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Stochastic theory of quantum vortex on a sphere
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A stochastic theory is presented for a quantum vortex in superfluid films coated on a two-dimensional sphere
S2. The starting point is the canonical equation of motion (Kirchhoff equation) for a point vortex, which is derived
using the time-dependent Landau-Ginzburg theory. The vortex equation, which is equivalent to the spin equation,
turns out to be the Langevin equation in presence of random forces. This is converted to the Fokker-Planck (FP)
equation for the distribution function of a point vortex by using a functional integral technique. The FP equation is
analyzed with special emphasis on the role of the pinning potential. By considering a typical form of the pinning
potential, we address two problems: (i) The one is concerning an interplay between strength of the pinning
potential and effective temperature, which discriminates the weak and strong coupling scheme to determine the
solutions of the FP equation. (ii) The other is concerning a small diffusion limit, for which an asymptotic analysis
is given using the functional integral to lead a compact expression of the distribution function. An extension to
the vortex in nonspherical geometry is briefly discussed for the case of vortex on a plane and a pseudosphere.
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I. INTRODUCTION

The study of vortex has been one of central subjects in
classical fluid dynamics [1]. The idea of the classical vortex has
been transcribed to the investigation of the modern quantum
vortex, which covers the various fields: statistical mechanics
of a point vortex in superfluid He4 [2–5], a vortex string,
[6], the textural structure in He3 [7], and even the vortex in
cosmological scale (e.g., [8]).

In conventional treatments so far developed [1–8], the
vortex is considered to be an object defined on Euclidean
flat space of two and/or three dimensions. However, it is
possible that vortices occur in superfluids coated on curved
spaces [9]. A simple and important case is the vortex on
a two-dimensional sphere, e.g., [10–12], which has been
studied in several contexts by starting with the purely classical
hydrodynamical procedure. Moreover, it is remarkable that
the quantum vortex on a sphere was realized by superfluid
adsorbed in porous materials [13] with the aim at elucidating
the Kosteritz-Thouless type transition in nonplaner geometry.
Being inspired by these previous works, we address a specific
aspect of the quantum vortex on a sphere (see below).

On the other hand, apart from usual dynamical and
statistical mechanical aspects of a quantum vortex, it is
highly probable that the vortex motion can be influenced
by randomness caused by, e.g., temperature fluctuation and
interaction with various sorts of impurities. For such cases,
we need to treat the vortex motion within a framework of
stochastic approach. Indeed, the stochastic theory of a vortex
has been investigated in connection with the superconductivity,
specifically, the high Tc superconductivity [14–16], in which
the fluctuations play an important role as a cooperative effect
with vortex pinning.

Having mind of the role of a random effect on the vortex
motion, we here present a stochastic theory of a quantum vortex
on a two-dimensional sphere S2 and its variants. This attempt
is expected to provide with a modest step toward a stochastic
aspect of a quantum vortex on the curved space which has not
been well recognized so far.

In order to develop the stochastic theory, the first step is to
settle the canonical (Kirchhoff) equation of motion for a single
vortex. Here we suppose a special circumstance so as to realize
a single vortex configuration on the sphere (see the argument in
Sec. II). The equation of motion of the center of a single vortex
is derived by using the time-dependent Landau-Ginzburg (LG)
theory [14,17] that is described by a complex order parameter
for the superfluids. It is crucial that the canonical equation
of motion has a close resemblance with the spin equation of
motion, that is, the vortex charge quantization plays a role of
the quantized spin magnitude.

Following the analogy with spin, the Langevin equation
is introduced for the Brownian motion of a vortex under the
random force arising from temperature fluctuations together
with the effect of dissipation. The procedure is similar to
the theory of single magnetic “domain” [18]. By adopting
the assumption of a Gaussian white noise for the random
fluctuations, the Langevin equation can be converted to the
Fokker-Planck (FP) equation for the probability distribution of
a point vortex. This can be most efficiently achieved by using
the functional integral developed for the statistical theory of
wave propagation in random media [19,20].

The FP equation thus derived enables us to analyze the
stochastic behavior of a quantum vortex in the presence of
a pinning potential [15,16]. Our concern is to explore the
role of pinning in connection with random characteristics:
the diffusion and dissipation. In order to get insight into this
mechanism, it is efficient to consider a special and typical
configuration for the vortex and pinning centers (for the details,
see Sec. IV).

Besides the stochastic theory of a sphere vortex, the problem
is raised as to how this can be extended beyond the spherical
geometry, that is, an extension to a quantum vortex adsorbed
on a nonspherical geometry. To examine this is another subject
of the paper.

The paper is organized as follows: In the next section
we derive the equation of motion for a single vortex on
sphere starting with the LG equation. In particular the pinning
potential is given in terms of the order parameter. Section III
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deals with the Langevin and Fokker-Planck equations. In
Sec. IV we analyze the FP equation with emphasis on the
role of a pinning potential. In Sec. V we consider an extension
to the case of nonspherical geometry. The last section is a
summary.

II. EQUATION OF MOTION FOR THE QUANTUM
VORTEX

We start with the time-dependent Landau-Ginzburg
Lagrangian, that is written in terms of the complex order
parameter ψ [14,17]:

L =
∫ [

ih̄

2

(
ψ∗ ∂ψ

∂t
− c.c.

)
− H(ψ,ψ∗)

]
dσ. (1)

Here ψ(r,t) is defined on a two-sphere S2 with radius |r| =
a and the integral

∫
dσ is taken over S2. The coordinate r

is written in terms of the Cartesian form. H represents the
Hamiltonian density which consists of the kinetic and potential
energy:

H = h̄2

2m
∇ψ∗∇ψ + V (ψ∗,ψ), (2)

where ∇ means the derivative with respect to the spherical
coordinate and m means the mass of constituent particles (e.g.,
He4 atoms).

Now we consider how to incorporate the vortex configu-
ration into the order parameter. In order to realize this, one
should take into account a peculiar feature of the vortex on
a sphere, that is, due to the spherical topology, there is no
isolated single vortex on a two-dimensional sphere, namely,
at least we have one pair of vortices with opposite charges to
each other [13]. In this point, it may be possible to suppose
the situation such that the one vortex is strongly trapped by
a pinning center that is “virtually built,” so it behaves as if it
were inert. Consequently, the remaining vortex is active and
behaves as it it were freely moving on the sphere. As a result of
this dynamical mechanism, we can consider the single vortex
configuration effectively.

