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We study the vortex lines that are a feature of many random or disordered three-dimensional systems. These
show universal statistical properties on long length scales, and geometrical phase transitions analogous to
percolation transitions but in distinct universality classes. The field theories for these problems have not previously
been identified, so that while many numerical studies have been performed, a framework for interpreting the
results has been lacking. We provide such a framework with mappings to simple supersymmetric models. Our
main focus is on vortices in short-range-correlated complex fields, which show a geometrical phase transition
that we argue is described by the CP** model (essentially the CP"~! model in the replica limit n — 1). This
can be seen by mapping a lattice version of the problem to a lattice gauge theory. A related field theory with a
noncompact gauge field, the ‘NCCP** model’, is a supersymmetric extension of the standard dual theory for the
XY transition, and we show that XY duality gives another way to understand the appearance of field theories of
this type. The supersymmetric descriptions yield results relevant, for example, to vortices in the XY model and
in superfluids, to optical vortices, and to certain models of cosmic strings. A distinct but related field theory, the
RPY? model (or the RP"~!' model in the limit n — 1) describes the unoriented vortices that occur, for instance,
in nematic liquid crystals. Finally, we show that in two dimensions, a lattice gauge theory analogous to that
discussed in three dimensions gives a simple way to see the known relation between two-dimensional percolation

and the CP** & model with a 6 term.
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I. INTRODUCTION

Ensembles of random geometric objects lead to some of the
most subtle and interesting questions in critical phenomena.
A geometric viewpoint is often useful in analyzing phase
transitions: for example, one can view an Ising transition
as a proliferation of domain walls, or an XY transition as a
proliferation of vortices, leading to important dual descriptions
[1-5]. But in addition to this, some of the most intrigu-
ing issues concern the critical behavior of the geometrical
objects themselves. In this paper we consider the universal
statistical properties of vortex lines in random media in three
dimensions, a subject that has received considerable numerical
attention [6—10], but which has so far lacked a field-theoretic
formulation.

Geometrical critical behavior can occur even in the absence
of a conventional thermodynamic phase transition. The best-
known example of this is percolation, in which nonlocal
geometrical correlation functions (such as the probability that
two sites lie in the same cluster) yield universal exponents,
despite the fact that correlation functions of local observables
remain trivial at the critical point [11]. In fact, it is precisely
because of the short-range correlations of the local degrees of
freedom that the percolation universality class is ubiquitous:
generic random media are short-range correlated.

Two-dimensional percolation can be thought of as a
fluctuating soup of loops [12]. On the lattice, these are the
cluster boundaries; in the continuum, they are the zero lines of
a random real height field v(x). When v(x) is biased toward
either positive or negative values, the loops have a finite typical
size, but these cases are separated by a critical point at which
this length scale diverges and the loop ensemble becomes
conformally invariant.

Vortex lines in three dimensions constitute an analogous
problem. The most generic version of it concerns the statistics
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of the zero lines of a short-range-correlated complex field
w(x). Again, these vortices form a fluctuating soup of oriented
loops, with the orientation of a loop given by the sense in
which the phase of w(x) rotates around the vortex. Although
the correlations of w(x) are trivial by construction, there is
an interesting geometrical phase transition as a function of
bias—the ratio of the average value of w(x) to the width
of its distribution [6,10]. As will be explained in detail in
the following, there is an extended phase at small or zero
bias [6-9], in which infinite vortex lines proliferate (and are
found numerically to be Brownian), while at large bias there
is a localized phase in which long vortices are exponentially
suppressed. In between lies a critical point, where loops have
a nontrivial fractal structure (and a fractal dimension close
to 5/2). Similar transitions can also occur in the absence of
applied bias, for example, in the vicinity of the critical point
of the XY model, or for line defects in other order parameters:
in particular, one can consider the unoriented Z, vortices in
nematics [10,13].

Universal aspects of vortex statistics have been examined
numerically in a wide range of contexts, including cosmic
strings, beginning with the simulations of Vachaspati and
Vilenkin [7,8,10,13-15], line defects in random light fields,
known as optical vortices [9,16], vortices inthe XY [17,18] and
Abelian Higgs models [19-22], in turbulent superfluids [23],
and in a Potts-like model introduced to describe polymers [6].
In addition, similar scaling behavior has been observed in
simulations of lattice models of completely packed loops
[24,25].

