
PHYSICAL REVIEW E 85, 031151 (2012)

Shannon-entropy-based nonequilibrium “entropic” temperature of a general distribution

K. R. Narayanan1 and A. R. Srinivasa2,*

1Department of Electrical Engineering, Texas A&M University, College Station, Texas 77843, USA
2Department of Mechanical Engineering, Texas A&M University, College Station, Texas 77843, USA
(Received 25 October 2010; revised manuscript received 31 May 2011; published 30 March 2012)

The concept of temperature is one of the key ideas in describing the thermodynamical properties of systems. In
classical statistical mechanics of ideal gases, the notion of temperature can be described in at least two different
ways: the kinetic temperature (related to the average kinetic energy of the particles) and the thermodynamic
temperature (related to the ratio between infinitesimal changes in entropy and energy). For the Boltzmann
distribution, the two notions lead to the same result. However, for nonequilibrium phenomena, while the kinetic
temperature has been commonly used both for theoretical and simulation purposes, there appears to be no
corresponding general definition of thermodynamic or entropic temperature. In this paper, we consider the
statistical or Shannon entropy of a system and use the “de Bruijn identity” from information theory (see Appendix
A 2 for a derivation of this identity) to show that it is possible to define a “Shannon temperature” or “entropic
temperature” T for a nonequilibrium system as the ratio between the average curvature of the Hamiltonian
function associated with the system and the trace of the Fisher information matrix of the nonequilibrium
probability distribution (see Appendix A 1 for a definition of the Fisher information). We show that this definition
subsumes many other attempts at defining entropic temperatures for nonequilibrium systems and is not restricted
to equilibrium or near equilibrium systems. Intuitively, the gist of our approach is to use the Shannon or Gibbs
entropy of a system and make use of the relation dS = dQrev/T as a definition of temperature. We achieve this
by positing a statistical notion of infinitesimal heating as the addition of uncorrelated random variables (in a
special way). As an example of the utility of such a definition, we obtain the nonequilibrium entropic temperature
for a system satisfying the Langevin equations. For such a system, we show that while the kinetic temperature is
related to the changes in the energy of the system, the entropic or Shannon temperature is related to the changes
in the entropy of the system. We show that this notion, together with the well known Cramer-Rao inequality in
statistics demonstrates the validity of the second law of thermodynamics for such a nonequilibrium system.
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I. INTRODUCTION

Consider a system of N particles whose collective positions
and momenta are given by the 3N -dimensional vectors q and p,
respectively. Let the state of the system be described by a 6N -
dimensional vector-valued random variable X with associated
probability density function (PDF) fX(q,p). Let the system
possess a Hamiltonian (or energy function) H (q,p).

One of the interesting challenges in statistical mechanics
is to be able to describe the interactions of “nonequilibrium”
systems with their surroundings and to simulate their evolution
toward equilibrium. There has been a tremendous interest in
the literature (see, e.g., [1–8]), seeking to gain insight into the
behavior of such systems from a statistical point of view and
to study to what extent classical notions of heating, working,
entropy (and the second law), free energy, temperature, etc.,
can be gainfully used to obtain further insight into such
systems.

Any investigation into such systems immediately leads to a
debate as to what we mean by the “entropy” of such a system.
In this paper, we adopt the information theoretic notion of
statistical entropy (Shannon or Gibbs entropy) as a measure of
the uncertainty associated with the PDF of the system.

Jou and co-workers (see, e.g., [1–3,9]), in a series of papers
have investigated which notions of temperature can be sensibly
extended to a variety of nonequilibrium systems and shown
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that there are different notions of temperature that are useful
for different purposes.

In this paper, we investigate the idea of thermodynamic
or “entropic” or “Shannon” temperature of a nonequilibrium
system using some tools from information theory and seek to
answer the following questions:

(1) Which notions of temperature can be extended to classi-
cal nonequilibrium systems1 in a manner that is consistent with
classical thermodynamics and which simultaneously provides
insight into the behavior of these systems?

(2) Is there a way to extend the thermodynamic relation (3),
relating the derivative of the entropy with respect to the energy
and the inverse temperature, to nonequilibrium systems?

(3) Is it possible to distinguish between working and heating
for a nonequilibrium system (specifically one that satisfies
Langevin dynamics) in a way that is intuitively appealing and
physically meaningful in terms of requirements of the second
law, etc.?

A simple canonical example of such endeavors has been
the study of nonequilibrium systems satisfying Langevin
dynamics ([9]). This is a system whose dynamics has been

1There are systems that have the possibility of negative tempera-
tures, for example, systems that have an upper bound to the energy.
The approach presented in this paper is not applicable to such systems.
Also we consider only those systems whose states can be modeled as
being continuously varying.
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well characterized (see, e.g., [10]) and forms an ideal platform
to see whether any of the classical notions can be extended to
other nonequilibrium systems.

In Sec. II, we show that if we interpret the heating of a
system statistically as adding an uncorrelated random variable
to the state of the system, then we can show that both the
entropy and the energy of the system increase and that the de
Bruijn identity of information theory (see [11-13]) shows that
the ratio of the increase in entropy and that in the energy due
to the addition of a statistically uncorrelated random variable
is precisely the inverse temperature as defined here.

In Sec. III, after a quick overview of standard results in clas-
sical equilibrium statistical mechanics, we discuss the different
notions of temperature and then introduce a modification of
the notion of equilibrium temperature due to Landau [9,14]
and extend this notion to a general nonequilibrium system. In
Sec. IV, we show that when one considers a Langevin system
and considers the rate of change of the Shannon entropy of
the system, this definition of a nonequilibrium temperature
arises naturally and allows us to differentiate between heating
and working in a completely intuitive way. We then show
that the Cramer-Rao inequality of statistics ( [15,16]), relating
the Fisher information and the variance, can be reinterpreted
in this case to mean that the internal entropy production is
always non-negative.

II. PRELIMINARIES

Even though we are going to consider general nonequilib-
rium systems whose PDFs are not necessarily related to the
Boltzmann distribution just in the way of background, we note
that if the system were in equilibrium, its PDF would be the
well-known Boltzmann distribution which is of the form [17]

feq(q,p) = e−βH (q,p)

Z
, Z :=

∫
e−βH (q,p) dq dp, (1)

where β = 1/kT , k being the Boltzmann constant and T

being the thermodynamic temperature of the system. In the
above equation, Z is the partition function and the notation∫

(·)dq dp stands for the integration over the 6N -dimensional
phase space. For an equilibrium distribution, it is common
knowledge that the macroscopic properties can be obtained
simply from the knowledge of the partition function (which
happens to be the cumulant generating function); specifically,
the entropy of the system and the average energy of the system
are given, respectively, by

E := 〈H 〉feq = −d ln Z

dβ
,

S := −〈ln f 〉feq = ln Z − ∂ ln Z

∂β
, (2)

S : = −k〈ln f 〉feq = k

(
ln Z − ∂ ln Z

∂β

)

where the notation 〈·〉f denotes the expectation value with
respect to the distribution f .