Having settled the single vortex configuration, we can write
the order parameter in a form such that the vortex center is
incorporated:

ψ(r,t) = ψ(r − R(t)). (3)

Here R(t) denotes the time-dependent vortex center satisfying
|R| = a. By this parametric form, the first term of the
Lagrangian is calculated as

ih̄

2

(
ψ∗ ∂ψ

∂t
− c.c.

)
= − ih̄

2
(ψ∗∇rψ − c.c.)

dR
dt

, (4)

where use is made of the relation
∂ψ

∂t
= dR

dt
∇Rψ

together with the relation ∇R = −∇r (namely, the nabla with
respect to the vortex center coordinate turns out to be the
derivative with respect to field argument r). Now we adopt the
polar form of the order parameter:

ψ = √
ρ exp

[
i
m

h̄
α(r − R(t))

]
. (5)

Here ρ = ρ(r − R(t)) is the density, which vanishes at the
vortex center r = R and tends to a constant value: ρ = ρ0

outside the coherent length. The first term of L (denoted by
Lc that is called the canonical term) is calculated as

Lc =
∫

j · dR
dt

dσ ≡
∫

(jxẊ + jyẎ + jzŻ)dσ, (6)

where the mass current j = mρ∇α = mρv is introduced. On
the other hand, the Hamiltonian term becomes

H =
∫ [

1

2
mρv2 + 1

4ρ
(∇ρ)2 + V (ρ)

]
dσ. (7)

The first term means the fluid kinetic energy, and the second
and third terms are the internal energy, which is quoted as
U (ρ). The explicit form will be given later.

The equation of motion for the vortex center is derived from
the Euler-Lagrange equation:

d

dt

(
∂L

∂Ṙ

)
− ∂L

∂R
= 0.

The contribution from the Hamiltonian is

∂L

∂R
= ∂

∂R

∫
Hdσ = ∂H

∂R
.

On the other hand, the canonical term is manipulated as
follows: By differentiating under the integral symbol, we have

d

dt

(
∂Lc

∂Ẋ

)
=

∫
djx

dt
dσ

together with djx

dt
= ∂jx

∂X
Ẋ + ∂jx

∂Y
Ẏ + ∂jx

∂Z
Ż and

∂Lc

∂X
=

∫ (
∂jx

∂X
Ẋ + ∂jy

∂X
Ẏ + ∂jz

∂X
Ż

)
dσ.

Hence we obtain

d

dt

(
∂Lc

∂Ṙ

)
− ∂Lc

∂R
=

∫
{(∇ × j) × Ṙ}dσ, (8)

where use is made of ∂j
∂X

= − ∂j
∂x

. By evaluating the right
hand side of (8) (see Appendix A), we arrive at the Kirchhoff
equation of motion for the vortex center which is written by
the unit vector R̂ = R/a[=(sin � cos �, sin � sin �, cos �)]:

μ	

(
R̂ × dR̂

dt

)
= ∂H

∂R̂
(9)

Here 	 = mρ0a
2 and H is replaced by H/a. μ means

the “vortex charge,” which is introduced as a multiple factor in
the velocity field (Appendix A). Equation (9) coincides with
the equation of motion for the vortex on a sphere [11,12], which
was derived in the framework of classical fluid dynamics. This
equation has a simple dynamical meaning: the balance of two
types of forces; the left hand side represents the Magnus force,
and the right hand side is the gradient force coming from the
Hamiltonian (that plays a role of potential energy in analogy
with classical particle mechanics). The equation of motion can
be written in an alternative form:

μ	
dR̂
dt

= −R̂ × ∂H

∂R̂
, (10)
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which can be rewritten in a form of a Hamiltonian equation of
motion; namely, using the spherical vector basis

dR̂
dt

= (0,�̇, sin ��̇),

the equation of motion is written in terms of the angular form:

μ	�̇ = 1

sin �

∂H

∂�
, μ	�̇ = − 1

sin �

∂H

∂�
. (11)

This is of the same form as the equation of motion for spin
(see, e.g., [21,22]). The effective action corresponding to (11)
is given as

S =
∫

[μ	(1 + cos �)�̇ − H ]dt. (12)

Quantization of vortex charge: We examine a special feature
of the above form of action function, namely, the term of a line
integral. As a particular case, we consider the integral along a
closed loop, say C. By using the Stokes theorem, this can be
written in a form of a surface integral, for which we have an
ambiguity to choose the surfaces,∫

C

μ	(1 + cos �)d� =
{

−μ	
∫

S sin �d�d�

μ	
∫

Ŝ sin �d�d�.
(13)

Here S and Ŝ are the upper and lower surfaces, respectively,
which are complements to each other; S + Ŝ = S2. This am-
biguity is related to the gauge choice [23]. Upon quantization,
the ambiguity is removed by a relation

exp

[
− i

h̄
μ	

∫
S

sin �d�d�

]
= exp

[
+ i

h̄
μ	

∫
Ŝ

sin �d�d�

]
;

then we obtain

μ	

∫
S2

sin �d� ∧ d� = 2nπh̄(n = integer),

leading to the quantization condition:

4πμ	 ≡ μM = 2nπh̄, (14)

where M = 4π	, which means the mass of the superfluid on
the sphere. Equation (14) is regarded as a counterpart of the
Dirac monopole quantization.

Pinning potential as a Hamiltonian term: As is seen from
(7), the first two terms, which represent the fluid kinetic energy
and the gradient energy, are apparently independent of the
position of the vortex center for the case of a single vortex
because of the rotational symmetry. In order to obtain the term
depending on the vortex center, we need to settle a coordinate
that is relative to the vortex center. The term satisfying this
criterion is the last one in Eq. (7), that is, V (ρ). If there is an
interaction with the pinning center built in the superfluid, we
get

U =
∫

ψ∗(r)ψ(r)V (r)dr. (15)

Here the density profile is given as |ψ(r)|2 = ρ0 + ρ̃(|r − R|),
where ρ0 is the uniform background term and ρ̃ describes
the vortex profile. The form of the interaction V (r) is rather
complicated and we resort to fix it in a phenomenological
way. It is plausible to assume that the V (r) is localized near

the pinning center, so the simplest choice is such that it is a
contact form, namely, that may be given by the δ function with
the strength V0:

V (r) = V0δ(r − a), (16)

where a stands for the position of the pinning center. Thus
we have U = V0ρ̃(R − a) up to an additional constant term
coming from the uniform background. If we choose a =
(0,0,a) as the north pole, it turns out to be

U = V0ρ̃(a
√

1 − cos �), (17)

where � denotes the angle between the vortex center and the
north pole. In the case that there are several pinning centers
located at ak , U is given by

U =
N∑

k=1

V0k(ρ̃(|R − ak|)). (18)

The concrete form of (15) may be described by a Gaussian
form with a central peak at the vortex center. This will be
discussed later in the analysis of the Fokker-Planck equation.

