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Non-Maxwellian behavior and quasistationary regimes near the modal solutions of the
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In a recent paper [M. Leo, R. A. Leo, and P. Tempesta, J. Stat. Mech. (2011) P03003], it has been shown that
the π/2-mode exact nonlinear solution of the Fermi-Pasta-Ulam β system, with periodic boundary conditions,
admits two energy density thresholds. For values of the energy density ε below or above these thresholds, the
solution is stable. Between them, the behavior of the solution is unstable, first recurrent and then chaotic. In this
paper, we study the chaotic behavior between the two thresholds from a statistical point of view, by analyzing the
distribution function of a dynamical variable that is zero when the solution is stable and fluctuates around zero
when it is unstable. For mesoscopic systems clear numerical evidence emerges that near the second threshold, in
a large range of the energy density, the numerical distribution is fitted accurately with a q-Gaussian distribution
for very large integration times, suggesting the existence of a quasistationary state possessing a weakly chaotic
behavior. A normal distribution is recovered in the thermodynamic limit.
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I. INTRODUCTION

In recent decades, the study of Hamiltonian many-body
systems has undergone great development. These systems
are indeed ubiquitous in many different fields of science.
In this context, one of the most remarkable examples is
provided by the Fermi-Pasta-Ulam (FPU) system [1]. It has
been intensively studied since its proposal (see [2] for a recent
review), and still represents an invaluable model for studying
nonlinear phenomena.

A recent series of papers [3–7] has been devoted to the
stability properties of an interesting class of solutions admitted
by the FPU β system with periodic boundary conditions: the
one-mode solutions (OMSs) [8–10]. These are exact solutions,
usually referred to by means of the values of the mode number
n = N

4 ,N
3 ,N

2 , 2
3N, 3

4N , where N is the number of particles of
the system. These modes are named equivalently (as in the
present paper) π/2, 2π/3, π , etc. Their stability has also been
analyzed in [11,12].

In [3], the existence of a new stability threshold ε2(N ), apart
from the well-known one of low energy ε1(N ), was discovered
for the π/2 mode. Indeed, on increase of the energy density
ε, the system experiences an abrupt transition from the region
of chaotic behavior to a region where the nonlinear mode
solution again becomes stable. Technically, we have used a
global indicator introduced in [3,6], i.e., the ratio ρ between the
standard deviation and the first moment of the absolute value
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of the relevant variable for a given probability distribution. For
a Gaussian distribution, ρ = √

π/2. This indicator estimates
the deviation of a generic assigned distribution from Gaussian
behavior for any value of the excitation energy density. It
is a function of the dynamical variables of the configuration
space only and its usefulness relies on the fact that is model
independent. By means of this indicator, in [3,6] we studied
the stability of the π and π/2 modes as functions of the energy
density.

Figure 1 shows a typical curve of stability of the OMS π/2
for N = 128. The time of stability of the mode is plotted as a
function of ε; the existence of the two thresholds ε1 and ε2 is
evident: below ε1 and above ε2 the time of stability tends to
infinity.

The aim of this work is to explore the statistical properties
of the FPU β chain, following the orbits of the π/2 mode. A
connection between the weakly chaotic dynamics of the model
and nonextensive statistical mechanics was first established
in [6] in the specific case of the π mode, for initial conditions
in a narrow region of the phase space. This result has also
been confirmed, for the same modal solution, by a subsequent
analysis [13].

Here we exhibit striking evidence of the existence, for the
π/2 mode, of quasistationary states whose thermostatistics
is governed by a long standing q-Gaussian distribution for a
considerable range of the energy density. This is achieved by
performing an accurate analysis of a set of suitable observables
associated with the evolution of the system. More precisely,
for values of the energy density between ε1 and ε2, up to
values very close to ε2, the numerical distribution is fitted with
a high accuracy by a q-Gaussian distribution, for values of
N approximately up to 100, and very large integration times.
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FIG. 1. (Color online) Stability time T for the OMS π/2 (N =
128) vs ε: it is defined as the time (divided by π ) after which the
ratio between the energy of the mode and its initial energy is less than
0.999 99.