The temperature of the system (and hence the parameter
β) has a variety of statistical interpretations; the three most
common ones are listed below.

Thermodynamic temperature. It is also well known that for
equilibrium distributions, the parameter β can be written in
terms of the energy and entropy through the Gibbs relation [17]

kβ = 1

θ
= ∂S

∂E , (3)

resulting in the name thermodynamic temperature for θ . This
notion is the one that is most closely tied to thermodynamics
and aspects of the second law, but thus far was confined to
strictly equilibrium systems.

Kinetic temperature. For classical systems, the Hamiltonian
is the sum of the kinetic energy and the potential energy v, i.e.,

H (q,p) =
N∑

i=1

pi · pi

2m
+ v(q). (4)

The thermodynamic temperature can also be thought of as a
measure of the variance of the momentum distribution and is
proportional to the average kinetic energy of the particles, i.e.,
it is well known that

(3/2)NkTkin = 〈p · p/2m〉feq . (5)

This is by far the most popular notion of temperature and has
been widely adopted for nonequilibrium systems also.

Curvature temperature: The curvature of the Hamiltonian
and its relation to the temperature. For the equilibrium distri-
bution of a thermodynamic system with a general Hamiltonian,
we can show that temperature can also be interpreted in terms
of the average curvature of the Hamiltonian (see Appendix A 4
for a simple derivation of this result), in the form

Tcurv = 1

kβ
= 〈∇H∇H 〉f

k〈∇2H 〉f , (6)

where the notation ∇ stands for the gradient with respect to the
phase space variables, ∇2 stands for the Laplacian operator,
and 〈·〉 stands for the expectation. The above expression is
based on the result that for the Boltzmann distribution, the
divergence theorem implies that β〈∇H∇H 〉 = 〈∇2H 〉. As
pointed out in [7], the above expression (with the momentum
variables ignored) is derived in a very brief way by Landau
and Lifshitz [14] (Eq. 33.14 on page 97). Rugh [18] and
Baranyai [19] have approached this from a dynamical systems
point of view and obtained a similar result based on ideas of
ergodicity and dynamical systems theory (see also Sec. 3.2 of
the review article by Casas-Vasquez and Jou [1]). This repre-
sentation of temperature has been referred to as the “curvature
temperature” and has been applied to nonequilibrium systems
also (see, for example, [7,9]).

The results (5), (3), and (6) are equivalent for equilibrium
systems defined by the Boltzmann distribution, and hence
one may speak of “the temperature” for the system. For
nonequilibrium systems, while (5) and (6) can be defined and
used, they are not equal. Moreover, it is not evident how to
generalize (3) to nonequilibrium systems. In the next section
we show that if we adopt the Shannon or information entropy of
a distribution as the physical entropy of any system irrespective
of whether it is in equilibrium or not, then we can use the de
Bruijn identity of information theory (see Appendix) to define a
thermodynamical temperature for any system. We will further
show that the difference between the kinetic temperature and
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the thermodynamic temperature defined here, can be used to
gain insight into the evolution of the Langevin system toward
equilibrium and the operation of the second law in this case.

The method used here is motivated by the observation
that the result (3) can be given the following interpretation:
For an equilibrium system the temperature is the ratio of the
infinitesimal change in entropy due to an infinitesimal change
in the internal energy keeping all other macroscopic variables
fixed.

Viewed in this manner it is clear that changing the internal
energy while keeping the macroscopic variables fixed is
equivalent to infinitesimally heating the system. The de Bruijn
identity (see [13]) can be adapted to provide a purely statistical
representation of the above process (without the need for
notions of equilibrium) and with the Shannon entropy in
the numerator) and hence allows us to extend this notion
to nonequilibrium systems. As shown in the Appendix, for
the equilibrium Boltzmann distribution, the above definition
directly leads to the curvature temperature defined in (6).

A. A statistical definition of nonequilibrium entropic
or thermodynamic temperature

We are going to define the entropic or thermodynamic
temperature for any system (irrespective of whether it is
in equilibrium or not) by developing a statistical notion of
“infinitesimally heating” a system as a particular form of
perturbation of the microstate of the system in such a way
that increases the Shannon entropy by an amount δS and the
energy associated with the distribution by an amount δQ. We
then show that if we calculate the ratio of the change in energy
to that in the Shannon entropy, and by using the de Bruijn
identity of information theory (see [13]), we obtain

θ = δQ

δS
= 〈∇2H 〉f

k tr I , (7)

where the Fisher information matrix I associated with any
distribution f is given by

I = 〈∇(ln f ) ⊗ ∇(ln f )〉f ⇒ tr I = 〈∇(ln f )∇(ln f )〉f
(8)

and is a measure of the “average curvature” of the probability
density function and the notation ∇ stands for the gradient in
phase space.

Our main contribution in this paper is to show that the
definition (7) is natural (in a sense to be made precise), and
deserves the name “thermodynamical temperature” for any
distribution. Notice the close relationship of (7) with the
Landau definition (6). At first sight, there appears to be a
contradiction since, in the definition (6), the term 〈∇2H 〉f
appears in the denominator of the right-hand side while in (7),
it appears in the numerator. This seeming contradiction is
quickly resolved when we observe that for the Boltzmann
distribution the trace of the Fisher information is given by

tr I = 〈∇(ln f )∇(ln f )〉f = β2〈∇(H )∇(H )〉f . (9)

Upon observing that β = 1/kT and substituting the above
expression into the right-hand side of (7), we recover the
form (6).

Whereas (6) was derived for an equilibrium distribution, the
definition (7) is valid for a general nonequilibrium distribution
and makes no use of notions of equilibrium as we shall see
in Sec. III. In Appendix A 4 we show that for an equilibrium
system whose PDF is given by the Boltzmann distribution (7)
reduces to (6).

At this stage, it is fair to ask the questions: What is the
use of any new definition of temperature? What insight does
it provide regarding thermodynamical systems? To answer
these questions, we show that this new definition allows us
to separate the energy transfer in a nonequilibrium Langevin
system into “heat” and “work” in an intuitively acceptable
way and provides insight into the statistical aspects of the
Langevin system. Furthermore, the proposed definition can
also be used in computer simulations where we can explicitly
compute the thermodynamical temperature (rather than simply
using the kinetic temperature). The definition can serve as
the basis for the exploration of small systems (composed of
just a few thousand atoms or molecules) over extremely short
times (femtoseconds) where the system is not likely to be in
equilibrium.