III. THE LANGEVIN AND FOKKER-PLANCK EQUATIONS

In this section we consider the stochastic equation for the
vortex motion by following the analogy with the spin equation
of motion.

In the following treatment we have in mind the semiclassical
approach, namely, the quantum effect is not taken account in
the stochastic equation except for the quantized value of the
vortex charge. That means the Planck constant never appears
in the stochastic equation. Although it looks unsatisfactory to
treat the quantum fluid in terms of the stochastic approach in
a “classical sense,” the present approach may be regarded as a
leading order of the full quantum mechanical treatment [24].
Indeed the previous stochastic theory has been carried out in
the similar spirit to such a concept (see, e.g., [14]).

A. Spin analogy and the functional integral

As is remarked in the previous section, the equation of
motion (10) is of same form as the spin equation of motion.
The vector R̂ plays a role for the spin vector, which we
call the pseudospin. Here in order to emphasize the spin
analogy, we introduce the quantity J = J R̂ with J ≡ μ	,
which corresponds to the magnitude of the spin. In terms of J,
the above equation is written as

dJ
dt

= −J × ∂H

∂J
. (19)

The right hand side of the equation represents the torque,
namely, ∂H

∂J is nothing but a substitute for the “magnetic
field” acting on the pseudospin, which may be called a
pseudomagnetic field. From a physical point of view, the
similarity between spin and vortex is not surprising, since
the vortex can be regarded as a region where the angular
momentum of the fluid is concentrated.

Furthermore, following the well known fact in spin theory,
it is possible to include the effect of dissipation such that
∇H is replaced by ∇H + η dJ

dt
in Eq. (19) with the dissipative
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coefficient η, namely,

dJ
dt

= −J ×
(

∂H

∂J
+ η

dJ
dt

)
. (20)

By multiplying J to both sides, we get

J × dJ
dt

− ηJ 2 dJ
dt

= J 2 ∂H

∂J
, (21)

where we have used the relation (J · ∇H ) = 0. Having solved
the equation for dJ

dt
from the above two equations, it follows

that

dJ
dt

+ A(J) = 0, (22)

with

A(J) = 1

1 + η2J 2

[
J × ∂H

∂J
+ ηJ 2 ∂H

∂J

]
. (23)

Equation (22) is known as “Landau-Lifschitz equation”
[25].

We now treat the Brownian motion of the point vortex,
which is caused by random effects of several origins: the
temperature fluctuations, and inevitably existing impurities.
Here we follow an analogy between a single vortex and
a ferromagnetic spin, which can be observed in a single
ferromagnetic domain [18]. For the case of ferromagnetic spin,
some simplification is adopted, namely, the random thermal
fluctuations have a correlation time much shorter than the
response time of the system. The response time of a single
domain particle is of the same order as the reciprocal of
the gyromagnetic resonance frequency. However, the case of
the vortex on a sphere, it is not feasible to estimate the ratio
between two characteristic times, so we adopt it as a working
hypothesis.

In what follows we have in mind the case that the fluctuation
effect gives rise to the randomness of the pseudomagnetic field,
which is written as b, so we replace ∂H

∂J → ∂H
∂J + b. Here b(t) is

assumed to be the Gaussian white noise as a random magnetic
field. Hence we have

dJ
dt

+ A(J) = c(t), (24)

where c(t) is written in terms of the random field b(t):

c(t) = 1

1 + η2J 2
(J × b + ηJ 2b), (25)

which is a combination of random force and torque. As a result
of the randomly uncorrelated nature of the function b, c can
be also expected to have the Gaussian white noise, which is
expressed as

〈ci(t)〉 = 0, 〈ci(t)cj (t + u)〉 = hδij δ(u),

with δ(u) the δ function. h means the diffusion constant. We
note that the validity of the above form of white noise is
not easy to justify and it is nothing else than the working
hypothesis. The white noise is introduced to express that
the random magnetic field is correlated on time scales
much smaller than the characteristic response time of the
pseudospin. It is assumed that 〈c2〉 = 2h, and its probability

distribution may be given by the standard Gaussian functional
form [19,20]:

P [c(t)] = exp

[
− 1

2h

∫ t

0
c2(t)dt

]
. (26)

Using this distribution, the propagator K , which is connected
between two end points of pseudospin, is given by the
functional integral:

K[J(t)|J(0)] =
∫ ∏

t

δ

[
dJ
dt

+ A(J(t)) − c(t)

]

× exp

[
−

∫
c2(t)

2h
dt

]
D[J]D[c(t)], (27)

with δ being the Dirac δ functional. In order to carry out the
Gaussian functional integral with respect to c(t), we need to
evaluate the functional Jacobian factor, the details of which
are briefly given in Appendix B and the result is

K[J(t)|J(0)] =
∫

exp

[
− 1

2h

∫ t

0

(
dJ
dt

+ A(J)

)2

dt

]
D[J].

(28)

Expanding the square term inside the exponential, one can
write this functional integral in the familiar form of a path
integral for a particle in the vector potential A together with
the scalar potential V = A2

2 . The parameter h just corresponds
to the Planck constant. We can formally write the above
functional integral by the quantum mechanical path integral;
that is, by using the imaginary time τ = −it , we obtain

K =
∫

exp

[
i

h

∫ {
1

2

(
dJ
dτ

)2

+ iA · dJ
dτ

− V

}
dτ

]
DJ(t).

