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We study the efficiency at maximum power, ηm, of irreversible quantum Carnot engines (QCEs) that perform
finite-time cycles between a hot and a cold reservoir at temperatures Th and Tc, respectively. For QCEs in
the reversible limit (long cycle period, zero dissipation), ηm becomes identical to the Carnot efficiency η

C
=

1 − Tc/Th. For QCE cycles in which nonadiabatic dissipation and the time spent on two adiabats are included,
the efficiency ηm at maximum power output is bounded from above by η

C
/(2 − η

C
) and from below by η

C
/2.

In the case of symmetric dissipation, the Curzon-Ahlborn efficiency ηCA = 1 − √
Tc/Th is recovered under the

condition that the time allocation between the adiabats and the contact time with the reservoir satisfy a certain
relation.
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I. INTRODUCTION

The concept of Carnot efficiency is of paramount impor-
tance in thermodynamics, since the Carnot cycle is the most
efficient heat engine cycle allowed by physical laws. When the
thermodynamic second law states that not all the supplied heat
is applied to producing work, the Carnot efficiency presents
the limiting value on the fraction of the heat which can be so
used. Although the quasistatic Carnot cycle has the highest
efficiency, it outputs zero power because it takes infinite time
to output a finite amount of work. By contrast, Curzon and
Ahlborn [1] considered a finite-time Carnot cycle under the
assumption of endoreversibility that irreversible processes
occur only through these heat exchanges, they obtained the
efficiency ηCA at maximum power output as

ηCA = 1 −
√

Tc

Th

, (1)

where Th and Tc are the temperatures of the hot and cold
heat reservoirs, respectively. The Curzon-Ahlborn (CA) paper
has triggered the development of research into finite-time
thermodynamics [2–19]. The above ηCA is usually called the
CA efficiency, describing the efficiency of several engine mod-
els [2,16,18,20] and of actual thermal plants [1,2,6–8,10] very
well. The CA efficiency has been found to be a universal result
in the case of low and asymmetric dissipation, by optimizing
the power output with respect to time allocation when the
time durations in adiabats and nonadiabatic phenomena were
ignored [8].

Great efforts have been devoted to the study of quantum
heat engines [4,5,10–12,21–29], beginning with the concept
of the quantum heat engine introduced by Scovil and Schulz-
DuBois [30]. Quantum heat engines differ from their classical
counterparts mainly in the following three respects: (i) the
working substance is composed of quantum matter such
as spin systems [4,5,10,11,26], harmonic oscillator systems
[5,10,12], two-level or multilevel systems [21–24], cavity
quantum electrodynamics systems [24,27–29], etc. (ii) The
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state of the system is depicted by a quantum-mechanical
operator, and the thermodynamic observables are associated
with the expectation values of operators [10–12]. (iii) Quantum
equations of motion are used to describe the time evolution of
the observables in quantum heat engines, which can avoid the
use of phenomenological heat transfer laws [10–12].

The previous literature discussed the heat engine models in
the sudden limit in which the adiabatic process is a spontaneous
switching and thus the time allocation on adiabats is negligible
[8,16,17]. Thus it is significant to study more general models in
which the “adiabatic” process (we take the two corresponding
processes as two quantum “adiabats” throughout the paper)
takes finite time as well as becoming nonadiabatic [31].
During a quantum adiabatic process, the variation of the
eigenspectrum (quantum state) of the system must be so
slow that the quantum adiabatic theorem [22–24,32] can
apply. Otherwise, nonadiabatic dissipation (e.g., inner friction
[11,12,26]) occurs because of rapid change in the energy level
structure of the quantum system. In particular, nonadiabatic
dissipation has been found to have a profound influence on
the performance of quantum heat engines [11,12,26]. The
inclusion of nonadiabatic dissipation is therefore essential for
more realistic models of quantum heat engines.