III. THE DE BRUIJN IDENTITY AND THE
TEMPERATURE FOR NONEQUILIBRIUM

PROBABILITY DISTRIBUTIONS

In this section, we show that a definition of temperature
based on infinitesimal changes in energy and entropy can
be extended meaningfully to all kinds of nonequilibrium
systems—provided one describes the notion of “heating” the
system appropriately.

Recall from Sec. I that the state of the system under
consideration is given by the positions q and the momenta
p of the N particles. For the sake of convenience, we will
treat q,p as the components of a single 6N -dimensional
vector x. Thus, we can describe the system statistically with a
(6N -dimensional) vector-valued random variable X taking on
values in the 6N -dimensional phase space and whose PDF is
fX(x).

The total energy and Shannon entropy of such a system are
both functionals of fX(x) and are given, respectively, by

E := 〈H 〉f =
∫

H (x)fX(x)dx,

(10)
S := −〈ln f 〉f = −

∫
fX(x) log [fX(x)] dx,

where the notation 〈·〉f denotes the expectation value with
respect to the distribution f . Notice that these definitions are
not restricted to equilibrium systems.

One of the oldest definitions of entropy of a system is the
idea that it is dS = dQrev/θ where dQrev is the energy supplied
by infinitesimally heating the system. Now from a statistical
point of view, adding a little bit of energy to a system will
perturb the PDF in some way. This perturbation will then cause
changes in entropy and energy and the ratio between these
infinitesimal changes can be used as a measure of temperature.

In other words, since both S and E are functionals of fX,
we can treat the distribution fX itself as a parameter (i.e., we
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use the distribution fX as a descriptor of the macrostate of the
system) and intuitively define thermodynamic temperature as

1

θ
= dS(fX)/dfX

dE(fX)/dfX
. (11)

In other words, given any probability distribution fX, we
perturb it2 to fX′ and calculate the corresponding perturbations
in S and E , namely, �S and �E . Then, we can define
thermodynamic temperature as

1

θ
= lim

�E→0

�S

�E . (12)

At a minimum, the temperature obtained by perturbing fX
should satisfy the following criteria:

(a) θ must be non-negative.3

(b) θ should be equal to the thermodynamic temperature
for the Boltzmann distribution.

(c) θ should represent “spread” of the distribution, i.e., the
more spread out the distribution, the higher the temperature.
This should be contrasted with Shannon entropy, which is a
measure of the “uncertainty” associated with any distribution.

(d) θ should be a functional of the PDF fX.
Not all perturbations of the probability distribution would

give rise to sensible definitions of temperature. In fact, it is
quite possible to perturb the distribution of a classical system
in a way which will produce results such as decreases in
entropy. But as the classical definition (which introduces the
notion of reversible heating) illustrates, only certain specific
modes of perturbation will lead to sensible means for defining
temperature. It is for this reason that we should consider
only special classes of perturbations. The following example
illustrates the difficulties of general perturbations.

Example. For the sake of this example, consider a system
whose state is defined by a scalar random variable p which
takes values y and whose Hamiltonian is simply H (y) =
y2/2m. Let U[a,b](y) be the uniform distribution in the interval
[a,b] i.e.,

U[a,b](y) =
{

1
|b−a| , a � y � b;

0, otherwise.
(13)

and let the probability distribution fP (y) be

fP (y) = 1
2U[−2,0](y) + 1

2U[0,2](y).

Consider a perturbation of fP (y) to fP ′(y) given by

fP ′ (y) = 1
2U[−(2/γ )−�,−�](y) + 1

2U[(2/γ )+�,+�](y).

i.e., the perturbation shifts the distribution by a factor � and
expands it by a factor γ .

2Note that we use fX′ to denote the density function of the perturbed
distribution instead of f ′

X. It must be understood that the random
variable X is perturbed to obtain a new random variable X′ whose
PDF is fX′ .

3We explicitly exclude systems with bounded state spaces, nuclear
spin system lasers, vortex fluids, etc., which show negative absolute
temperatures from consideration here. For these systems, due to the
fact that they can have an upper bound to the energy per degree of
freedom, adding energy by “heating” may decrease the entropy of the
system.

It can be seen that

S(fP ) = k ln 4, (14)

S(fP ′ ) = k ln

(
4

γ

)
, (15)

E(fP ) = 1

4m

8

3
, (16)

E(fP ′) = γ

4m

(
2
γ

+ �
)3 − (�)3

3
. (17)

From (15), it can be seen that when γ = 1, �S = S(fX′ ) −
S(fX) = 0. However, for any � � 0, �E > 0 and,–for this
example,– �S

�E = 0. Thus, simply shifting the probability dis-
tribution is an example of an isentropic process.

By choosing appropriate values for γ and �, it is possible
to get negative values of �S

�E , thus demonstrating the fact that
not all perturbations are suitable for a meaningful definition
of temperature. We will now introduce a specific form of
perturbation for which the temperature defined in (7) will
satisfy conditions 1–4 mentioned in Sec. III.

A. Additive perturbation as a statistical equivalent
of infinitesimal heating

From the macroscopic perspective, one can view the defini-
tion of thermodynamic temperature in (3) as the mathematical
embodiment of the following thought experiment: We increase
the total energy of the particles by a small amount by heating
the system. Then, we measure the change in entropy of the
system. The ratio of the change in entropy to the change in
energy is the inverse of the temperature. The key point to
observe here is that this thought experiment depends upon
the notion of heating the system, which guarantees both the
entropy and energy increase (i.e., some sort of a diffusive
process). We now propose a statistical realization of this
notion.

We will describe the notion of heating a nonequilibrium
system in a statistical way as follows: We heat the system
by “perturbing” the random variable X by adding to it an
uncorrelated random variable δY. When we do so, there will
be a change in the total energy of the system as well as the
entropy of the system. We can then define the temperature
as the ratio between the change in the energy and that in the
entropy [by generalizing the Gibbs relation (3)].

At this juncture, we note that Reguera et al. [20], have
suggested an approach based on the consideration of diffusion
processes in a generalized state space for the definition of
thermodynamic forces. They suggest a definition of local
thermodynamic temperature in a manner that is somewhat
similar to ours [see Eq. (54) on page 21511 of [20]). In the
current approach, however, it is the total entropy and not just
the logarithm of the probability density function that is varied.

We will show that the temperature defined via the proposed
generalization of the Gibbs relation (12) is related to the
trace of the Fisher information matrix defined in (8), i.e.,∑

i Ii,i(fX). To do this, we will first define an additive
perturbation as follows.

