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We map the Markov-switching multifractal model (MSM) onto the random energy model (REM). The MSM
is, like the REM, an exactly solvable model in one-dimensional space with nontrivial correlation functions.
According to our results, four different statistical physics phases are possible in random walks with multifractal
behavior. We also introduce the continuous branching version of the model, calculate the moments, and prove
multiscaling behavior. Different phases have different multiscaling properties.
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I. INTRODUCTION

The random energy model (REM) introduced by Derrida
[1–5] is one of the fundamental models of modern physics.
Originally derived as a mean-field version of spin-glass mod-
els, it has subsequently been applied to describe some features
of two-dimensional (2D) Liouville models [6,7] as well as the
properties of quenched disorder in d-dimensional space with
a logarithmic correlation function of energy disorder.

The logarithmic correlation is easy to organize both for
models on a hierarchic tree and in two dimensions. The REM
structure in the d-dimensional logarithmic correlation case
has been proved in [8] using Bramson’s results [9]. In [10,11]
a REM-like model in one-dimensional (1D) space has been
solved directly, using the generalization of Selberg integrals
[11]. A mapping has been used in [12] to map the REM onto
strings.

A REM can be formulated not only for the case of normal
distributions of energies, which corresponds to the logarithmic
correlation function of energies on a hierarchic tree, similar
to logarithmic correlation functions in d-dimensional disorder
case [8], but also for general distribution of energies [4,13]. It is
an open problem to find solvable models with the nonlogarith-
mic correlation for energy disorder in 1D space. To describe the
fluctuations in the financial market, [14,15] have constructed
some dynamical models, the Markov-switching multifractal
model (MSM). The MSM has time translational symmetry,
contrary to cascade models, defined on hierarchic trees [7]. The
connection of the 1D REM model [11] with the multifractal
random-walk model [16–18] was found in [19]. In this paper
we will prove that the dynamical models of [14,15] provide a
1D REM where the correlation function for energies (ln ut in
our case) has a general character instead of being logarithmic.

Let us give the definition of the MSM model, following
[14,15,20]. The MSM was a generalization of the model
from [21]. In the MSM model, one considers the sequence of
variables rt , where t � 0 describes a discrete moment of time:

rt = xtut , (1)

xt has a normal distribution,〈
x2

t

〉 = J 2, (2)

and ut is defined at the moment t of time via a product of k

components M(t,l),

ut =
k∏

l=1

M(t,l). (3)

The variables M(t,l) are random variables with some
distribution.

Every moment of time, our random variables are replaced
with new ones with a probability

γl = 1 − exp[−ab(l−k)], (4)

where a > 0, b > 1, 1 � l � k are parameters of the model.
The parameter b plays the role of the branching number in
cascade models (models of random variables on the branches
of hierarchic models), and k is the maximal number of
hierarchy on the tree. An important difference is that now b is
a real number, while in the case of hierarchic trees b should be
an integer. Later we will formulate the continuous branching
version of the model with a single relevant parameter V defined
from the equation

bk = eV ≡ L. (5)

We will use the notation L in Sec. II H and III B while
investigating the multiscaling properties of the model.

The model is named the random-walk model because,
from Eq. (1), it is equivalent to the random walks with an
amplitude J 2, when the time itself is a random variable;
see [17,19] for a simple proof. The random variables M(t,l)
are described via a Markov process as any time period the
transition probability depends only on the current state. There
is a switching according to Eq. (4), which is why the authors
of [15] define it as a “switching” model.

The distribution of M(t,l) is chosen to ensure the constraint

〈M(t,l)〉 = 1, (6)

where 〈〉 means an average.
We can take the lognormal distribution for M(t,l) or normal

distribution for εl
t , defined as

M(t,l) = exp
(
βεl

t

)
, (7)

where β is similar to the inverse temperature in statistical
physics.
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We consider a distribution for ε:

ρ(ε) =
√

k√
2πV

exp

[
−k(ε − λ)2

2V

]
,

(8)
λ = −β2/2.

We have for |t − t ′| < eV the following two-point correlation
function for ut :

〈utut ′ 〉 ∼ eβ2(2V −ln |t−t ′|/ ln b). (9)

The correlation function for ln ut , ln ut ′ is logarithmic, as in
models discussed in [8,10,11,16].