In this paper, we study the efficiency at maximum power
output of quantum Carnot engines (QCEs) performing finite-
time cycles, in which the times taken by any adiabat and
nonadiabatic dissipation are considered. We assume that the
external parameter affecting the energy spectrum varies at a
small but fixed speed which, however, may not be slow enough
and thus might cause nonadiabatic phenomena. We derive the
cycle period which consists of times spent both on the two
quantum isotherms and on the two quantum adiabats. We show
that the efficiency at maximum power output converges to an
upper and a lower bound in the limits of extremely asymmetric
dissipation. Based on the low-dissipation assumption that the
irreversible entropy production in a thermodynamic process
is inversely proportional to the time required to complete that
process, our approach, similar to that of classical thermody-
namics, predicts that the CA efficiency is an exact and universal
property for QCEs operating under the conditions that the
dissipation is symmetric and the time allocation between the
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adiabats and the contact time with the reservoir satisfy a certain
relation.

II. EFFICIENCY AT MAXIMUM POWER OUTPUT

We consider a quantum system whose Schrödinger equation
is given by H |un〉 = En|un〉, where H , |un〉, and En are
the Hamiltonian of the system, its nth eigenstate, and its
eigenenergy, respectively. The internal energy U reads U =∑

n EnPn, where Pn is the mean occupation probability of
the nth eigenstate and obeys the canonical distribution Pn =
1
Z
e−En/kBT in equilibrium, with the canonical partition function

Z = ∑
n e−En/kBT . The derivation of U leads to the first law

of quantum thermodynamics dU = ∑
n EndPn + ∑

n PndEn.
Analogous to the classical thermodynamic first law, the first
law of thermodynamics in quantum-mechanical systems is
[23–25] dU = d-Q + d-W , in which d-Q = ∑

n EndPn and
d-W = ∑

n PndEn depict the heat exchange and work done,
respectively, during a thermodynamic process. Note that∑

n EndPn is associated with the heat exchange because
d-Q = T dS with the entropy S = −kBPn ln Pn. Motivated
by the definition of the generalized force F for a classical
system, we define analogously the force for a quantum system
as F = ∑

n Pn
∂En(X)

∂X
, where X is the external parameter

(the generalized coordinate corresponding to the force F )
[23–25,33]. Here the force F and generalized coordinate X are
state variables [25,33] and quantum versions of the classical
pressure Pr and volume V , respectively.

The generalized force F (X) alters the generalized coordi-
nate X that affects the eigenspectrum of the system during
a thermodynamic process. The quantum Carnot cycle 1 →
2 → 3 → 4 → 1 is drawn in the (F,X) plane, which is the
quantum version of the classical (Pr,V ) plane [see Fig. 1(a)].
During two quantum isothermal processes 1 → 2 and 3 → 4,
the working substance is coupled to a hot and a cold heat
reservoir at constant temperatures Th and Tc, respectively.
We apply d-Q = T dS directly to the calculation of the heat
exchange d-Q in any quantum isothermal process. Let S(Xi)
and Xi be the entropies and the external parameters at the
instants i with i = 1,2,3,4. The heat amount Qh absorbed
from the hot reservoir and the heat amount Qc released to
the cold reservoir are, respectively, Qh = Th[S(X2) − S(X1)]
and Qc = Tc|[S(X4) − S(X3)]|. When the Carnot cycle is

reversible, the system couples to the heat reservoir for a
sufficiently long time until the system remains infinitesimally
close to equilibrium throughout the cycle, and in order for
the adiabatic theory to remain valid, the time scale of the
change of the quantum state must be much larger than that
of the dynamical one, ∼E/h̄ [22,23,32]. For the reversible
cycle where S(X2) = S(X3) and S(X1) = S(X4), we recover
the Carnot efficiency η

C
= 1 − Tc

Th
, which is independent of the

properties of the quantum working substance. We denote by
t12 (t34) the time durations during which the system is coupled
to the hot (cold) reservoir during a cycle. In the branch 2 → 3
(4 → 1), the working substance is decoupled from the hot
(cold) reservoir, and the entropy changes from S2 to S3 (S4

to S1) during a period t23 (t41), as shown in Fig. 1(b), where
Si ≡ S(Xi) with i = 1,2,3,4.