Let X be the random variable of dimension 6N , representing
the state of the system. Let us assume that its distribution has
a finite variance and density fX. Let Y be an independently
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distributed random variable whose distribution is symmetric
with zero mean and whose covariance matrix is the identity
matrix I . Now consider the random variable X′ = X + √

δY,
where δ is a small number, representing a random perturbation
of the state of the system. Since X and Y are independent, the
PDF associated with X′ is

fX′ (x,δ) =
∫

f (y)NδY(x − y) dy, (18)

where Nδy(x) is a symmetric PDF with covariance matrix δIij .
Note that as δ tends to zero, the distribution approaches a
Dirac measure centered at the origin and the effect of the
“perturbation” of the state X disappears.

We now formally stipulate that the statistical equivalent of
infinitesimally heating a system is the addition of a “small
fraction” of a random variable with zero mean and whose
covariance matrix is the 6N -dimensional identity matrix, as
defined in Eq. (18), in the limit as δ tends to zero. The idea
is intimately related to the notion of a stochastic differential
equation where we add infinitesimal Gaussian white noise to
a variable.

The vector version of the de Bruijn identity (see Appendix
A 2 for a definition and proof of the de Bruijn identity, as
well as [13]) can be used to obtain a relationship between the
derivative of entropy with respect to the perturbation parameter
δ and the trace of the Fisher information matrix associated
with fX. We present the main ideas behind the proof of this
relationship since it is insightful. The key result regarding
perturbations of this form is the following:

Lemma 3.1. If the covariance matrix of the random variable
Y is the identity matrix, then the perturbed probability
distribution fX′ satisfies a diffusion equation in the limit as
δ vanishes, i.e.,

∂fX′

∂δ

∣∣∣∣
δ→0

= 1/2
6N∑
i=1

∂2fX′

∂xi ∂xi

= 1/2∇2fX′ , (19)

where the notation ∇2 stands for the Laplacian operator in the
6N -dimensional phase space.

Proof (see Appendix A 2). There are a number of different
ways to prove this result. If the PDF of Y is assumed to be
Gaussian, then the result can be obtained by direct computation
(see [12] Appendix C). The same result can also be established
(if the perturbation is Gaussian), using techniques of the Ito
calculus.The proof by Narayanan and Srinivasa [21] follows by
noting that the moment generating function (MGF) of X′ is the
product of the MGFs of X and

√
δY. By expanding the latter as

a Taylor series and allowing δ to go to zero, we obtain the result.
Unlike the proof in [12], Narayanan and Srinivasa [21] make
no specific assumptions regarding the form of the PDF other
than it be symmetric and that its variance be the identity matrix.
A different version of the proof is given in Appendix A 2.

B. Proposed definition of nonequilibrium thermodynamic
temperature via the additive perturbation

Given the perturbation (18), we formally define the inverse
temperature of the system to be

1

θ
= lim

δ→0

S(fX′ ) − S(fX)

E(fX′ ) − E(fX)
= ∂S(fX′ )/∂δ

∂E(fX′ )/∂δ

∣∣∣∣
δ=0

. (20)

Thus in order to obtain an explicit expression for the
temperature, we need to find the derivatives of the entropy and
the energy with respect to the parameter δ. This is a relatively
straightforward operation: Note that the entropy and the total
energy of the PDF fX′ are given by

S(fX′ ) := −k

∫
fX′ (x,δ) ln fX′ (x,δ) dx,

(21)
E(fX′) :=

∫
H (x)fX′ (x,δ) dx,

where H (x) is the Hamiltonian function.
We now differentiate these functions with respect to δ

and get

∂S(fX′ )

∂δ
= −k

∫
∂fX′

∂δ
ln fX′ dx,

(22)
∂E(fX′ )

∂δ
=

∫
∂fX′

∂δ
H (x)dx,

where we have simplified the rate of change of the entropy by
using the result that ∂

∂δ

∫
fX′ (y,δ)dy = 0.

Next, using the result (19), we obtain

∂S(fX′ )

∂δ
= −k/2

∫
(∇2fX′) ln fX′ (x,δ)dx,

(23)
∂E(fX′ )

∂δ
= 1/2

∫
(∇2fX′ )H (x)dx.

Finally, upon using the divergence theorem and some ma-
nipulation assuming that the probability density vanishes
sufficiently rapidly as the distance from the origin increases
so that there are no contributions from the boundary terms at
infinity, we obtain

∂S(fX′ )

∂δ
= k/2

∫
fX′ (x,δ)(∇ ln fX′ )(∇ ln fX′ )dx,

(24)
∂E(fX′)

∂δ
= 1/2

∫
fX′ (x)∇2H (x)dx.

Now comparing the first equation of (24) with the Fisher
information matrix, and using the definition (20) for the
thermodynamic temperature, we see that, as δ tends to zero,

1

θ
:= δS

δU
= ∂S/∂δ

∂E/∂δ

∣∣∣∣
δ=0

= k〈‖∇ ln f ‖2〉f
〈∇2H 〉f = k tr I

〈∇2H 〉f ,

(25)

thus establishing that the thermodynamic temperature in-
troduced in (7) also satisfies the Gibbs relation beyond
equilibrium, provided the state of the system is perturbed in a
certain way. This provides yet another justification for the use
of this temperature and helps clarify the notion of the statistical
equivalent of heating a system.

IV. APPLICATION TO THE LANGEVIN SYSTEM

To show the practical significance of the definition (7), we
first consider the evolution of the probability distribution of
the velocity of a particle immersed in a fluid (heat bath) which
satisfies the Langevin equations [10]. The analysis carried out
here shows the remarkable interplay between the kinetic and
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thermodynamical temperatures of the system in the evolution
of the entropy and the energy.

Since the heat bath is in equilibrium, it satisfies Boltzmann
statistics and so its kinetic and thermodynamic temperatures
are equal.

We will now show that
(1) the average rate of change of the kinetic energy of the

particle is related to the difference in the kinetic temperature
of the particle and that of the fluid;

(2) the rate of change of the entropy of the particle is
related to the difference in the nonequilibrium thermodynamic
temperature of the particle [as defined by (7)] and that of the
heat bath; and

(3) the Cramer-Rao bound ( [15,16]) (see Appendix A 3 for
a definition) relating the Fisher information and the variance
of a distribution is equivalent to the statement that the total
entropy change be non-negative, i.e., it becomes a statement
of the second law of thermodynamics for a Langevin system.

Consider a classical fluid which is in equilibrium at an
absolute temperature T∞ and consider a particle of mass m

immersed in the fluid. For simplicity, we concentrate on any
one component of the velocity of the particle and refer to it
as v. We will refer to this particle as our subsystem and we
will sometimes use the term heat bath to refer to the fluid.
The velocity of this particle satisfies the well-known Langevin
equation [10]. For brevity, we will refer to the subsystem and
the surrounding fluid together as a Langevin system.