Interestingly enough, the distributions found in our analysis
are extremely stable, i.e., they remain q-Gaussian without
converting into a Gaussian, or any different distribution. For N

very large, q approaches 1, hence the q-Gaussian distribution
essentially recovers the normal one.

II. QUASISTATIONARY STATES IN WEAKLY
CHAOTIC REGIMES

Quasistationary states have been observed in different
Hamiltonian systems [14]. For the Hamiltonian mean-field
model, discussed in [15] and describing a system of classical
coupled rotors, numerical evidence was found of the existence
of out-of-equilibrium quasistationary states, having a lifetime
that increases with the number of particles N of the system.
Also, in [13] this kind of state has been recognized in weakly
chaotic regimes of several multidimensional Hamiltonian
dynamics.

For the sake of clarity, let us now briefly recall the main
features of the FPU β system with N oscillators and periodic
conditions. By denoting with xi and pi the coordinates and the
associated momenta, the Hamiltonian reads

H = 1

2

N∑
i=1

pi
2 + 1

2

N∑
i=1

(xi+1 − xi)
2 + β

4

N∑
i=1

(xi+1 − xi)
4

with xN+1 = x1 and β � 0. All quantities are dimensionless.
In terms of the normal coordinates Qi and Pi , defined by the
relations

Qi =
N∑

j=1

Sij xj , Pi =
N∑

j=1

Sijpj , (1)

with

Sij = 1√
N

(
sin

2πij

N
+ cos

2πij

N

)
, (2)

the harmonic energy of the mode i is

Ei = 1
2

(
P 2

i + ω2
i Q

2
i

)
, (3)

where for periodic boundary conditions

ω2
i = 4 sin2 πi

N
.

For β = 0, all normal modes oscillate independently and their
energies Ei are constants of the motion. In the anharmonic
case (β > 0), the normal modes are instead coupled and the
variables Qi no longer have simple sinusoidal oscillations.

Consider now the π/2 mode. For simplicity, we set Q =
Qπ/2 and P = Pπ/2. The equation of motion for the mode
amplitude Q is [8]

Q̈ = −2Q − 8
β

N
Q3, (4)

and the constant modal energy reads

E = 1

2

(
P 2 + 2Q2 + 4

β

N
Q4

)
. (5)

We will excite this mode at t = 0 by setting Q �= 0 and P =
Q̇ = 0 always. For β > 0 the solution of Eq. (4), with initial
conditions Q(0) = Q0 and Q̇(0) = 0, is

Q(t) = Q0cn(�t ; k2), (6)

where cn is the periodic Jacobi elliptic function with period
τ = 4K(k)/�, K(k) is the complete elliptic integral of the
first kind, and, in terms of the energy density ε = E/N ,

Q2
0 = N

4β
(
√

1 + 8εβ − 1), k2 = 1

2

√
1 + 8εβ − 1√

1 + 8εβ
, (7)

and

�2 = 2

1 − 2k2
. (8)

The same formulas hold for n = 3
4N , so the mode 3π/2

behaves like the π/2 mode.
We observe that, due to symmetry constraints, for the OMSs

other constants of the motion hold, besides the energy of the
mode. For instance, one has

xi + xi+1 = 0 (9)

for the π mode and

xi + xi+1 + xi+2 + xi+3 = 0 (10)

for the π/2 mode.
As physical observables, for the analysis of the π mode we

considered in [6] the quantities

ηi = xi + xi+1. (11)

Here, for the π/2 mode, we consider the quantities

ηi(t) = xi(t) + xi+1(t) + xi+2(t) + xi+3(t), i = 1, . . . ,N,

(12)

and we study the distribution of their values when the system
is unstable. Indeed, these quantities are always equal to
zero during the time evolution of the system, if it is stable,
independently of the choice of the initial condition Q(0).
Instead, when the system is not stable, the ηi’s are different
from zero and the distribution of their values depends on the
exchange of energy among the π/2 and the other modes. The
numerical results are independent of the choice of index i [3].
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In recent years, a new theoretical framework, called nonex-
tensive statistical mechanics, has appeared for describing the
thermostatistics of systems typically exhibiting long-range
correlations, (asymptotic) scale invariance, multifractality,
etc. [16,17]. The nonextensive scenario generalizes the classi-
cal Boltzmann-Gibbs (BG) statistics in the sense that it applies
to nonergodic, e.g., weakly chaotic, systems (for a regularly
updated bibliography, see [18]). The entropy on which it is
based reads