Let us consider a QCE under finite-time operation. Finite-
time cycles move the system away from equilibrium, leading
to irreversibility of the engine. Although the system need
not be close to equilibrium during the isothermal process,
it remains in an equilibrium state with the heat reservoir at
special instants i with i = 1,2,3,4. Under such a circumstance,
the thermodynamic quantities of the system—in particular
the entropy—are well defined at these instants. During the
processes 2 → 3 and 4 → 1, the rapid change (compared
with the time scale ∼E/h̄) in the energy level structure
of the system results in quantum nonadiabatic phenomena.
We emphasize that in any quantum thermodynamic process
in which low dissipation exists, the system relaxation is
assumed to be fast compared to the time of the process [8].
During a quantum isothermal (adiabatic) process, the entropy
production caused by weak dissipation can be written as
�h/t12 or �c/t34 (�a/t23 or �a/t41), since the reversible
regime is approached in the infinite-time duration. Thus,
the real heat exchanges Qh and Qc are Qh = Th�S − Th

�h

t12

and Qc = Tc�S + Tc
�c

t34
+ Tc(�a

t23
+ �a

t41
), with �S = S(X2) −

S(X1) = |[S(X4) − S(X3)]| − (�a

t23
+ �a

t41
). According to the

first law of the thermodynamics, the work W per cycle is
determined by

W = Qh − Qc = (Th − Tc)�S − Th

�h

t12

− Tc

�c

t34
− Tc

(
�a

t23
+ �a

t41

)
. (2)

(a)
(b)

FIG. 1. Schematic diagram of an irreversible QCE cycle in the plane of the external parameter X and force F (X) (a) and of the temperature
T and entropy S (b). The values of the external parameter X and of the entropy S at the four special instants are indicated.
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Let v(t) and τ be the speed of the change of X and the cycle
period, respectively. Then we have

X0 = (X2 − X1) + (X3 − X2) + (X3 − X4) + (X4 − X1)

= 2(X3 − X1) =
∫ τ

0
v(t)dt = v̄τ, (3)

where v̄ is the average speed of the change of X. The
displacement of X after a single cycle is zero and thus X

is a state variable, although the total change per cycle X0 is not
equal to zero. The times spent on two isothermal processes can
be expressed as t12 = (X2 − X1)/v̄ and t34 = (X3 − X4)/v̄,
respectively, while the times of the two adiabats are t23 =
(X3 − X2)/v̄ and t41 = (X4 − X1)/v̄. Therefore, the power
output P = W/τ and the efficiency η = W/Qh are

P = v̄

2(X3 − X1)

[
(Th − Tc)�S − v̄Th�h

(X2 − X1)

− v̄Tc�c

(X3 − X4)
− v̄Tc�a

(X3 − X2)
− v̄Tc�a

(X4 − X1)

]
, (4)

and

η =
(Th − Tc)�S − v̄Th�h

(X2−X1) − v̄Tc�c

(X3−X4) − v̄Tc�a

(X3−X2) − v̄Tc�a

(X4−X1)

Th�S − v̄Th�h

(X2−X1)

,

(5)

respectively. Here �S is a state variable determined only
by the initial and final states of the isothermal process. The
generalized coordinates Xi with i = 1,2,3,4, corresponding
to the system volume V in classical thermodynamics, are state
variables and independent of the detailed protocols. To specify
the time allocation at maximum power output, the values of
Xi as well as the average speed v̄ should be optimized. We
will optimize the power output P over the average speed v̄ and
the variables Xi to obtain the time allocation during a cycle
and thus to determine the corresponding efficiency. We will
assume, for simplicity, that the initial value of the external
parameter is a constant, i.e., X1 = X0

1. The maximum power
is therefore found by setting the derivatives of P with respect
to the average speed v̄ and Xi with i = 2,3,4 equal to zero.