(29)

B. The Fokker-Planck equation

The derivation of the FP equation is carried out most directly
by using the above path integral. If we introduce the “wave
function” ψ(J,τ ), we have the integral equation:

�(J,τ ) =
∫

K[J(τ )|J(0)]�(J,0)dJ(0). (30)

Following the standard procedure [26], we obtain the
Schrödinger equation:

ih
∂�

∂τ
=

[
1

2
(P − iA)2 + V

]
�,

with P = −ih ∂
∂J ≡ −ih∇. Returning to real time, namely,

i ∂
∂τ

= − ∂
∂t

, and writing � → P , we arrive at the standard
form of the FP equation [27]:

∂P

∂t
= h

2
∇2P + ∇ · (AP ). (31)

This can be rewritten as the continuity equation: ∂P
∂t

+ ∇ · s =
0, where s denotes the probability current s = − h

2 ∇P − AP ,
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and the components in polar coordinates (�,�) are

sθ = − h

2J

∂P

∂�
− P

1 + η2J 2

(
ηJ

∂H

∂�
− 1

sin �

∂H

∂�

)
,

sφ = − h

2J sin �

∂P

∂�
− P

1 + η2J 2

(
∂H

∂�
+ ηJ

sin �

∂H

∂�

)
.

Thus the FP equation is written as

∂P

∂t
= − 1

J sin �

{
∂

∂�
(sin θsθ ) + ∂sφ

∂�

}
. (32)

We here examine several general consequences from the
FP equation.

(i) The stationary distribution. We consider ∂P
∂t

= 0, and we
put ansatz of the Boltzmann distribution: P (J) = exp[−βH ]
with β the inverse temperature β = 1

kBT
. By substituting this

into the right hand side of the FP equation, we get(
βh

2
− ηJ 2

1 + η2J 2

)
{∇2H − β(∇H )2} = 0.

From this it follows the relation

βh

2
− ηJ 2

1 + η2J 2
= 0. (33)

This is the well known fluctuation-dissipation relation, which
establishes the relation between the dissipation coefficient η

and the diffusion (fluctuation) coefficient h.
(ii) Evolution equation for average value [28]. The FP

equation enables us to derive the evolution equation for
the average of functions on the sphere, which is given by
〈F 〉 = ∫

F (J)P (J)dJ. Using the derivative under integration
together with partial integration, we obtain

∂〈F 〉
∂t

= h

2
〈∇2F 〉 + 〈∇F · A〉. (34)

As a simple example, we here take F (J) = J 2
i (i = x,y,z) and

choose A = −γ J, (which represents the relaxation effect);
then we have the equation for 〈F 〉,

d
〈
J 2

i

〉
dt

= h − γ
〈
J 2

i

〉
. (35)

The solution becomes〈
J 2

i

〉 = h

γ

(
1 − exp

[
−γ

h
t

])
. (36)

Namely, this shows a typical relaxation behavior of 〈J 2
i 〉

leading to the asymptotic value 〈J 2
i (∞)〉 = h

γ
.

IV. ANALYSIS OF THE FOKKER-PLANCK EQUATION:
THE ROLE OF THE PINNING POTENTIAL

The FP equation is of a peculiar form, that is, rather
different from the usual diffusion equation (or Schrödinger
type equation) which includes the potential term. So special
techniques are required to deal with this. We now consider
a typical example that can be treated by analytic as well as
approximate ways.

General setting. In what follows, the argument is restricted
to the case of one or two pinning centers (Fig. 1).

×

o

S

N

vΘ
n

FIG. 1. Conceptual image of the vortex (marked by v) in the
pinning potentials located at the north (N) and south (S) poles and a
general point marked by n.

As the first case, let us consider the single pinning center
that is located at the north pole: a = (0,0,a), for which the
potential is given by the pinning potential (17). As the concrete
form of the profile for ρ̃, we adopt the Gaussian form [29]:
ρ̃ = ρ0 exp[− (r−R)2

l
] with the vortex size l; hence we have

H (�) = V0 exp[−a2(1 − cos �)/l] ≡ V0H̃ . (37)

Next, the Hamiltonian (37) can be extrapolated to two
pinning centers with the strengths V0,V

′
0, which are assumed

to be positive. The configuration of two centers is arranged
such that the one center is located at the north and the
other is the general point indicated by the direction cosine:
n = (sin α cos β, sin α sin β, cos α). The Hamiltonian for these
two pinning centers is thus written in terms of the two angles
(�,�):

H (�,�) = V0 exp

[
−a2

l

]{
exp

[
a2

l
cos �)

]

+ r exp

[
a2

l
cos �)

]}
, (38)

where the ratio r = V ′
0/V0 is introduced and

cos � = n · R̂ = nx sin � cos � + ny sin � sin � + nz cos �.

As a particular case, if the other center is located at the
south pole, � = π (cos π = −1, sin π = 0), the Hamiltonian
is reduced to

H (�) = V0 exp

[
−a2

l

]{
exp

[
a2

l
cos �

]

+ r exp

[
−a2

l
cos �)

]}
= V0H̃ (�), (39)

which includes (37) as a special case r = 0.
The Hamiltonians (37) and (39) are relevant for getting

concrete forms of the FP equation in an analytic or approximate
way (see below), since these depend on � alone. These two
cases seem to be enough for analyzing the stochastic behavior
of the vortex under the influence of pinning potentials.

Here we give a remark on the general configuration of two
centers, (38). The classical equation of motion reads

�̇ = 1

J (1 + η2J 2) sin �

∂H

∂�
+ η

1 + η2J 2

∂H

∂�
(40)

�̇ = − 1

J (1 + η2J 2) sin �

∂H

∂�
+ η

1 + η2J 2

1

J sin �

∂H

∂�
.
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To deal with this equation is not simple, because the Hamil-
tonian depends on two variables �,�. The standard way to
analyze the behavior of an orbit is to search the path which
connects the local minima that may be determined by the
potential landscape given by H (�,�). The procedure needs
laborious manipulation and the details of this will be discussed
elsewhere.

A. The case without dissipation: η = 0

Strictly speaking this is considered to be a limiting case: η ∼
0, for which the effective temperature kBT ∼ β−1 is extremely
large, by noting the fluctuation dissipation relation (33). This
means that all the vortex states are equally probable, and there
does not appear to be the temperature effect.

In order to treat this case, we use the functional integral
(28), for which the “Lagrangian” is written in terms of the
angular variables:

L = 1

2
J 2

[
�̇2 + sin2 �

(
�̇ + V0

J sin �

dH̃

d�

)2]
. (41)

The classical equation of motion (40) is written as

�̇ = 1

J sin �

∂H

∂�
= 0, �̇ = − 1

J sin �

∂H

∂�
.