The previous expression is derived by observing that ut and
ut ′ have identical M(t,l) for ln |t − t ′|/ ln b levels of hierarchy.
The probability that M(t,l) and M(t ′,l) are identical is

∼ exp
[ −|t − t ′|e−ab(l−k)]

. (10)

Thus M(t,l) and M(t ′,l) are identical for lth level of hierarchy
defined through the inequality

k − ln |t − t ′|
ln b

< l < k. (11)

For the rest of the hierarchy levels M(t,l) and M(t ′,l) are
different.

When

ln |t − t ′|
V

� 1, (12)

the majority of the hierarchies have the same M(t,l) and
M(t ′,l). Alternatively, when

1 − ln |t − t ′|
V

� 1, (13)

M(t,l) 	= M(t ′,l) for the the majority of l. In Sec. III we derive
some more rigorous results.

II. THE STATISTICAL PHYSICS OF MSM

A. MSM with general distribution

Let us consider a general distribution for ε,

ρ0(q,ε) = 1

2πi

∫ i∞

−i∞
dh exp[−hε + qφ(h)], (14)

where q is a parameter indicating some effective length. We
choose the distribution ρ(ε) with some shift,

ρ(ε) = ρ0

(
V

k
,ε − λ

)
, (15)

to ensure the constraint given by Eq. (6):∫ ∞

−∞
dερ(ε) ≡ eβλ+ V

k
φ(β) = 1. (16)

Thus we take

λ = −V φ(β)

βk
, (17)

where k is our parameter describing the maximal hierarchy
level. Hence, we have the following expression for the
correlation function:

〈utut ′ 〉 ∼ e(V −ln |t−t ′|/ ln b)φ(2β)+2φ(β) ln |t−t ′|/ ln b. (18)

B. The statistical physics versus the dynamics

Let us define a partition function

z(i0,e
V ) =

i0+eV∑
i=i0

xi

k∏
l=1

M(i,l), (19)

where M(i,l) is chosen from the distribution given by Eq. (15).
Considering Eq. (1) as a dynamic process for a large period of
time M , we define the probability distribution

P (z) = eV

M

M/eV∑
n=1

δz,z(1+eV (n−1),eV n). (20)

We can define a statistical physics as well by considering z as
a partition function for the 1D model with quenched disorder.

The average free energy, denoted as 〈ln Z〉, is

〈ln Z〉 ≡ 〈ln z(i0,e
V )〉. (21)

Let us consider a related model with standard distribution for
ε given by ρ0(ε), without the constraint of Eq. (4).

We define

z0(i0,e
V ) =

i0+eV∑
i=i0

xi

k∏
l=1

M(i,l), (22)

where Ml
t are defined through the distribution ρ0(ε) and the

corresponding free energy is

〈ln Z0〉 ≡ 〈ln z0(i0,e
V )〉. (23)

Equations (22) and (23) define a statistical physics model with
eV configurations and special quenched disorder in 1D space.
Later we will focus on 〈ln Z〉.

It is easy to check that

〈ln Z〉 = 〈ln Z0〉 − V φ(β). (24)

Equation (24) is an exact relation, correct for any value of β.
It is easier to solve the model for 〈ln Z0〉. To calculate

〈ln Z0〉, we will map the model onto the REM and use the
standard methods of REM. One can easily identify the most
interesting transition in REM, from the high temperature phase
to the spin-glass (SG) phase, by just looking at the point in the
high temperature phase where the entropy disappears. We will
calculate the partition function’s moments 〈Zn

0 〉 and identify
them with the 〈Zn

REM〉.

C. The moments in the MSM model

First of all, we calculate

〈(Z0)2〉 = eV eV φ(2β). (25)

The cross terms vanishes due to integration by xi . Let us
consider now

〈(Z0)2n〉 =
∑
t1

· · ·
∑
t2n

〈
ut1 · · · ut2n

〉
. (26)

While calculating the n-fold sum, we consider two principal
contributions.
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The first case is when all t are close to each other and
Eq. (12) is valid. There are N1 ∼ eV such terms, and the sum
gives

ln〈(Z0)2n〉 = V + V φ(2nβ) + O(1). (27)

The second case corresponds to the integration from the
regions where ti+1 − ti are of the same order, and therefore
the condition given by Eq. (13) is satisfied. There are N2 such
terms,

ln N2 − nV

V
� 1. (28)

As the vast majority of Ml are different, the average gives

ln〈(Z0)2n〉 = nV + nV φ(2β) + O(1). (29)

D. The corresponding REM

Consider now eV energy levels Ei and define the partition
function

ZREM =
eV∑
i=1

xie
−βEi , (30)

where −Ei have independent distributions by given Eq. (14)
with q = V and xi have normal distribution with variance 1.
The moments of the partition function for this model can be
calculated exactly by following [3] and [12].