The maximization conditions ∂P
∂Xi

|Xi=Xm
i

= 0 and
∂P
∂v̄

|v̄=v̄m
= 0 give the physical solution. The value of

Xm
3 is determined by the following equation:

(Th − Tc)�S = v̄mTc�a

(
1

Xm
3 − Xm

2

+ 1

Xm
4 − Xm

1

)

+ v̄mTc�c

Xm
3 − Xm

4

+ v̄mTc

(
Xm

3 − X0
1

)

×
[

�a(
Xm

3 − Xm
2

)2 + �c(
Xm

3 − Xm
4

)2

]

+ v̄mTh�h

Xm
2 − X0

1

, (6)

where

v̄m

= 1

2

(Th − Tc)�S(
1

Xm
3 −Xm

2
+ 1

Xm
4 −X0

1

)
Tc�a + 1

Xm
3 −Xm

4
Tc�c + 1

Xm
2 −X0

1
Th�h

,

(7)

Xm
2 =

∣∣Th�hX
m
3 − Tc�aX

0
1

∣∣ + (
Xm

3 − X0
1

)√
TcTh�a�h

|Th�h − Tc�a| ,

(8)

and

Xm
4 =

∣∣�aX
m
3 − �cX

0
1

∣∣ + (
Xm

3 − X0
1

)√
�a�c

|�a − �c| . (9)

From Eqs. (6) and (7), we find that the optimal value of Xm
3

with a fixed value of X0
1 is independent of the value of the state

variable �S, as expected. Substitution of Eqs. (7), (8), and (9)
into Eq. (6) leads to the fundamental optimal relationship
between Xm

3 and X0
1 at maximum power output. Under the

assumption that the value of X1 is fixed at the start of the engine
cycle, Eq. (6) can be evaluated numerically for given values of
entropy production �a , �c, and �h in the specific processes
and of temperatures Th and Tc. Once we have obtained the
optimal relationship between X0

1 and Xm
3 at maximum power

output P , we can then determine the optimal values of Xm
i with

i = 2,4, and the average speed v̄m by Eqs. (7), (8), and (9).
Substituting Eq. (7) into Eq. (5), we find the expression for

the efficiency at maximum power as follows:

ηm =
1 − Tc

Th

2 − (Th−Tc)(
Xm

2 −X0
1

)[(
Tc

Xm
3 −Xm

2
+ Tc

Xm
4 −X0

1

)
�a
�h

+ Tc
Xm

3 −Xm
4

�c
�h

+ Th

Xm
2 −X0

1

] .

(10)

Equation (10) together with Eqs. (6), (7), (8), and (9), as one
of our main results, conveys the following physical features:

(1) The nonadiabatic dissipation is neglected, i.e., �a → 0.
In such a case, the limits �c

�h
→ 0 and �c

�h
→ ∞ lead to the

result that the efficiency ηm at maximum power approaches
the upper bound η+ ≡ η

C

2−η
C

and the lower bound η− ≡ η
C

2 ,
respectively. That is, the efficiency ηm at maximum power
satisfies the following condition:

η
C

2
≡ η− � ηm � η+ ≡ η

C

2 − η
C

. (11)

In Fig. 2 we plot the efficiency (10) as a function of η
C
,

comparing ηCA with the upper and lower bounds (11). The
lower and upper bounds, which are reached in the completely
asymmetric limits �c

�h
→ 0 and �c

�h
→ ∞, are identical to

the corresponding ones derived in different approaches [8].
However, unlike in the previous literature in which the
durations of the two adiabats are ignored, the times spent on
the two adiabats in the quantum Carnot cycle are taken into
account. In the case of symmetric dissipation (