Sq = K
1 − ∑W

i=1 p
q

i

1 − q

(
S1 ≡ SBG = −K

W∑
i=1

pi ln pi

)
,

(13)

where W is the total number of microscopic states of the
system. This entropy, under suitable constraints, is extremized
by a q-Gaussian distribution. Sq is nonadditive, but for special
values of the parameter q can be extensive, according to the
prescription of Clausius [17]. Recently, a connection between
generalized entropies and number theory has been found [19].
In particular, the entropy Sq has been related to the classical
Riemann ζ function.

In a range of values of the energy density between the two
thresholds ε1 and ε2, we show that the statistical distribution
of the observables (12) is a q-Gaussian one for very long
times. Precisely, the system reaches a weakly chaotic regime
in a long-standing quasistationary state, for many different
values of ε. For example, a quasistationary state is obtained
for N = 16 and ε = 0.095, with q = 0.9255 ± 0.0003.

III. INTEGRATION OF THE EQUATIONS
OF THE MOTION

The stability of the π/2 mode can be studied numerically by
integrating the equations of motion without introducing exter-
nal perturbation, as in [4,5,7]. The only perturbation introduced
is due to computational errors of the algorithm of numerical
integration. We have tested that these errors, which “trigger”
the initial perturbation in the region of instability, remain very
small and are completely negligible in the region of stability.
We point out that the correctness of our method has been
tested in three different contexts [5,7,8] with a very convincing
agreement between numerical data and theoretical predictions.

The equations of motion in the variables xi ,pi are integrated
by means of a bilateral symplectic algorithm [20]. We recall
that the dynamical properties of the FPU β system depend
only on the product εβ, so in all numerical experiments we
put β = 1 and change the value of the energy density without
loss of generality. We excite the nonlinear π/2 mode at t = 0,
as described above, by setting Q �= 0 and P = Q̇ = 0 always.
We fix the initial value of the energy density ε and obtain
the initial value of Q from Eq. (5) with P = 0; then, from
inverse transformations of Eq. (1), the initial values of xi and
pi are obtained, and the Hamilton equations are integrated in
the variables xi and pi .

The scheme to obtain the distribution of the ηi , given
by Eq. (12) is the following. Hereafter we choose i = N/4.
For fixed (ε,N ), we integrate the equations of motion with
an integration step �t = 0.02. After a transient of 2 × 108

integration steps, we calculate the value of the variable ηi

every 200 integration steps and we follow the evolution of the
system for a time approximately equal to 4.2 × 109 integration
steps, equivalent to approximately 84 × 106/(

√
2π ) periods

of the corresponding linear mode (τπ/2 = √
2π ). Longer

integration times and shorter integration steps give qualita-
tively the same behavior. Then we consider the deviations
ξi = ηi − 〈ηi〉 numerically obtained, and we determine the
associated distribution f (ξi). This distribution is compared
with two theoretical distributions, namely, the Gaussian and
the q-Gaussian distributions; the latter is defined by

f (ξ ) = a[1 − (1 − q)b2ξ 2]1/(1−q), (14)

with

a = b

√
q − 1(1/(q − 1))√

π((3 − q)/[2(q − 1)])
if 1 < q < 3, (15)

a = b

√
1 − q(3/2 + 1/(1 − q))√

π
(

q−2
q−1

) if q < 1. (16)

Here  denotes the Euler Gamma function.

IV. NUMERICAL RESULTS

For the case N = 16, the values of the two stability thresh-
olds are respectively ε1 = 0.044 655 2 and ε2 = 0.135 266 73.
For ε = 0.135 266 74 the π/2 mode is stable again. Just above
ε1, the behavior of the mode is not chaotic. As for the π mode,
one observes recurrences, and the mode exchanges with the
other modes only a small fraction of its energy, also for very
long times. The irregularity of the π/2 mode increases on
increasing the energy density, and for ε > 0.06 the system
becomes chaotic.