We show how the proposed notion of thermodynamical
temperature provides valuable insight into the behavior of such
Langevin systems. Specifically, we can use this definition to
show that the energy transfer that occurs between the subsys-
tem and the surrounding fluid can be meaningfully split into
heat and work. We show that the “heat transfer” is driven by the
difference in thermodynamic temperatures. We also show how,
during the process of equilibration of the velocity distribution
of the subsystem, entropy is produced by the process of
internal dissipation which is “driven” by the difference in the
thermodynamic temperatures of the body and the bath.

When demonstrating these results, in order to avoid
needless complications involving integration by parts, which
will unnecessarily complicate the ideas that we wish to present
here, we will first restrict attention to just one component of
the velocity.

A. The Langevin system and its associated
Fokker-Planck equation

Following [10] (page 72, Eq. 6.2, and the lines following
it), the dynamics of the motion of the subsystem is given by

v̇(t) = −γ v(t) +
√

�ζ (t), (26)

where γ represents the damping due to the systemic compo-
nent of the fluctuating force exerted on the particle by the heat
bath, � is the strength of the stochastic force on the particle, and
ζ (t) is a stationary, Gaussian δ-correlated Markov process with
zero mean and an autocorrelation which is a Dirac measure of
unit strength, i.e.,

E[ζ (t)] = 0, E[ζ (t)ζ (t ′)] = δ(t − t ′), (27)

where E[·] stands for the time average of the quantity.

Since the surrounding fluid is in equilibrium at a tempera-
ture T∞, the fluctuation dissipation theorem demands that

� = 2mγkT∞. (28)

The probability density function of the velocity of the
particle at time t is denoted as f (v,t). Its evolution is governed
by a Fokker-Planck equation (see [10]) which takes the form

∂f

∂t
= γ

∂

∂v
(vf ) + γ kT∞

m

∂f

∂v
, (29)

where we have used the fluctuation dissipation theorem.
Thus, the condition (28) ensures that the steady state velocity
distribution of the particle will be the Boltzmann distribution
corresponding to the fluid temperature T∞.

In the sequel, rather than work with (26), we will use (29)
to gain further insight into the process by which the velocity
distribution reaches equilibrium.

B. The total energy and entropy of the subsystem

Since Eq. (26) is linear we can assume for simplicity that
initially the particle is at rest, i.e., v(t = 0) = 0 so that by
taking averages of the left and right hand sides of (26), and
using the requirements (27) it is easy to see that the average
velocity of the particle at subsequent times is also zero.4 Thus,
the average kinetic energy E(t) of the particle is

E(t) = m

2

∫ ∞

−∞
f (v,t)v2 dv := 1

2
kTkin(t), (30)

where Tkin(t) is the kinetic temperature of the particle and is
defined simply as Tkin(t) = 2E(t)/k, where k is the Boltzmann
constant.

Now the Shannon entropy of the subsystem is defined by

S(t) := −k

∫ ∞

−∞
f (v,t) ln f (v,t)dv. (31)

With these two definitions in place, we can calculate the rate
of change of energy and entropy of the subsystem.

C. Rate of change of energy: Role of the kinetic temperature

We can now calculate the rate of change of the kinetic
energy of the particle dE/dt by using (29). In order to simplify
the notation, we will set ∂f/∂v = f ′, ∂f/∂t = ḟ , and ∂E/∂t =
Ė . Thus, a straightforward calculation [using (29) and (30)]
shows that

Ė = γm

2

∫ ∞

−∞

{
v2(vf )′ + kT∞

m
v2f ′′

}
dv. (32)

Integrating the above equation by parts (the first term once
and the second term twice), and using the conditions that5

4Here, by average, we mean ensemble average over many runs from
the same starting velocity.

5These conditions follow from the fact that the partial differential
equation (PDE) (29) is a linear PDE whose formal solution is given
in, for example, [10], page 76, Eq. 6.14 and shows exponential
decay of f (v,t) with v, for all t . Thus vnp(±∞) = vnf ′(±∞) =
f ′ ln f (±∞) = 0.
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v2f ′(±∞) = vnf (±∞) = 0, we obtain a remarkably simple
expression for Ė , namely,

Ė = γ k [T∞ − Tkin(t)] . (33)

In other words, the kinetic temperature (and hence the kinetic
energy) shows exponential growth (from an initial value
of 0) at a rate proportional to the difference between the
fluid temperature and the kinetic temperature of the particle
(subsystem). This is not a surprising result but has been
detailed here for subsequent comparison with the rate of
change of entropy and to show how the second law of
thermodynamics is satisfied.

D. Rate of change of Shannon entropy and the nonequilibrium
thermodynamic temperature

We now turn our attention to the rate of change of the
entropy of the subsystem. We begin with the definition (31)
for the entropy of the system, differentiating both sides with
respect to time, and using (29) and after some manipulation
using the fact that

∫ ∞
−∞ ḟ dv = 0 we get

Ṡ = −γ k

∫ ∞

−∞

{
(vf )′ + kT∞

m
f ′′

}
ln f dv. (34)

Again, integrating the above expression by parts [and using
the fact that vf (±∞,t) = f ′ ln f (±∞,t) = 0] and after some
manipulation we get

Ṡ = γ k

{
T∞

k

m

∫ ∞

−∞
(f ′)2/f dv − 1

}

= γ k

{
T∞

k

m

∫ ∞

−∞
f [(ln f )′]2 dv − 1

}
. (35)

Note that, unlike the case with the energy of the subsystem,
the kinetic temperature is not involved. However, we note that
the entropy rate involves a closely related statistical quantity—
the Fisher information. We will elaborate on this point further.

The term

I :=
∫ ∞

−∞
(f ′)2/f dv =

∫ ∞

−∞
f [(ln f )′]2 dv (36)

is the Fisher information of the velocity distribution. It has
several key properties of interest:

(i) It is non-negative.
(ii) It is in some sense a weighted measure of the curvature

of the probability distribution function, so that extremely
peaked or narrow distributions will correspond to large values
of the integral.

(iii) For a Gaussian distribution (which corresponds to the
steady state of the system, its value becomes the reciprocal of
the variance, i.e., for Gaussian velocity distributions it is (to
within a constant) the reciprocal of the absolute temperature.

Motivated by these remarks, and in view of (7) we
will proceed to define the nonequilibrium thermodynamic
temperature for the Langevin subsystem as

1/θ := k

m

∫ ∞

−∞
f [(ln f )′]2 dv. (37)

It is an easy matter to verify that this is the same as the
definition (7) since the Hamiltonian of the subsystem is simply
the kinetic energy; in other words, we have

1/θ := k〈(ln f ′)2〉f〈∇2
vH

〉 . (38)

At this stage, this is no more than a convenient definition,
just like the kinetic temperature. But we will see that it has far
reaching consequences.