Despite this previous work on vortices, numerous questions
remain unanswered because of the lack of a continuum
formulation in which the relevant correlation functions can be
expressed. In particular, it has not been clear how to classify
these problems or what the criteria are for two instances to be in
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the same universality class. It has been uncertain, for example,
whether critical exponents for the geometrical vortex transition
coincide with those for conventional three-dimensional (3D)
percolation, or whether universal behavior for oriented and
unoriented vortices coincide (even in the extended phase) or
how the geometrical transition for vortices in the XY model
relates to the thermodynamic one. Even basic facts such as the
appearance of Brownian statistics in the extended phase have
not been derived, though previously this has been explained
heuristically [8] by analogy with polymers in the melt, long
known to be Brownian [26].

Our effort to address these questions starts from a set
of duality transformations. We begin by showing that the
partition function for tricolour percolation, a Potts-like lattice
model used for the numerical investigation of vortex statistics
[6,8,10], can be mapped exactly to that of a supersymmetric lat-
tice gauge theory via a high-temperature (graphical) expansion
of the latter. By considering the continuum limit of this lattice
gauge theory and, separately, by discussing mappings from
vortex problems that are formulated directly in the continuum,
we arrive at field theories describing the geometrical properties
of vortices.

For oriented vortices, these field theories involve a complex
supervector ¥ = (z!, ... 2K x1, ... x¥), with k + 1 bosonic
and k fermionic components, coupled to a U(1) gauge field
A. (Supersymmetry [27,28] is a standard tool in problems
involving loops or polymers, allowing representation of
geometrical correlation functions.) In order to describe the
transition for vortices in short-range-correlated complex fields
w(x), the gauge field A must be taken to be compact, leading
to a model in the universality class of the CP** & model [29].
Heuristically, this can be thought of as the replica limitn — 1
of the CP"~! ¢ model [30,31], which at n = 2 is equivalent
to the classical Heisenberg [or O(3)] model. The ordering
transition in the o model describes the geometrical transition
in the vortex ensemble. The CP** field theories have been
related to lattice models of completely packed loops in
both two dimensions (by Read and Saleur [29] and Candu,
Jacobsen, Read, and Saleur [32]) and three dimensions [33,34].
(Strictly speaking we are abusing terminology, since there is a
separate CP*¥ model for each integer k > 0, the model with
k = Obeing trivial. The correspondence with vortices holds for
arbitrary k, but the range of geometrical correlation functions
that can be expressed in the theory grows with k.)

The CP* description provides the appropriate framework
for questions about vortex statistics. Immediate consequences
include the explanation for Brownian statistics in the extended
phase, which corresponds to the ordered phase in the o
model language, and qualitative features of the critical point
(for example, the fact that the fractal dimension is close to
dy = 5/2 is easily understood as a symptom of confinement
in the gauge theory). Most importantly, it clarifies the re-
lations between the different universality classes, allowing
us to classify these problems and explaining why various
numerically studied models are in the same universality
class and others are not. For instance, it explains the coin-
cidence of exponents measured for the bias-induced transition
for vortices [6] and for the completely packed 3D loop
models [24,35], which also permit a mapping to the CP**
model [33].
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In the absence of bias in the distribution for w(x), the
gauge field in the supersymmetric theory is noncompact,
yielding the noncompact CP** or NCCP** model, to borrow
the terminology used for noncompact CP"~' models. The
appearance of this theory can be simply understood by
reference to a well-known duality that maps the XY model
to an Abelian Higgs theory with a complex scalar field z
coupled to a gauge field [3-5,36—39]. Under this mapping, XY
vortices become world lines of the particles created by z* [to
use a (2 + 1)-dimensional language]. However, this standard
dual description does not allow us to probe the long-distance
behavior of vortices, because it does not allow us to write down
the required geometric correlation functions. The NCCP**
model is a supersymmetric extension of the Abelian Higgs
model with a richer operator content (and possibly a richer
phase diagram).

Unoriented vortices (e.g., in a short-range-correlated ran-
dom nematic order parameter) are described by a different field
theory, the RP? model. This is essentially the replica limit
of the RP"~! & model. A soft-spin version of the CP"~! model
in the replica limit allows us to clarify the relation between
these two geometric problems, as well as the relation to 3D
percolation, and also shows that the upper critical dimension
for CPX is 6, meaning that exponents can be calculated in
a 6 — € expansion [40-43]. The CP'"' model also describes
Anderson localization in symmetry class C, which is closely
related to classical loop models [24,35,44—46], so we expect 6
to be an upper critical dimension for this problem too. A similar
conclusion has been reached previously by Senthil [43], who
considered the soft-spin formulation of CP'!!.