In Figs. 2 and 3, the numerical, Gaussian, and q-Gaussian
distributions for N = 16 and ε = 0.135 266 73 are shown. The
q-logarithmic plot of the three distributions is normalized
with the maximum value f (0) of the numerical one, and is
shown as a function of [ξf (0)]2. The χ2 analysis gives an
excellent agreement of the q-Gaussian with the numerical
approximation.
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 )

ξ

FIG. 2. (Color online) Log-linear representation of the numerical
distribution f (ξ ) (red pluses), Gaussian distribution (green dashed
upper curve), and q-Gaussian distribution (blue dotted curve) with
q = 0.9225 ± 0.0007, for N = 16 and ε = ε2 = 0.135 266 73. We
get χ 2

g = 2.78 × 10−4 and χ 2
qg = 5.72 × 10−7.
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FIG. 3. (Color online) q-logarithmic vs square representation of
the numerical distribution f (ξ ) (red pluses), Gaussian distribution
(green dashed upper curve), and q-Gaussian distribution (blue dotted
curve) shown in Fig. 2.

Hereafter we denote by χ2
g the χ2 concerning the fit of the

numerical distribution with the Gaussian distribution and by
χ2

qg the same fit with the q-Gaussian one.
We have also considered many other values of (ε,N ). Here

we report only a few examples.
In Fig. 4 the three distributions are shown for N = 16 and

ε = 0.095. This value of the energy density is particularly
relevant, since it corresponds to a state in which the stability
time of the system has a minimum in the stability curve
corresponding to N = 16. We hypothesize that the minimum is
due to the presence of a maximum of the correlation between
the modes. This would be coherent with the appearance of
very stable q-Gaussian distributions. In Fig. 5 we report the
distributions for N = 128 with ε = 0.06, a value of energy
density intermediate between the two stability thresholds. In
Fig. 6 we show the three distributions for N = 128 with
ε = 0.147 155 5, just below the second threshold.
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FIG. 4. (Color online) q-logarithmic vs square representation of
the numerical distribution f (ξ ) (red pluses), Gaussian distribution
(green dashed upper curve), and q-Gaussian distribution (blue dotted
curve) for N = 16 and ε = 0.095. We obtain χ 2

g = 3.96 × 10−4 and
χ 2

qg = 5.25 × 10−6. The fitted value of q is 0.9318 ± 0.0008.
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FIG. 5. (Color online) q-logarithmic vs square representation of
the numerical distribution f (ξ ) (red pluses), Gaussian distribution
(green dashed upper curve), and q-Gaussian distribution (blue dotted
curve) for N = 128 and ε = 0.06. We get χ 2

g = 1.26 × 10−5 and
χ 2

qg = 7.49 × 10−6. The fitted value of q is 0.977 ± 0.003.

V. STUDY OF q AS A FUNCTION OF N

On increasing N , the fitted value of q tends to 1. In Fig. 7,
the case N = 256 with ε = 0.1477 is plotted. The theoretical
distributions overlap with the numerical one.

As we have shown in [3], where we studied the dependence
of the second threshold ε2 on the number N , ε2 tends
asymptotically to a value ε0 approximately equal to 0.147 80
for large values of N . This limit was checked up to N = 4096.
In Fig. 8, we plot, as a function of 1/N , both (1 − q) and ε0 − ε

where, for each value of N , ε is taken at the edge of the second
threshold. We find that q → 1 in the thermodynamic limit,
as we expected in agreement with the metastability analysis
of [21,22]. These quasistationary states appear as a mesoscopic
effect for N not much larger than, say, 100.