Hence the orbit becomes a circle with constant latitude:
� = �0, and this represents a rotation with the constant
angular velocity:

κ ≡
[

V0

J sin �

dH̃

d�

]
�=�0

. (42)

Thus the functional integral is reduced to the form:

K =
∫

exp

[
− 1

2h

∫ t

0
sin2 �0(�̇ + κ)2dt

]
D(�), (43)

which is a path integral for a free particle on a circle. The
corresponding FP equation is given by the diffusion-type
equation

h
∂P

∂t
= h2

2 sin2 �0

∂2P

∂�2
− hκ

∂P

∂�
. (44)

In order to get the solutions of this equation, we put ansatz:

P (�,t) =
∞∑

n=−∞
exp[−λnt]fn(�), (45)

where fn(�) satisfies the eigenvalue equation

h

2 sin2 �0

d2fn

d�2
− κ

dfn

d�
= −λnfn.

We put fn(�) = exp[in�](n = integers), and the eigenvalue
is obtained as

λn = h

2 sin2 �0
n2 + inκ.

By substituting this into the (45), we have

P (�,t) =
∞∑

n=−∞
exp

[
−

(
h

2 sin2 �0
n2 + inκ

)
t

]
exp[in�],

(46)

which turns out to be the � function [30]. The expectation
values for 〈J〉 = ∫ 2π

0 JP (�,t)d� are calculated as

〈Jx〉 = J sin �0 exp

[
− ht

2 sin2 �0

]
cos κt,

〈Jy〉 = J sin �0 exp

[
− ht

2 sin2 �0

]
sin κt, (47)

〈Jz〉 = J cos �0.

This is a typical damped oscillation and similar to the
diffusive behavior of spin in magnetic systems [31]. The
feature that this does not show up the temperature effect may
be a consequence of the high temperature limit.

B. The case with dissipation: η �= 0

This case is complicated compared to the case without
dissipation. We look for the distribution function as a function
of � only, namely, P ≡ P (�,t). Assuming a separable
form P (�,t) = P (�) exp[−λt], then it follows the eigenvalue
equation

1

sin �

d

d�

(
sin �

dP

d�

)
− ε

sin �

d

d�

(
sin �

dH̃

d�
P

)
= −λP,

(48)

where we introduce the parameter

ε = 2V0ηJ 2

h(1 + η2J 2)
. (49)

The parameter ε plays a significant role. That is, as a
consequence of the fluctuation-dissipation relation (33), ε

can be expressed as ε = V0β, which gives the ratio between
potential strength and temperature. This fact suggests that ε

can be regarded as an expansion parameter to treat approximate
schemes. We have two cases that will be given below.

(a) We first consider the case that ε 
 1 (V0β 
 1) is
satisfied, which means the temperature is high enough so
as to satisfy the condition V0 
 kBT . In terms of quantum
mechanical terminology, this case may correspond to weak
coupling. It can be treated by perturbation procedure. By
expanding P and λ in terms of a power series with respect
to ε:

P (�) = P (0)(�) + P (1)(�) + · · · , λ = λ0 + λ1 + · · · ,
and substituting this into the above eigenvalue equation (48),
then we have the zeroth order:

1

sin �

d

d�

(
sin �

dP (0)

d�

)
= −λ0P

(0), (50)

and the first order:

1

sin �

d

d�

(
sin �

dP (1)

d�

)
− ε

sin �

d

d�

(
sin �

dH̃

d�

)
P (0)

= −λ1P
(0) − λ0P

(1). (51)

The zeroth order gives the Legendre polynomial: P 0 = Pl(�),
and the corresponding eigenvalue is λ0 = l(l + 1) with l =
1 · · ·. Here we note that there is an ambiguity to choose which
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Pl(�) should be chosen. For example, we arbitrarily pick up
a particular l, namely, P 0 = Pl(�); then the first order term is
calculated to

λ1 = ε

∫
Pl(�)

1

sin �

d

d�

(
sin �

dH̃

d�

)
Pl(�)d	/

×
∫

P 2
l (�)d	 (52)

(d	 = sin �d�d�). P (1) can be expanded in terms of Pk(�):
P (1) = ∑

k CkPk(�); then we obtain the coefficients Ck:

Ck = Vkl

λ0(l) − λ0(k)
, (53)

with the matrix element:

Vkl ≡ ε

∫
Pk(�)

1

sin �

d

d�

(
sin �

dH̃

d�

)
Pl(�)d	

for l �= k. Using this, the second order shift of the eigenvalue
is evaluated as

λ2 = ε2
∑
k �=l

V 2
kl

λ0(l) − λ0(k)
. (54)

The still higher order may be obtained by continuing the usual
perturbation scheme.

Here a remark is given for the above perturbation procedure.
We have no rule to fix the initial unperturbed states given by
the Legendre polynomial; namely, it is not known which Pl(�)
should be chosen, as we have seen in the above. This fact means
that the distribution of a vortex may be unstable in the sense
of thermodynamics. In other words, the strength of pinning is
too weak to keep the distribution stable. This implies that the
weak coupling limit is irrelevant to determine the solution of
the FP equation.

(b) We next consider the case of ε ∼ 1 (V0β ∼ 1), which
means V0 � kBT . In the quantum mechanical sense, this
regime may be regarded as strong coupling. For this case
we need to use nonperturbation procedure. In order to carry
out this, we rewrite the FP equation in terms of the variable
ξ = cos �:

d

dξ

[
(1 − ξ 2)

{
dP

dξ
+ ε

dH̃

dξ
P

}]
= −λP.

By using the relation

exp[−εH̃ ]
d

dξ
exp[εH̃ ] = d

dξ
+ ε

dH̃

dξ
,

it follows that

d

dξ

{
(1 − ξ 2) exp[−εH̃ ]

d

dξ
(exp[εH̃ ]P )

}
= −λP.

Putting Q = exp[εH̃ ]P , we have

d

dξ

{
(1 − ξ 2) exp[−εH̃ ]

dQ

dξ

}
= −λ exp[−εH̃ ]Q. (55)

This equation is translated to the variational problem, namely,
by introducing the “action” function:

I [Q] =
∫ 1

−1
(1 − ξ 2) exp[−εH̃ ]

(
dQ

dξ

)2

dξ, (56)

together with the constraint coming from the normalization:∫ 1

−1
exp[−εH̃ ]Q2dξ ≡ N [Q] = 1. (57)

Then the “Euler-Lagrange equation” δ(I [Q] − λN[Q]) = 0
recovers the above eigenvalue equation with λ being the
Lagrangian multiplier.