∑
c = ∑

h), we

can recover the CA efficiency ηm = ηCA = 1 −
√

Th

Tc
by using

Eq. (10), if Xm
2 −X0

1
Xm

3 −Xm
4

=
√

Th

Tc
, i.e., the time allocation to the hot

and cold processes at maximum power output satisfies the
following relation:

t12

t34
=

√
Th

Tc

, (12)

we can recover the CA efficiency ηm = ηCA = 1 −
√

Tc

Th
by

using Eq. (10). The result of consideration of symmetric
dissipation agrees with that obtained by optimizing the power
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FIG. 2. (Color online) Efficiency ηm at maximum power as a
function of the Carnot value η

C
. The upper and lower bounds of the

efficiency, η+ and η− given in Eq. (11), are represented by a red and
a blue solid line with asterisks and squares, respectively. The CA
efficiency ηCA is denoted by a green solid line with five-pointed stars,
and the Carnot efficiency η

C
by a black solid line with circles.

output with respect to the times of the two isothermal processes
[8,34].

(2) There is nonadiabatic dissipation, and the dissipation
in at least one quantum isothermal process is not considered,
namely, �a �= 0, and �h → 0 (or �c → 0). From Eq. (10) we
find in this case

ηm = η− = η
C

2
, (13)

which is independent of the values of both �a and �c (or �h).
The lower bound, which is found in the case when nonadiabatic
dissipation exists but dissipation vanishes in at least one
isotherm, is particularly interesting. Although it coincides with
a reported universal lower bound in Refs. [8,17], it is derived in
the generalized engine model with nonadiabatic phenomena.
Physically, even in the case when the two isothermal processes
are reversible, the inclusion of an arbitrary low dissipation in
the adiabats reduces the efficiency at maximum power output
to half the Carnot value,

η
C

2 .
(3) The dissipations in the four quantum thermodynamic

processes are equal, i.e., �c/�h = 1 and �a/�h = 1. Let
Rx ≡ (Xm

2 − X0
1)( 1

Xm
3 −Xm

2
+ 1

Xm
4 −X0

1
+ 1

Xm
3 −Xm

4
); in the limits

Rx → 0 and Rx → ∞, the efficiency ηm corresponding to

maximum power output converges to the upper bound η+ =
η

C

2−η
C

and to the lower bound η− = η
C

2 , respectively. Here
the lower and upper bounds are equal to the corresponding
ones in previous studies, but extended to irreversible QCEs
in which the time spent on two adiabats and nonadiabatic
dissipation are considered. According to Eq. (10), the CA

efficiency ηCA = 1 −
√

Tc

Th
is achieved when the times spent on

the four quantum thermodynamic processes are distributed in
such a way that

t12(τ − t12)

t23t34t41
=

√
Th

Tc

, (14)

where t12 = (Xm
2 − X0

1)/v̄m,t23 = (Xm
3 − Xm

2 )/v̄m,t34 =
(Xm

3 − Xm
4 )/v̄m, and t41 = (Xm

4 − X0
1)/v̄m.

III. CONCLUSIONS

In conclusion, we have determined the efficiency at
maximum power for a QCE engine performing finite-time
cycles. To correctly describe irreversible QCEs, the times
spent on two adiabats and nonadiabatic phenomena have
been taken into account. In the limits of extremely asym-
metric dissipation ( �c

�h
→ 0 and �c

�h
→ ∞, with �a

�h
→ 0),

the efficiency at maximum power output converges to an
upper and a lower bound, coinciding with the results obtained
previously in different approaches. When dissipation in any
isothermal process vanishes, the efficiency at maximum power
output is equal to the lower bound

η
C

2 . For the QCE with
symmetric dissipation but without nonadiabatic dissipation
( �c

�h
→ 1, while �a

�h
→ 0), we have derived the CA efficiency

at maximum power output, only provided that the ratio of the
times of contact with two heat reservoirs satisfies the relation
given in Eq. (12). In the case of �c

�h
→ 1 and �a

�h
→ 1, we have

also recovered the CA efficiency at maximum power output, if
the time allocations of the four processes fulfill the condition in
Eq. (14).
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