These moments are identical to the expressions given by
Eqs. (27) and (29). We assume that two models with identical
integer moments have an identical free energy as well. The
free energy of the REM model by Eq. (30) can be calculated
rigorously following [12].

At high temperatures, we have the Fisher zeros (FZ) phase
with

〈ln Z0〉 = 1

2
ln(Z0)2 = V

φ(2β) + 1

2
. (31)

The transition point is at the point where the entropy disap-
pears:

βcφ
′(2βc) = φ(2βc) + 1

2
. (32)

Below this temperature the system is in the SG phase with the
free energy

Vβφ′(2βc). (33)

Thus, we have found two phases. The phase given by Eq. (31)
corresponds to the Fisher zeros phase, while that given by
Eq. (33) is the SG phase.

E. Asymmetric distribution

So far we have considered the case of a symmetric
distribution of xi . Let us now consider the asymmetric case
described through the parameter γ , where

〈xi〉 = e−γV . (34)

Now it is possible for the existence of a paramagnetic (PM)
phase with the free energy

〈ln Z0〉 = ln〈Z0〉 = [−γ + 1 + φ(β)]V. (35)

F. Large event

Let us assume that at the starting moment of time there is
a large event described through the parameter A, while for the
other times Eq. (2) is valid. We consider the following partition
function:

z0(i0,e
V ) = −eAV +

i0+eV∑
i=i0+1

xi

k∏
l=1

M(i,l). (36)

Now we can have the fourth, ferromagnetic (FM), phase with

〈ln |Z0|〉 = ln〈Z0〉 = AV. (37)

Actually, we can consider an infinite series of time when after
eV there is a member ri = −eAV , while for other moments of
time we calculate rt according to Eqs. (1) and (3).

G. Transition points

We should choose the proper phase by comparing the
expressions given by Eqs. (31), (33), (35), and (37) and then
selecting the one that gives the maximum. For example, the
system transforms from the FZ phase to the PM phase at

e(1−γ+φ(β))V > J 2e
V
2 (1+φ(2β)) (38)

where J 2 is the variance of xt given by Eq. (2). In Figs. 1 and
2 we compare the numerics with our analytical results for the
free energy.

H. The scale dependence of the free energy

Consider again the average distribution of Z, except that,
instead of considering the sum over eV terms as in Eq. (20),
consider the sum over l ≡ eαV terms,

P (z) = l

M

M/l∑
n=1

δz,z(α,1+l(n−1),ln), (39)

where ε have the distribution by Eq. (14). At high temperatures
we have the FZ phase with

〈ln Z0〉 = V
φ(2β) + α

2
, (40)

PM

FZ

SG

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
β0.0

0.2

0.4

0.6

0.8

1.0
γ

FIG. 1. (Color online) The phase structure of the model with
asymmetric distribution of weights. The case of normal distribution
φ(β) = β2.
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FIG. 2. (Color online) The phase structure of the model with a
large event. The case of normal distribution φ(β) = β2.

and for the critical point,

βcφ
′(2βc) = φ(2βc) + α

2
. (41)

As α < 1, βc decreases with the decrease of α.

III. THE CASE OF CONTINUOUS BRANCHING

A. The calculation of moments

All the formulas in the previous sections have been derived
for the case of general values of b. Consider the case

a = 1, k = V

δv
, b = 1 + δv, δv → 0 (42)

and the random variables are distributed according to ρ0(δv,ε).
The ith level of hierarchy is unchanged during the period

of time t with a probability

exp[−tev−V ], v = iδv. (43)

Multiplying the probabilities in Eq. (43) for different levels of
hierarchy, we obtain

〈
ut1ut2

〉 =
k∏

i=1

{[1 − exp(−tev)]eδv2φ(β) + exp(−tev)eδvφ(2β)}

= exp
[∑

i

ln((1 − exp(−tev))eδv2φ(β)

+ exp(−tev)eδvφ(2β))
]
. (44)

where t = t2 − t1. Replacing the product by an integral and
introducing variables xi = ti/e