We see that there is a trivial solution Q0 = constant with
zero eigenvalue λ0 = 0. The corresponding solution becomes

P (�) = exp[−V0βH̃ ]. (58)

By starting from (58) as the lowest solution, we have an
algorithm to get the subsequent solutions: Qn(n = 0, . . .) by
noting the orthogonality condition:∫ 1

−1
exp[−εH̃ ]QQndξ = 0. (59)

We examine how to construct the second lowest state. This may
be achieved by choosing a trial function given by a quadratic
function Q1(ξ ) = A + Bξ + Cξ 2. Substituting this into (59),
we have a linear relation between A,B,C, by which C can be
expressed by A,B. Next (57) gives a quadratic equation for
A,B. Finally (56) gives another quadratic form for A,B. Then,
the problem is reduced to minimization of (56) written in terms
of the quadratic form under the constraint (57) expressed by
the quadratic equation. Having solved these, we arrive at the
solution of Q1.

This procedure may be carried out step by step, and we can
have a series of the stationary solution of the FP equations.
Having obtained a series of the eigenfunctions {Qn(�)}, one
can construct the time-dependent solution for the FP equation
by taking the linear combination:

P (�,t) = exp[−εH̃ ]
∑
n=0

cnQn(ξ ) exp[−λnt].

If we are concerned with the long time behavior, it may be
enough to keep the lowest two terms: n = 0,1 only:

P (�,t) = exp[−V0βH̃ (�)]{c0 + c1Q1(ξ )exp[−λ1t]}. (60)

Here we discuss the meaning of the solution in the strong
coupling regime. Equation P (�) = exp[−V0βH̃ ] gives the
distribution representing the equilibrium state with tempera-
ture β. This result is quite different from the perturbational
procedure that has been treated in the case (a), in which there
may be no thermally stable states. To have the equilibrium
state (58) means that the stable state of “thermal equilibrium ’
is pronounced in this strong coupling regime.

C. The small diffusion limit

We have another asymptotic limit for which the diffusion
constant h is regarded as small. We here look for an alternative
way to obtain an approximate form of the solution of the FP
equation. For this case, we have hε = V0ηJ 2

1+η2J 2 . In particular,
we consider the case that ε is extremely large by setting this
hε ∼ 1.
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In the limit of h � 0, the functional integral is treated by
the stationary phase approximation; namely, we get

Kcl � exp

[
− 1

h
Scl

]
, (61)

where Scl denotes the classical action that satisfies an extreme
condition δS = 0, which is given by Scl = ∫

Ldt with the
Lagrangian

L = J 2

2

{(
�̇ − hε

dH̃

d�

)2

+ sin2 �

(
�̇ + hε

Jη sin �

dH̃

d�

)2}
.

(62)

Besides Ksc, we have a term coming from the second variation
about the extreme path, that is written in terms of the Gaussian
functional integral, but this will be omitted here. We note a
peculiar feature of the Lagrangian: The variable � does not
appear in the Lagrangian, namely, � is cyclic coordinate and
the “momentum’ that is conjugate to � becomes a constant of
motion:

J 2 sin2 �

(
�̇ + hε

Jη sin �

dH̃

d�

)
= C.

Hence, following the well known procedure in analytical
dynamics, we have the “Rouse function’ [32]: R = C�̇ − L,
in which � variable is eliminated to give

R = −J 2

2

(
�̇ − hε

dH̃

d�

)2

+ C2

2J 2 sin2 �
− Chε

Jη sin �

dH̃

d�
,

(63)

from which the equation of motion for � is derived from the
Euler-Lagrange equation:

d

dt

(
∂R

∂�̇

)
− ∂R

∂�
= 0.

By substituting the solution (classical orbit) of the equation of
motion into L, we have

Kcl = exp

[
− 1

h

∫ t

0

{
J 2

2

(
d�

dt
− hε

dH̃

d�

)2

+ C2

2J 2 sin2 �

}
dt

]
. (64)

We look for a further reduced form of Kcl , that is, we
consider the case such that C/J is small. If we regard this as
a small parameter, we can omit the last two terms in Eq. (63),
so the equation of motion becomes a simple form (“instanton’
type equation):

d�

dt
− hε

dH̃

d�
= 0. (65)

Noting that the first integral in Kcl vanishes as a result of (65),
we have

Kcl = exp

[
− 1

h

∫ t

0

C2

2J 2 sin2 �
dt

]
,

which is rewritten in terms of the � variable using the relation
dt = 1

hε
( dH̃

d�
)−1d�:

Kcl = exp

[
− C2

2J 2h2ε

∫ (
sin2 �

dH̃

d�

)−1

d�

]
.

Substituting the explicit form of the potential (39) [or (37)],
we get

Kcl(xf ,xi) = exp

[
−M

∫ xi

xf

F (x)dx

]
,

F (x) =
{

exp

[
a2

l
x

]
− r exp

[−a2

l
x

]}−1 1

(1 − x2)2
,

M = C2

2J 2h2ε

l

a2
exp

[
a2

l

]
, (66)

where we have used the change of variable: x = cos � and put
xf = cos[�(t)] and xi = cos[�(0)]. Finally, the distribution
function is obtained by putting the initial distribution as a form
P (xi) = δ(xi − x0) (the δ function):

P (xf ) =
∫

Kcl(xf ,xi)P (xi)dxi = exp

[
−M

∫ x0

xf

F (x)dx

]
.

(67)

P (xf ) has been calculated numerically, as is shown in
Fig. 2. This is carried out for the special case of r = 0, the
potential coming from the single pinning center located at
the north pole. The parameters are chosen in the following:
We take C2

2J 2h2ε
∼ 10−3, which means that C2

2J 2hε
∼ 10−3h,

while the value a2/l take several values depending on the
vortex size l with radius a being fixed. We choose three
values: a2/l = 10,50,100. From the result depicted in Fig. 2,
we see that the vortex appears to be localized in the upper
hemisphere (0 < � < π/2) and the probability drops to zero
upon departing from the north pole (x = 1). The three curves
indicate that the feature of falling down to zero of P (xf )
depends on the size of the vortex. That is, the probability
distribution of the vortex with smaller size becomes zero
rapidly in the upper sphere.

1.0 0.5 0.0 0.5 1.0
0

2

4

6

8

x f

P x f

FIG. 2. (Color online) Numerical plot for P (xf ): The red circles,
blue squares, and upper green line represent a2/l = 100,50,10,
respectively.
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V. EXTENSION TO THE VORTEX IN NONSPHERICAL
GEOMETRY

The stochastic formulation developed in the previous
sections is based on a simple structure of spherical geometry.
It is desirable if this could be extended to the case of the
vortex adsorbed on the surface with similar simple geometrical
structure. In what follows we shall briefly discuss the case
of two-dimensional flat space as well as the pseudosphere
(Lobachevsky plane).