Substituting the definition (37) into the right-hand side
of (35) we arrive at a very revealing form for the rate of change
of the entropy of the particle, i.e.,

Ṡparticle = γ k(T∞ − θ )

θ
. (39)

Thus, the entropy increase of the subsystem (subsystem being
the particle) depends upon the difference in the thermodynamic
temperature between the surrounding fluid and the subsystem
and the entropy flow direction is from the “hotter” to the
“colder” region—further justifying our use of the word
“thermodynamic temperature” for the quantity defined in (37).
Furthermore, comparing Eqs. (39) and (33) we see the different
and parallel roles played by the two kinds of temperature for
the nonequilibrium system. Note that the kinetic temperature
of the system has no role to play in the entropy changes but
only the thermodynamic temperature as defined in this paper.

E. Heating, working, and the second law of thermodynamics
for the Langevin system

We are now in a position to gain insight into the thermo-
dynamics of the Langevin system, when we observe that the
above equation (39) is of the form

dS = dQ

θ
. (40)

Based on this observation, we can define the heat transfer
into the subsystem (or energy transfer by heating) is Q̇ =
γ k(T∞ − θ ). In words, the rate of heat exchange is propor-
tional to the difference in the thermodynamic temperatures.
Furthermore, the rate of entropy increase is equal to the rate
of heating divided by the thermodynamic temperature of the
system.

We can go a lot further if we now rewrite Eq. (33) in the
form

Ė = γ k(T∞ − θ ) + γK(θ − Tkin) (41)

and use our identification of γK(T∞ − θ ) as the energy
transfer by heating; then the above equation can be written
as

Ė = Q̇ + Ẇ , (42)

where Q̇ = γK(T∞ − θ ) and Ẇ = γK(θ − Tkin). In other
words, it becomes possible to split the energy supplied to
the subsystem as that due to heating [which is proportional
to (T∞ − θ ) and that due to working which is proportional
to (θ − Tkin)]. At this stage this is just a formal split which
does not provide any particular insight. However, we can now
combine this split with the second law of thermodynamics to
gain some further insight.
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To do so, we need to find out what is the net rate of entropy
change of the subsystem and the surrounding fluid—i.e., the
whole Langevin system—as the velocity distribution of the
particle evolves. We have already calculated the rate of entropy
change of the subsystem (39). Now we will evaluate that of the
surroundings: Since the particle is immersed in a surrounding
fluid, the entropy change of the surrounding fluid is simply
the energy gained or lost by the fluid divided by the fluid
temperature, i.e.,

Ṡfluid = −Ė
T∞

, (43)

where Ė , given by (33) is the energy gain by the subsystem
(and hence lost by the bath). Thus the net rate of change in
entropy of the whole system (particle + bath) is obtained by
substituting (41) into (43) and adding the result to (39). After
some manipulation, we arrive at

Ṡtotal = Ṡparticle + Ṡfluid = Q̇

{
1

θ
− 1

T∞

}
+ Ẇ

T∞

= γK(T∞ − θ )2

T∞θ
+ γK(Tkin − θ )

T∞
. (44)

The first term on the right-hand side of the third line
of (44) is the entropy produced due to heat transfer across
a finite temperature difference and is clearly positive since the
numerator is a quadratic function and the denominator is a
product of positive numbers.

The second term is the entropy produced by mechanical
dissipation. This term requires careful consideration. Recall
that if the system had an equilibrium velocity distribution, then
Tkin = θ . On the other hand, if Tkin is not equal to θ , the system
is capable of doing work. To understand the significance of this
term, consider a stream of particles all moving with the same
speed with half along the positive x- axis and half along the
negative x axis. The thermodynamic temperature θ of such a
system [as defined by (7)] is zero since the PDF is composed
of the sum of two Dirac measures, but its kinetic temperature
is related to the square of the common speed. It is clear that
we can extract work out of the system because the speed is
deterministic. On the other hand, if we immerse such a system
in a surrounding fluid the system will lose its capability to do
work as it equilibrates with the fluid. It is this phenomenon that
we usually refer to as internal dissipation and we can clearly
see that the second term on the third line of (44) is associated
with this.

F. The Cramer-Rao inequality and its relationship to entropy
production in Langevin systems

But what guarantee is there that the second term in (44)
is positive, i.e., what guarantee is there that the work is
dissipated, i.e., lost irrecoverably? The answer lies in the
Cramer-Rao bound (see, e.g., [15,16]). The Cramer-Rao
bound states that, for any distribution p(x) with variance σ 2

and Fisher information I,

σ 2 � 1

I . (45)

For the system considered here, since Tkin = kσ 2 and
θ = k/I, the Cramer-Rao bound states that the kinetic
temperature is always greater than the thermodynamic

temperature, i.e., Tkin � θ , thus guaranteeing that the second
term on the third line of (44) is also positive.

Thus, it is possible to extract useful work out of a
nonequilibrium system by using a Carnot cycle and connecting
it to a heat bath which has the same temperature as the
kinetic temperature of the nonequilibrium system (see also
the discussion in Sec. 4.2.2 in [1]).

V. OTHER DEFINITIONS OF NONEQUILIBRIUM
TEMPERATURE AND THEIR RELATIONSHIP TO THE

CURRENT DEFINITION

We have thus seen that use of the thermodynamic tem-
perature defined by (7) provides considerable insight into the
dynamics of the Langevin system. It is natural to ask, “How
does this definition of temperature in Eq. (7) relate to other
definitions of temperature found in the literature?” In this
section we will seek to answer this question.

There are a number of alternative definitions of temperature
for nonequilibrium systems that have been developed with
different purposes in mind. The recent review article by Casas-
Vasquez and Jou [1] provides an excellent summary of the
various definitions (see, in particular, Table A on page 1942).
We will itemize several of these definitions and show that
current definition subsumes these various definitions for the
Langevin system in an intuitive and pleasing way:

(a) Kinetic temperature. Perhaps the most universally
accepted is the kinetic temperature, which is simply a measure
of the kinetic energy of a system composed of classical
particles. We have seen in the previous section on Langevin
systems that this definition of the temperature, while it is
important for the description of the change in internal energy,
is not the appropriate descriptor of the change in the entropy
of the system. However, the Cramer-Rao bound of statistics
which implies that θ � Tkin, is an important restriction since it
guarantees that the internal dissipation is positive. Indeed, the
difference between them can be considered as a measure of
the “available information content” or “available order” in the
momentum distribution which can be harnessed to do work.
Moreover, the fact that for equilibrium (when the velocity
distribution is Gaussian) these two definitions coincide is an
intuitive and important result.