V , we derive

∫ eV

0
dt1dt2

〈
ut1ut2

〉 = eV (2(1+φ(β)))
∫ 1

0
dx1dx2

exp

[∫ V

0
dv[�2(ev,x1,x2)

]
�2(ev,x1,x2) = e−|x2−x1|ev

(φ(2β) − 2φ(β)). (45)

We get an asymptotic expression with the e−V accuracy in the
limit V → ∞:∫ eV

0 dt1dt2〈ut1ut2〉
e2V +2V φ(β)

=
∫ 1

0
dx1dx2e

∫ ∞
0 dv�2(ev,x1,x2). (46)

Similarly, we derive the expression for the multiple correla-
tions:∫ eV

0 dt1...tn〈ut1 ...utn〉
enV +nφ(β)

=
∫ 1

0
dx1...dxne

∫ ∞
0 dv�n(ev,x1...xn).

(47)

The latter expression is O(1), as has been assumed before in
Eq. (29).

For the 3-point correlation function we obtain

�3(y,x1,x2,x3) = 3 + 3φ(β)

+ e−(x12+x23)y(φ(3β) − 3φ(β))

+ e−x12y(1 − e−x23y)(φ(2β) − 2φ(β))

+ (1 − e−x12y)e−x23y(φ(2β) − 2φ(β)) (48)

where we denote x12 = |x1 − x2|, x23 = |x2 − x3|. For n-point
correlation function we need to consider 2n−1 terms in the
expression of �n.

We can identified this terms with different paths on a
tree with branching number 2, the jumps to the right give
a coefficient F (x,1) and F (x,−1) for the left jump:

F (x,1) = exp[−xev],F (x,−1) = (1 − exp[−xev]) (49)

The path is fractured into clusters, when we have l subsequent
right jumps. We define

fl = φ(lβ) (50)

We should consider all the paths, the identify the n clusters of
the given path with the length lm for the m-th cluster. Then we
calculate

�n(ev,x1...xn) =
∑
paths

[
n−1∏
i=0

F (xi,i+1,α)

](∑
m

flm − nφ(β)

)
(51)

B. Multiscaling

If we consider the model for an l = eαV period of time and
a normal distribution, we have in the high temperature phase

F ≡ 〈ln Z0〉
αV

= 1

2
+ β2

α
(52)

and in the SG phase

F ≡ 〈ln Z0〉
αV

= β
√

2/α. (53)

The transition point is at

βc =
√

α/2. (54)

In Fig. 3 we compare the numerics with our analytical results
for the free energy.
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FIG. 3. (Color online) Free energy F vs an inverse temperature β

for the continuous branching model given by Eq. (42) and a normal
distribution. The analytical results from Eqs. (52) and (53), L =
100 000, are given by continuous line.

Let us calculate the multifractal properties of the MSM. We
need to calculate the moments of the partition function,∫ l

0
dt1...dtn〈ut1 ...utne

−nφ(β)V 〉 ≡ eln l
L
ξ (n,β)A(L)nCn, (55)

where ξ (n,β) defines the multi-scaling, A(L) is some large
numbers while Cn ∼ O(1).

While calculating the moments, we slightly modify the
formulas of the previous sections. Instead of Eq. (47) now
we obtain∫

dt1...dtnu(t1) . . . u(tn) =
∫

dx1...dxn exp

[
nV (1 + φ(β))

+
∫ ∞

0
dv�n

(
l

L
ev,x1 . . . xn

)]
.

(56)

We consider the case 1 � l � L. Then, using the equation

�n(0,x1...xn) = nφ(β) − φ(nβ), (57)

we derive, integrating by parts:∫ ∞

1

dy

y
�n

(
y

l

L
,x1 . . . xn

)

= (φ(nβ) − nφ(β)) ln
l

L
−

∫ ∞

0
dy ln y�′

n(y,x1 . . . xn).

(58)

Thus we get a multiscaling with

ξ (n,β) = n + nφ(β) − φ(nβ). (59)

Considering the moments of

z =
l∑

t=1

ut , (60)

where for ut we use the distribution given by Eq. (15), we
obtain

〈zn〉
Lnn!

= eξ (n,β) ln l
L

∫ 1

0
dx1 . . . dxne

− ∫ ∞
0 dy ln y�n′(y,x1...xn) (61)

and here x1 · · · xn are time ordered.