A. The case of the planer vortex

The vortex in the plane may be smoothly extrapolated to
the vortex in spherical geometry. This feature was implied
experimentally [13], so it is desirable to examine the stochastic
equation in a similar manner to the spherical case. Let the
vortex center coordinate be R = (X,Y ). The equation of
motion of the vortex center may be obtained as a limiting
case of the infinite radius, a → ∞, or more precisely, when
the vortex size is regarded to be much smaller than the radius of
sphere. Without repeating the detailed manipulation, we have
the equation of motion:

mρ0μ

(
k × dR

dt

)
= ∂H

∂R
, (68)

where k is the unit vector perpendicular to (x,y) plane. By
multiplying k to both sides and noting the relation (k · ∇H ) =
0, we have

mρ0μ
dR
dt

= −k × ∂H

∂R
. (69)

By replacing the nabla term in Eqs. (68) and (69) by the term
including the dissipation, namely, ∇H → ∇H + ηṘ [∇ =
( ∂
∂X

, ∂
∂Y

)] and solving these for Ṙ, we obtain

dR
dt

+ B = 0, (70)

where the force B is given by a combination of the torque and
the gradient term:

B ≡ 1

(mρ0μ)2 + η2

(
mρ0μk × ∂H

∂R
+ η

∂H

∂R

)
.

By adding the random force c, (70) turns out to be the Langevin
equation: dR

dt
+ B = c. By assuming that c has the Gaussian

white noise and following the same procedure as the case of a
spherical vortex, we obtain the FP equation,

∂P

∂t
= h

2
∇2P + ∇ · (BP ). (71)

The FP equation (71) is essentially same as the one that has
been used in the case of the superconductivity vortex [14]. The
more detailed and intricate treatment was given for the actual
superconductors in connection with high Tc superconductivity
[15,16]. Our treatment here would provide a refined way to
explore the stochastic behavior of a planer vortex. The details
of the argument will be given elsewhere.

B. The case of the vortex on the pseudosphere

Next we consider the vortex on the pseudosphere (which is
denoted by PS2, the surface with constant negative curvature).

The superfluid adsorbed on this pseudosphere may be realized
in actual situations as a local part of the surface of complicated
shapes.

Here an explanation is prepared for some geometrical
characteristics of PS2: (i) The point of the surface is described
by the equation in terms of the rectilinear coordinates,
x2 + y2 − z2 = −a2, which is parametrically written as

x = a sinh θ cos φ, y = a sinh θ sin φ, z = a cosh θ

[note that this is formally obtained by replacing θ by iθ (i =√−1) in the polar coordinate of sphere], and we introduce the
vortex center:

R̂ ≡ R/a = (sinh � cos �, sinh � sin �, cosh �).

(ii) The scalar product and vector product (which is denoted
by ∗) are, respectively, defined by [33]

a · b = a1b1 + a2b2 − a3b3,

a ∗ b = (a2b3 − a3b2,a3b1 − a2b3, − (a1b2 − a2b1)).

Note that the 3rd term in the scalar product has a minus sign
compared with the spherical case. As for the vector product,
the third component has a minus sign. The triple product is
given as

a ∗ (b ∗ c) = (a · b)c − (a · c)b.

Now, following the same procedures as the one for the
spherical vortex developed in Sec. II, we obtain the equation
of motion for a pseudospin:

dK
dt

= −K ∗ ∂H

∂K
. (72)

Here the pseudospin is defined: K = KR̂ with K ≡ μ	 and
	 = mρa2. This has the same form as the one used in a
different context [34]. For the case of the vortex on PS2, there
is no counterpart of the topological quantization, because PS2

is trivial in a topological sense, namely, this is isomorphic to
two-dimensional flat Euclidean space. The norm of K is given
by K2 = −K2 and K is not quantized, which is a consequence
of the nonexistence of a topological invariant for PS2. If the
dissipation effect is included, Eq.(72) turns out to be

dK
dt

= −K ∗
(

∂H

∂K
+ η

dK
dt

)
. (73)

Multiplying ∗K to (73) and noting the vector product formula,
we get

K ∗ dK
dt

= K2 ∂H

∂K
+ ηK2 dK

dt
. (74)

From (73) and (74), the equation of motion for K is derived as
follows:

dK
dt

+ Ã(K) = 0,

(75)

Ã(K) ≡ 1

1 + η2K2

(
K ∗ ∂H

∂K
+ ηK2 ∂H

∂K

)
.

The Langevin equation is thus written as

dK
dt

+ Ã(K) = c̃.
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Here the random “torque’ c̃ has the norm c̃2 = c2
1 + c2

2 − c2
3,

where the minus sign of the third term is a consequence of
non-Euclidean metric on the pseudosphere. By adopting the
Gaussian white noise and following the same procedure as the
spherical vortex case, we arrive at the FP equation:

∂P

∂t
= − 1

K sinh �

{
∂

∂�
(sinh θsθ ) + ∂sφ

∂�

}
, (76)

where the current is

sθ = − h

2K

∂P

∂�
− P

1 + η2K2

(
ηK

∂H

∂�
− 1

sinh �

∂H

∂�

)
,

sφ = − h

2K sinh �

∂P

∂�
− P

1 + η2K2

(
∂H

∂�
+ ηK

sinh �

∂H

∂�

)
.

It is possible to develop an approximate scheme in the same
way as the spherical vortex. This may be realized by finding
the pinning potential that is obtained by replacing cos � →
cosh � in Eq. (17). For the case corresponding to the small ε,
the perturbational calculation is possible, for which the zeroth
order (unperturbed) distribution function satisfies

1

sinh �

∂

∂�

(
sinh �

∂P

∂�

)
= λP,

and the eigenvalue is given by λ = ρ(ρ + 1) (ρ is real)
together with the eigenfunction written in terms of the integral
representation [35]:

Pρ(cosh �) = 1

2π

∫ 2π

0
(cosh � + sinh � cos ξ )ρdξ.

Furthermore, for the nonperturbation case, it may be possible
to construct the similar equation with (55), which is simply
obtained by replacing ξ = cos � by ξ = cosh �. Then we
can apply the variation principle for I [Q], by which the
approximation solutions for the FP equation may be derived.