Another crucial point consists in the time dependence of
the parameter q. In Fig. 9 the behavior of q as a function of the
integration time, for ε = 0.095, is shown for N = 16, 32, and
64. The total number of iterations is 32 × 109, corresponding to
an integration time of 6.4 × 108. In addition, in Fig. 10 we plot
the three distributions at the end of the integration for N = 16
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FIG. 6. (Color online) q-logarithmic vs square representation of
the numerical distribution f (ξ ) (red pluses), Gaussian distribution
(green dashed upper curve), and q-Gaussian distribution (blue dotted
curve) for N = 128 and ε = 0.147 155 5. We find χ2

g = 6.91 × 10−7

and χ 2
qg = 5.35 × 10−7. The fitted value of q is 0.994 ± 0.001.
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FIG. 7. (Color online) log-linear representation of the three
distributions for N = 256 and ε = 0.1477: Gaussian and q-Gaussian
distributions overlap with the numerical one (red crosses). We get
χ 2

g = 2.42 × 10−7 and χ 2
qg = 2.21 × 10−7.

and the same value of ε. The value of q stabilizes at q =
0.9255 ± 0.0003. The best-fit curve is again a q-Gaussian,
with very high accuracy. As in [23] we reach a quasistationary
state in which our dynamical observables obey a q-Gaussian
thermostatistics.

Regarding the error on the parameter q, we wish to remark
that we integrate the equations of motion starting with initial
conditions corresponding to an exact solution. Therefore, in
order to evaluate the error on q it would not be adequate to
average over different initial conditions. So we estimate the
error on q by means of the fitting procedure. This estimation is
confirmed by the fact that, for very long integration times (see
Fig. 9), the value of q for fixed values of N and ε stabilizes
with time. The variations observed, in the fourth decimal digit,
are of the same order as the error obtained with the best-fit
procedure.

On the other hand, what is relevant is that q is significantly
different from 1 and tends to 1 for N very large, as we can see
from the numerical results.

 0.12

 0.08

 0.04

 0

 0.06 0.04 0.02 0

1 / N 

f(x)
g(x)

FIG. 8. (Color online) (ε0 − ε) (blue +) and (1 − q) (red ◦) vs
1/N [ε0 = limN→∞ ε2(N )]; ε is taken at the edge of the second
threshold ε2 for each value of N . Each red ◦ corresponds to a blue
+ and indicates its value of q. The oscillations of the values of the
blue + are due to the changes of ε2 as a function of N (see Fig. 4
of Ref. [3]). The straight lines y = 0 [f (x)] and y = 1.8671x [g(x)],
between which all the values of q are distributed, are shown.

 1
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 3⋅1010 2⋅1010 1⋅1010 1⋅109

q

IS

16

32

64

N

FIG. 9. (Color online) q vs the number of integration steps NIS for
ε = 0.095, N = 16 (red solid curve), N = 32 (blue ◦), and N = 64
(purple pluses). The integration time is t = 0.02NIS. The asymptotic
values of q are respectively q16 = 0.9255 ± 0.0003, q32 = 0.9640 ±
0.0004, q64 = 0.9871 ± 0.0004.

There is no evidence of the appearance, even after long
times, of limit distributions different from q-Gaussians (in
contrast with what occurs in the numerical study in [13]
in a different energy-space region). Even for quite large
values of N , the q-Gaussian is always an excellent fit
distribution. Moreover, the energy density interval where this
phenomenon is observed is not small, but of a sufficiently large
size.

VI. FINAL REMARKS

A general result is that the value of the parameter q is
always less than 1 for variable energy densities and tends to 1
with increasing N . This phenomenon also emerged in [23] for
the sum of iterates of the sine-circle map. This feature is typical
of the π/2 mode; indeed, in the case of the π mode our previous
analysis [6] (as well as the recent one [13]) showed that q > 1.
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FIG. 10. (Color online) Log-linear representation of the numer-
ical distribution f (ξ ) (red pluses), Gaussian (green dashed upper
curve), and q-Gaussian distribution (blue dotted curve) for N = 16
and ε = 0.095, after 32 × 109 iterations. We obtain χ 2

g = 4.50 ×
10−4 and χ 2

qg = 8.87 × 10−7. The fitted value of q is 0.9255 ±
0.0003.
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We conjecture that this reflects possibly different roads to
chaos: values of q > 1 could be related to the fact that, with
increasing ε, the system tends to a strong chaotic dynamics,
whereas q < 1 could correspond to a different transition
from chaos to order. Nonlinear dynamics can exhibit such
effects. For example, the logistic map enters into chaos at the
Feigenbaum point through a power law increasing with time
(q < 1), whereas it enters through a power law decreasing with

time (q > 1) at its tangent bifurcation point in the well-known
cycle 3.
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