C. The moments for the model with random Boltzmann weights

Let us calculate now the moments 〈zn〉 for

z =
l∑

t=1

xtut . (62)

Using Eq. (8) from [19], we derive

〈z2n〉
(LJ )n

= 2n
(

1+2n
2

)
√

π

(
l

L

)ξ (n,2β)

n!
∫ 1

0
dx1 · · · dxn

× exp

[
−

∫ ∞

0
dy ln y�′

n(y,2β,x1 · · · xn)

]
, (63)

where there is a time ordering t1 < t2 < · · · tn.

D. The multiscaling properties of different phases

There are no simple order parameters to distinguish the FZ
and SG phases. If we enlarge the free energy expression to
the complex temperatures β = β1 + iβ2, then in the FZ phase
there is a finite density ρ̄ of partition function zeros, defined
trough the formula [22]

ρ̄(β1,β2) = 1

2π

〈ln z(β1,β2)〉
V

, (64)

while in the SG phase this density is zero.
The SG and FZ phases have different schemes of replica

symmetry (breaking) [23]. There is a slow relaxation in the SG
phase. Unfortunately, there are no results about the dynamics
of the FZ phase to compare.

It is more interesting to distinguish the two phases looking
at the multiscaling properties. We investigated well the
multiscaling properties of the FZ phase. Let us investigate
now the SG phase. Gardner and Derrida [3] give results for the
moments of partition functions and the probability distribution.

Consider again the model with z = exp[αV ] configura-
tions. For the case

β > βc

√
α, βc

√
α > nβ (65)

we have, rescaling the result of [3],

ln〈zn(α)〉 = nβV
√

α. (66)

In case of the multiscaling the right hand side is proportional
to α.

Thus there is a lack of any scaling in the SG phase, and
we can distinguish the SG and FZ phases by checking the
multiscaling property. We can distinguish the FZ and SG
phases also by looking at the tails of the distributions.

For the FZ phase a simple rescaling of the results of [11]
gives for the large z

P (z) ∼ 1

z
1+ αβ2

c

2β2

, (67)

while in the SG phase we used the rescaled result by [3],

P (z) ∼ 1

z
1+

√
αβc
β

, (68)

where βc/2 is the transition point at α = 1. Equation (68) is
the result for the REM. For the logarithmic REM to get a more
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accurate expression we should multiply the right hand side of
Eq. (68) by ln Z [24].

IV. THE DYNAMIC MODEL

Let us return to the dynamic model given by Eq. (1).
Mapping

e−γV = μδt, J 2 = σ 2dt, (69)

we identify this version of the model at β = 0 as a finite time
version of driven Brownian motion [25]. In case of simple
random walks with β = 0, there is a single phase. In the
model given by Eq. (1) with β 	= 0 we have an intrinsic
large parameter L ≡ eV , describing the effective number of
configurations in the model. In this way the statistical physics
enters into the dynamical problem. Contrary to the driven
Brownian motion and the Heston model [26], we have four
different phases in the MSM model. This is also the situation
with other models of multiscaling random walks [16].

To identify the choice among the two phases (FZ versus
PM) we consider

C = σ

|μ|√L
. (70)

When C � 1, the system is in the PM phase. Otherwise, at
C � 1 we have the FZ phase.

V. CONCLUSION

We considered the dynamic Markov-switching multifractal
models and connected them with a new class of solvable statis-
tical physics models of quenched disorder in one dimension. In

these models there is both translational invariance and general
distribution of disorder. We investigated the statistical physics
properties of the model and found the phase structure. We
found the exact phase structure of the model. At different
phases there should be different distributions P (z). In the
case of a symmetric random walk there are two phases in
the considered model. At small parameters β, the model is in
the phase with nonzero density of Fisher’s zeros. At high β,
the system is in the spin-glass phase, a pathologic phase with a
slow relaxation dynamics. For an asymmetric distribution of xi

there is a possibility for the third, paramagnetic, phase. A slight
modification of the model allows the existence of the fourth,
ferromagnetic, phase. It is possible to distinguish different
phases measuring the multiscaling properties of the model.
The multiscaling is broken in the SG phase. We also introduced
a continuous hierarchy branching version of the MSM, gave
expressions for the moments of the partition function, and
calculated the multiscaling indices.

For applications it is important to calculate the fractional
moments of the partition function. Perhaps we can use
expressions for integer moments and use some approximate
methods of extrapolation. Another interesting open problem
is to investigate the dynamics of the model, looking for a new
phase transition point in the dynamics, as is the case of the
spherical spin-glass model [27].
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