VI. SUMMARY

We have developed a stochastic theory of the quantum
vortex on the two-dimensional sphere as well as its variants
of nonspherical geometry. This attempt may shed light on a
new facet of stochastic aspects of the vortex which have not
been well recognized so far. The main consequence is the
Fokker-Planck equation using the Langevin equation for
the Brownian motion of the vortex on the sphere by adopting
the functional integral method [19,20]. The basic point of our
theory is to follow an analogy between the vortex on the
sphere and spin, more specifically, the magnetic system of
a single domain [18]. The analogy seems natural, because the
vortex carries angular momentum of the fluid in a form of a
“lump’ which is a small region where the angular momentum
is concentrated. The randomness comes from several origins.
We have in mind the conventional assumption: temperature
fluctuations. For the case of mesoscopic size, the fluctuation
of temperature may be more appreciable than macroscopic
systems in the relative sense.

In developing the stochastic theory, we essentially adopt the
semiclassical approach. Except for the quantized value of the
vortex charge, there are no quantum effects in neither vortex
dynamics nor statistical mechanical quantities. This means

that the Planck constant is not reflected in the fluctuation-
dissipation relation.

We have analyzed the FP equation in order to examine the
role of the pinning potential. This was carried out by choosing
the special form of the potential that depends on the latitude
angle �: that is derived by the Gaussian profile. Our findings
are as follows: (i) The first is the case without dissipation,
for which the analytically closed form is obtained for the
probability distribution function in terms of the � function,
which implies the diffusional behavior (Sec. IV A). This may
be utilized for a limiting case with infinitesimal dissipation.
(ii) The second is the case with dissipation (Sec. IV B), for
which we could find a criterion for determining the weak
and strong coupling approximation. These can be treated by
perturbative and nonperturbative procedures [the cases (a) and
(b), respectively]. The latter is relevant to keep the ground
state stable in a thermodynamic sense, whereas the former
is not and the vortex distribution is unstable to be formed
in a robust manner. (iii) We have also examined another
aspect of the small diffusion limit (Sec. IV C), in which
we could get a simple form of the probability distribution by
applying an analogous technique with the semiclassical limit
for the functional integral. The result shows the the probability
distribution of the vortex center depends on the size of the
vortex profile.

Besides the stochastic theory for the vortex on a sphere, an
extension was given for the vortex in nonspherical geometry:
the case of the planer and pseudosphere. These could be
obtained as a natural continuation of the sphere vortex.

We expect that the present approach provides with a clue to
study the stochastic aspect of the quantum vortex defined on
the complicated two-dimensional manifold.
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APPENDIX A: CALCULATION OF ∇ × j

We rewrite the surface integral of the right hand side of (8)
by using the Stokes theorem:∫

S

(∇ × j)dσ =
∫

C

mρvds, (A1)

with C being boundary of S. If C is chosen such that it is
sufficiently remote from the vortex center, ρ → ρ0, it follows
that ∫

C

mρvds = mρ0

∫
C

v · ds ≡ mρ0

∫
S

ωdσ,

with the vorticity ω = ∇ × v. Next we give an explicit form
for the velocity field, which is given by

v = μ(r̂ × ∇f ), (A2)
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where the vortex charge μ is introduced and f is

f = log |r − R(t)| = log a + log |r̂ − R̂(t)|. (A3)

Here r̂ = r/a,R̂ = R/a, which is written as

R̂ = (sin � cos �, sin � sin �, cos �),

r̂ = (sin θ cos φ, sin θ sin φ, cos θ ).

Thus the velocity field becomes

v = μ

(
0,− 1

sin θ

∂f

∂φ
,
∂f

∂θ

)
. (A4)

Hence the vorticity is calculated as ω = ∇ × v = μ(∇2f )r̂
with the Laplacian on the two-sphere:

∇2f = 1

sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+ 1

sin2 θ

∂2f

∂φ2
= δ(r̂ − R̂(t)),

where we note ∇2 log |r̂ − R̂(t)| = δ(r̂ − R̂(t)). From the
above expression the vorticity for the spherical vortex directs
to the normal of the sphere. So we get∫

S

(∇ × j)dσ = mμρ0

∫
δ(r̂ − R̂)r̂dσ = mμρ0R̂.

By substituting this into the Lagrangian equation of motion,
we arrive at the Kirchhoff equation.

Here we give a sketch of the similar calculation for the
vortex on pseudosphere PS2, which is used for the derivation
of the equation of motion in Sec. V B. The procedure of
calculation is parallel to the case of S2; we need only the
following change:

∇f =
(

0,
∂f

∂θ
,

1

sinh θ

∂f

∂φ

)
.

That is, the velocity field is given by replacing sin θ with
sinh θ , and the vortex becomes ω = ∇ × v = (∇2f )r̂ with the
Laplacian on the pseudosphere

∇2f = 1

sinh θ

∂

∂θ

(
sinh θ

∂f

∂θ

)
+ 1

sinh2 θ

∂2f

∂φ2
.

Hence we can obtain the equation of motion in the same form
as the spherical case.

APPENDIX B: REDUCTION OF FUNCTIONAL INTEGRAL

We show how to reduce the Gaussian functional integral.
We introduce the notation : G = dJ

dt
+ A(J). First we use a

functional identity:

det

[
δG(t)

δJ(t)

]
G=c

∫ ∏
t

δ[G(J) − c]D[J(t)] = 1, (B1)

then we have the functional integral including the the Jacobian
factor [36,37]:

K =
∫

det

[
δG(t)

δJ(t)

]
G=c

∫ ∏
t

δ[G(t) − c(t)]D[J(t)]

× exp

[
− 1

2h

∫
c2(t)dt

]
D[c(t)]. (B2)

Here we can remove the constraint that attaches to the determi-
nant, namely, G = c. Because of the well known relation for
the δ function c(x)δ(x − a) = c(a)δ(x − a), the determinant
factor does not depend on c(t) any more. Furthermore, using
an integral identity δ[g(x)] = ∫

exp[iλg(x)]dλ, the above is
written as a functional integration over three variables J,c,λ:
Thus we have

K =
∫

exp

[
i

∫
λ(t){G(t) − c(t)}dt

]

× exp

[
− 1

2h

∫
c2(t)dt

]
D[λ(t)]

× det

[
δG(t)

δJ(t)

]
D[c(t)]D[J(t)]. (B3)

By accomplishing two Gaussian functional integrals for c and
λ(t), we obtain (28).
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