(b) Temperature based on the Gibbs relation. Another
version of the temperature is that which is based on a general-
ization of the Gibbs relation 1/θ := ∂S/∂E to nonequilibrium
systems, in a manner that is different than the approach
used here. Criado-Sancho, Jou, and Vazquez [8] use this
definition for the case of sheared ideal gases subjected to
a nonvanishing viscous stress. They obtain a probability
distribution by maximizing the Shannon entropy subject to
constraints of prescribed stress and kinetic energy and then
obtain a nonequilibrium temperature based on this. They point
out that this entropy-based nonequilibrium temperature is
always lower than the kinetic temperature.

A routine calculation using the velocity distribution func-
tion given in [8] and using the definition (7) shows that the
nonequilibrium temperature defined by them is identical to that
defined here for the special MaxEnt distribution considered by
them. Then the fact that it is lower than the kinetic temperature
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is simply a result of the Cramer-Rao inequality as discussed in
the previous section.

(c) Flux temperature. Another alternative that has been
suggested is that based on the ratio between the heat flux
into a system divided by the entropy flux. For the Langevin
system, this definition also leads to the same thermodynamic
temperature as seen from Eq. (39) with the heat flux being
identified as k(T∞ − θ ).

VI. CONCLUSION

In this paper, we have demonstrated that the notion of ther-
modynamical temperature can be extended to nonequilibrium
distributions in a relatively straightforward way as the ratio
between the Fisher information associated with the probability
distribution and the average curvature of the Hamiltonian. This
is done by using the Shannon or Gibbs entropy of a distribution
and then by utilizing the relationship dS = dQrev/T as a
means for defining temperature. The resulting temperature
is roughly speaking, the ratio of the mean curvature of the
probability distribution and that of the Hamiltonian function
and is closely related to an idea due to Landau ( [14]).

Furthermore we have seen that in a Langevin system
we can associate two temperatures with the particle: the
kinetic temperature associated with the variance of the velocity
distribution and the thermodynamic temperature associated
with its Fisher information as defined here. Both play a role in
the thermodynamics of the Langevin system. Of the two it is
the thermodynamic temperature and not the kinetic temper-
ature that is associated with heat transfer and the flow of
entropy into the system. Finally, the Cramer-Rao bound can be
interpreted as a statement of the second law of thermodynamics
in the form of the non-negativity of work dissipated by the
Langevin system.

We also demonstrated that the Gibbs relation (showing
equality between the inverse temperature and the rate of
change of entropy with energy) can be extended to the general
nonequilibrium cases via a perturbation which is “diffusive”
and the use of the well-known de Bruijn identity of information
theory. The method outlined here can be used to define a variety
of other temperatures by either using conditional probability
distributions or marginalizing the PDF.
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APPENDIX: FISHER INFORMATION, CRAMER-RAO
BOUND, AND THE DE BRUIJN IDENTITY

Fisher information is a quantity that is commonly used
in parametric estimation [22]. In this Appendix, we will
briefly summarize some important relationships between the
Fisher information, entropy, and the variance associated with
a distribution.

1. Fisher information

For a scalar random variable X with a probability density
function fX(x), the Fisher information with respect to the

location family, namely, I(fX), is given by

I(fX) = 〈[(ln fX)′]2〉fX
=

∫ ∞

−∞
fX(x)

[
∂

∂x
ln fX(x)

]2

(A1)

dx =
∫ ∞

−∞
fX(x)

[
∂
∂x

fX(x)

fX(x)

]2

dx.

For a vector-valued random variable X which takes on
values in a vector space with 6N components, the i,j th entry
of the Fisher information matrix is given by

Ii,j (fX) =
∫ ∞

−∞
fX(y)

[
∂

∂yi

ln fX(y)
∂

∂yj

ln fX(y)

]
dy,

i,j = 1, . . . ,6N. (A2)

The Fisher information is just the trace of this matrix and is
given by

I =
〈∇f ∇f

f 2

〉
f

. (A3)

There is an interesting relationship between Fisher infor-
mation and the relative entropy between a distribution and a
shifted version of the distribution which is used in this paper.
We will briefly review this result for the scalar case here. Let
us consider two distributions fX(x + t) and fX(x − t) which
are shifted versions of fX(x), shifted by t to the left and right,
respectively. Then, Fisher information I(fX) can be expressed
as [13,22]

I(fX) = lim
t→0

1

t2
[D(fX(x + t)||fX) + D(fX(x − t)||fX)],

(A4)

where D(fX||gX) is the relative entropy (or Kullback-Leibler
distance) between the distributions fX and gX. This can be
shown using the following result from [22]

1

2
I(ω0) = lim

t→0

1

t2
D(fX(x; ω0 + t)||fX(x; ω0)).

Now, considering two parametric families fX(x; ω) = fX(x −
ω) and fX(x; ω) = fX(x + ω) and applying this result and
taking the average we get the desired result. Note that for both
these families I(ω0) = I(fX) as defined in (A1), which gives
us the left-hand side of (A4). We will now show that there is a
close relationship between changes in entropy and the Fisher
information in the sense that Fisher information is related to
the second derivative of the relative entropy functional.

2. de Bruijn identity

The relationship between the entropy functional of a
distribution fP and the Fisher information associated with
it is given by the de Bruijn identity [11,13]. This is precisely
stated below.

Lemma A 1. Let X be a scalar random variable with finite
variance and PDF given by fX. Let Y be an independent
symmetric random variable with unit variance and PDF fY .
Let X′ be the random variable given by

X′ = X +
√

δY. (A5)
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Then,

∂S(fY ′ )

∂δ

∣∣∣∣
δ=0

= k

2
I(fX). (A6)

The proof of the above lemma follows from the observation
that as δ tends to zero, (A5) where fY is symmetric and has unit
variance, reduces to a convolution with a Gaussian random
variable. This result can be proved in two different ways:
by considering the moment generating function (or Laplace
transform) for the PDF of X′ in terms of those of X and Y .
The proof using Laplace transforms can be found in [21].
Hence, we will provide a proof based on a direct Taylor series
expansion. We begin by noting that the PDF for X′ is given by

f ′
X(x,δ) =

∫ ∞

−∞
fX(u)

1√
δ

fY

(
u − x√

δ

)
du. (A7)

We notice that for any fixed value of x, the integrand as a
function of u is sharply peaked around u = x as δ tends to
zero [this is evident since 1√

δ
fY ( u√

δ
) will approach a Dirac

measure as δ tends to zero]. In other words, the distribution
is very steep around u = x as δ tends to zero. A more precise
statement can be made, based on the results of [23] and [24].
Thus we assume that for the random variable Y , its PDF fY (y)
has a unique maximum at y = 0, f ′′

