric heat capacity cp , and Riemannian thermodynamic scalar curvature |R| in the ρ-T phase diagram (a) and the p-T phase diagram
(b). (c),(d) Lines of maxima at constant pressure of the vdW fluid for the thermal expansion coefficient αP , isothermal compressibility βT ,
isobaric heat capacity cp , and Riemannian thermodynamic scalar curvature in the ρ-T phase diagram (c) and the p-T phase diagram (d). Isc

denotes the critical isochore; the critical isochore lies on the cp,max line in (b).

point, where the gradients are very close to those of the cp,max

line in all projections. The line of the maxima of |R| at constant
temperature [Fig. 5(a)] corresponds to a decrease in the density
with temperature increase and is situated between the αP,max

and cp,max lines in the ρ-T phase diagram. The line of the
maxima of |R| at constant pressure [Figs. 5(c) and 5(d)] crosses
the αP,max line for both the LJ fluid and the vdW fluid in the
ρ-T and the p-T phase diagrams. In summary, we can say that
there are obvious differences in the behavior of the response
function maxima between the LJ and the vdW fluids; there are
similarities, especially in the behavior of the scalar curvature
maxima.

V. CALCULATION OF VAPOR-LIQUID PHASE
EQUILIBRIA BY USE OF THE R-CROSSING METHOD

In addition to predicting the Widom line, Ruppeiner et al.
[8] also provided a novel way of characterizing a first-order
phase transition from a microscopic description based on

Riemannian geometry. The method connects density fluctu-
ations and the width of the interface between the coexisting
phases. Since the correlation length in the two phases must be
the same and because of |R| ∼ ξ 3, the coexistence curve of
a first-order phase transition can be constructed from the fact
that the Riemannian thermodynamic scalar curvature must be
equal in the two coexisting phases.

In this study, we applied this idea to predict the vapor-
liquid coexistence curve of a LJ fluid. In the preceding
section, we described how to calculate the course of R

along an isotherm for the vapor and the liquid regions.
The corresponding pressure where the curvature curves cross
each other can then be interpreted as the saturation pressure.
Consequently, Ruppeiner et al. [8] called the procedure the
R-crossing method. From this, the vapor-liquid equilibrium
phase diagram can be constructed. We varied the pressure at
a fixed temperature to get two slopes for R, a gas slope and a
liquid slope; the pressure value where the R values are equal
is taken as the reduced saturation pressure.
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(a) (b)

FIG. 6. (a) Vapor-liquid coexistence line in the ρ-T phase diagram. The continuous line is calculated with the R-crossing method, the
symbols are simulation results of Shi and Johnson [18], and the dashed line is calculated from an Ising-form power law [18]. The lines start
where |RG| ρG = 1. (b) p-T phase diagram.

In Fig. 6(a) we compare the vapor-liquid coexistence curve
obtained from the R-crossing method (solid line) with those
of simulation results (symbols) [18] and a fit of an Ising-form
power law (dashed line) [18] in the density-temperature
projection of the phase space. The simulation results of Shi
and Johnson [18] were obtained from a long-range corrected
LJ potential with a reduced cutoff value of 5 by using
multiple histogram reweighting. The method is considered to
be accurate and effective for computing phase diagrams. The
histogram data were collected from grand canonical Monte
Carlo simulations [18]. The overall agreement between the
results of the R-crossing method and the simulation results is
very good. The Ising power law expression is given by

ρ± − ρc = a|T − Tc| ± b|T − Tc|β, (15)

where ρ+ is the liquid density, ρ− is the vapor density, and
β is the critical exponent. The fit result is taken from the

FIG. 7. Riemannian thermodynamic scalar curvature R of the
LJ fluid as a function of the evaporation temperature Tv along the
coexistence line. The R values are equal for the gas and the liquid
phases.

paper of Shi and Johnson [18]. In particular, the results of the
R-crossing method follow the curvature of the coexistence line
obtained from simulation data well; this results in a narrowing
of the phase envelope in the vicinity of the critical point
compared to the fit of an Ising-form power law.

In Fig. 6(b) we show the vapor-liquid coexistence line
in the p-T projection of the phase space. The extension of
this line into the supercritical region, i.e., the Widom line,
is shown for the |R| maximum at constant temperature and
constant pressure. Obviously, the slope of |R|max at constant
temperature increases more rapidly upon compression than
does the slope of |R|max at constant pressure.

Despite the striking agreement, the R-crossing method is
not free of limitations. In this approach, the correlation volume
ξ 3 should be large enough to encompass a number of atoms
adequate for a thermodynamic approach. A good estimate
for the validity of the R-crossing method is the relation
|RG|/vG ∼ 1, where vG is the coexistence molecular volume
in the vapour phase. For |RG|/vG � 1, the method is strictly
valid [8]. In Fig. 6, the coexistence curve (solid line) starts
where the condition |RG|/vG = 1 is met.

Figure 7 shows the Riemannian thermodynamic scalar
curvature of the LJ fluid along the coexistence line as a
function of Tv/Tc, where Tv is the evaporation temperature.
The curvature becomes singular at the critical point, thus
indicating that the correlation length diverges.

VI. CONCLUSIONS

In this study, we have analyzed in detail the supercritical
behavior of thermodynamic response functions for a LJ
system. We calculated a new parameter set for the MBWR
EOS based on an extensive set of simulation data of 348 state
points. From the EOS we constructed the course of slopes
of maxima at constant temperature and constant pressure for
the isothermal compressibility βT , the isobaric heat capacity
cp, and the thermal expansion coefficient αP in the phase
space. The lines of extrema were used recently to estimate
the so-called Widom line under the assumption that the
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ridges of βT , cp, and αP merge into one single line in the
vicinity of the critical point. We showed that this assumption
is limited because the bunch of ridges widens rapidly upon
departure from the critical point. Following the new approach
of Ruppeiner et al. [8], we constructed the Widom line for
a LJ fluid without any use of response function extrema. We
estimated the Widom line by calculating the thermodynamic
scalar curvature R from the new fit of the MBWR EOS; the
curvature is related to the volume of the correlation length ξ by
|R| ∼ ξ 3. The Widom line of the LJ fluid does not follow the
slope of any response function extrema except in the vicinity
of the critical point. Here, the Widom line closely follows the
slope of the cp,max line, but then it immediately runs away from
the loci of cp,max in the supercritical region.

Following the approach of Ruppeiner et al., we also
constructed the vapor-liquid coexistence line for the LJ fluid

based on the R-crossing method. The method uses the idea of
characterizing liquid-gas phase transitions by the equality of
the correlation lengths in the coexisting phases; this implies
continuity at the phase boundary of the thermodynamic
scalar curvature. We compared our results for the coexistence
line with those of simulation data where multiple histogram
reweighting was used to predict the phase envelope. We found
striking agreement between the two methods, thus supporting
the power of the Riemannian geometry description for these
problems.
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