Y (0) < 0 (“smoothness”),
with unit variance. Then the variance of the random variable√

δY clearly tends to zero as δ tends to zero (“steepness”).
Finally, we assume that for any ε > 0,

∫ ε

−ε

1√
δ
fY

(
u√
δ

)
du → 1 as δ → 0. (A8)

We will also assume that all the higher moments of the random
variable Y are finite. Given these conditions of “concentration,”
smoothness, and steepness (Chen [24]), we can see that the
main contribution to the convolution integral comes from the
region around u = x. Hence, expanding fX′ (u) as a Taylor
series around u = x and using this expansion in (A7), we get

fX′ (x,δ)

=
∫ ∞

−∞

(
fX(x) + f ′

X(x)(u − x) + f ′′
X(x)

2
(u − x)2 + · · ·

)

× 1√
δ
fY

(
u − x√

δ

)
du. (A9)

In carrying out the integration with respect to u, we make use
of the fact that

∫ ∞
−∞(u − x)n 1√

δ
fY ( u−x√

δ
)du is the nth central

moment of the random variable
√

δY . Noting that
√

δY has
zero mean and a variance of δ, we obtain

fX′ (x,δ) = fX(x) + δ

2
f ′′

X(x) + o(δ2). (A10)

Therefore, in the limit δ → 0, we obtain

∂fX′

∂δ

∣∣∣∣
δ=0

= 1

2

∂2fX

∂x2
. (A11)

Now that we have an explicit expression for ∂fX′/∂δ, it is
a straightforward computation to see that

∂S(fX′)

∂δ
= −k

∂

∂δ

∫ ∞

−∞
fX′ (x) ln fX′(x)dx

= −k

∫ ∞

−∞

∂fX′(x)

∂δ
ln fX′(x)dx, (A12)

where we have used the fact that
∫ ∞
−∞

∂fX′ (x)
∂δ

dx = 0. Taking
the limit as δ → 0, and using (A11) and the definition of Fisher
information from (A1), we get

lim
δ→0

∂S(fX′)

∂δ
= lim

δ→0
−k

2

∫ ∞

−∞
f ′′

X(x) ln fX′ (x)dx

= −k

2

∫ ∞

−∞
f ′′

X(x) ln fX(x)dx = k

2
I(fX).

(A13)

In the same manner, the vector version of the de Bruijn
identity can be stated as follows [11]:

Lemma A 2. Let X be a vector random variable and
PDF given by fX. Let Y be an independently distributed
random variable with zero mean and unit covariance matrix
C and I (where I is the unit matrix) and satisfies the steepness
and smoothness conditions stated earlier. Now consider the
random variable X′ = X + √

δY. Then,

∂S(fX′ )

∂δ

∣∣∣∣
δ=0

= k

2
tr I(fX). (A14)

The proof is identical to the previous version and is based
on the expansion of p(y) as a vector Taylor series around x.

3. Cramer-Rao bound

One of the important uses for Fisher information is
in determining a lower bound on the estimation error of
an unbiased estimator through the Cramer-Rao bound (see
[15,16]). An important consequence of the bound is that for any
random variable X with a variance σ 2

X and Fisher information
I(fX),

σ 2
X � 1

I(fX)
, (A15)

i.e., the inverse of the Fisher information is a lower bound to the
variance with equality only for the Gaussian distribution. Thus,
for the case of the equilibrium distribution with a quadratic
Hamiltonian, we can show that this is an equality. For the
vector case, the Cramer-Rao bound can be used to show that

cov(X) − I−1(fX)

is positive semidefinite.

4. Relationship between Fisher information, de Bruijn identity,
and temperature for the Boltzmann distribution

From the point of view of this paper, colloquially, the
Cramer-Rao bound relates the two different measures of
temperature—kinetic temperature, which is a measure of
the variance of the momentum distribution, and the Fisher
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information, which is connected to the “infinitesimal” heat-
ing process discussed here. For the particular case of the
Boltzmann distribution, many of the results can be computed
explicitly.

a. Fisher information for the Boltzmann distribution: Scalar case

For ease of exposition, we will begin with the scalar case.
For the equilibrium Boltzmann distribution, i.e., when fX =
e−βH (x)

Z
, where Z = ∫

y
e−βH (x) dx, there is a simple relationship

between β and Fisher information. This can be derived as
follows:

I(fX) =
∫ ∞

−∞
−βH ′(x)

e−βH (x)

Z
[−βH ′(x)]dx. (A16)

Integrating by parts we get

I(fX) =
[
−βH ′(x)

e−βH (x)

Z

]∞

−∞

+
∫ ∞

−∞

e−βH (x)

Z
[βH ′′(x)]dx (A17)

=
∫

e−βH (x)

Z

[
βH ′′(x)

]
dx = β〈H ′′〉fX

. (A18)

The first term on the right-hand side is zero because we will
assume that H (x) tends to infinity as |x| tends to infinity. In
doing so, we explicitly eliminate from consideration, systems
that have maximum energy ceilings. Hence,

β = 1

kT
= I(fX)

〈H ′′ 〉fX

= 〈[(ln fX)′]2〉fX

〈H ′′ 〉fX

. (A19)

b. Vector case

Using a derivation similar to that for the scalar-valued
random variable case, it can be shown that for the vector-valued
case, for the equilibrium distribution fX(x),

β = 〈(∇ ln fX)2〉fX〈∇2
vH

〉 . (A20)

c. Uncorrelated perturbation and curvature temperature for the
Boltzmann distribution

For the Boltzmann distribution, the results can be obtained
in a particularly simple and striking manner, namely, by the
direct use of the results (A10) and (A11). We will do this only
for the scalar case to show the results, the vector case showing
no difficulty whatsoever. Thus we begin by considering a PDF
for the random variable X of the form fX(x) = e−βH (x)/Z,
where β = 1/kT , H (x) is the Hamiltonian, and Z, the
normalizing parameter, is the partition function.

As with the previous case, we consider an uncorrelated
perturbation of the system of the form X′ = X + √

δY where
the PDF for Y satisfies the same conditions as before, then by
following the identical derivation as before, we have

∂fX′

∂t

∣∣∣∣
t=0

= 1

2

∂2fX

∂x2
= −βH ′2(x)e−βH (x)/Z

+β2H ′′(x)e−βH (x)/Z, (A21)

where we have substituted the Boltzmann distribution for
fX(x). Now integrating both sides from −∞ to ∞ and noting
that the left-hand side—being the derivative of a PDF—goes
to zero, and the right-hand side are the expectations of the
corresponding quantities, we again obtain the result that

β = 〈H ′′(x)〉
〈H ′(x)〉 , (A22)

which upon substitution of β = 1/kT , leads to the form (6).
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