As mentioned above, another important conceptual connec-
tion is with 2D percolation. One of the continuum descriptions
of this problem is as a CP** model with a 6 term, as was
shown via a mapping to a supersymmetric spin chain [29,32].
To connect this with our 3D results, we give a treatment of 2D
percolation as a lattice gauge theory (with an unconventional
Boltzmann weight for the gauge field) analogous to our
treatment of tricolor percolation in three dimensions. This
leads in a simple way to the continuum description. A
similar lattice regularization of CP"~! has been discussed by
Affleck [47].

The structure of the paper is as follows. We begin in Sec. 11
with a heuristic overview of the key ideas. In Sec. III we
give duality mappings for oriented vortices in short-range-
correlated random systems on the lattice (Sec. III A) and in
the continuum (Sec. III B). For the lattice derivation, we use a
specific model, tricolor percolation [6,8], an elegant realization
of the vortex problem that may be mapped to a lattice gauge
theory. Section III C gives the basic consequences of the field
theory for vortex statistics.

Section IV considers variations of the vortex problem. First
we briefly describe the soft-spin version of the CP"~! model
in the limit » — 1 and the 6 — € expansion (Sec. IV A).
We then consider a perturbation leading to crossover to
conventional percolation (Sec. IV B). Here we also discuss
the issue of vortex intersections, which is important in many
realistic vortex problems. Section IV C considers unoriented
vortices, occurring when the fundamental group of the order
parameter manifold is Z,. Section IV D considers the stability
of the universal behavior of vortices in a short-range-correlated
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w(x) to the introduction of long-range correlations. We then
consider vortices near the (thermodynamic) critical point of the
XY model, their description in terms of the NCCP** model
(Sec. IVE), and the phase structure of this field theory. This
concludes our discussion of vortices. In Sec. V we consider
loop models in two dimensions and their relation to lattice
gauge theories with 6 terms. We close with a summary in
Sec. VL.

II. HEURISTIC CONSIDERATIONS

We begin with a hand-waving argument as to the form
of the field theory for vortices in a short-range-correlated
random complex function w(x). This is intended to provide an
overview and to supplement the formal derivations of Sec. III.

To reiterate, we expect the following phase structure. When
the probability distribution for w(x) is U(1) symmetric, or only
weakly biased, vortices have a fractal dimension of 2 and a
finite fraction of the vortex density is in infinite vortex
lines. This is the extended phase. A nonzero (translationally
invariant) mean value suppresses vortices; when the mean
is sufficiently large compared with the typical size of fluc-
tuations, we enter the localized phase and infinite vortices
disappear [6,15]. At the continuous transition between these
phases, vortices are random fractals.

In general, a simple way to relate ensembles of loops to field
theory is to view the loops as world lines of quantum particles
(in this case in 2 + 1 dimensions) and to ask what sort of
particles these must be and what kind of interactions they
must have. The partition function for the field theory is a sum
over histories of the quantum system: expressed in the right
basis, this is a weighted sum over world-line configurations.
The Lagrangian must be chosen so that this sum reproduces the
weighted sum over loop configurations that we started with.

Of course, to be useful the correspondence must go
beyond the partition function: we should be able to represent
geometrical correlation functions [such as the probability that
two points x and y lie on the same loop, denoted G(x — y)]
as correlation functions of local operators in the field theory.
The field theory we seek must allow us to do this despite the
fact that G(x — y) is nonlocal in the original description, in
the sense that we cannot necessarily tell, by looking only in
the vicinity of x and y, whether the two points lie on the same
loop.

Since vortices have an orientation determined by the sense
of rotation of arg w(x), it would be natural to assume that
we will need a single species of charged boson (with vortices
that go forward and backward in the imaginary time direction
corresponding to world lines of particles and antiparticles,
respectively). As usual, these bosons would be represented by
a single complex scalar field z(x). However, this construction
would not allow us to write correlators like G(x — y). To be
able to do that, we must give the world lines (and particles)
an additional color label @ = 1, ... ,n, so that z expands to a
vector z%. This yields operators such as 7' (x)z%*(x), which,
when inserted into a correlation function, forces a meeting
at x between an outgoing world-line strand of color 2 and
an incoming strand of color 1. Therefore, neglecting for now
the possibility of strands escaping to infinity, the two-point
function (z'z%*(x)z?z"*(y)) forces x and y to be joined by a
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FIG. 1. (Color online) On the left: the two-point function
(z'2%*(x)z%z'*(y)) forces x and y to be joined by a loop. With only
a single-color index, we could not separate such configurations from
those with the topology shown on the right.

loop, one arm of which is of color 1 and the other of color 2
(see Fig. 1). This is just what we need to construct G(x — y).
By contrast, if we had only a single species of particle at our
disposal, we could not separate out configurations with a loop
joining x and y from those with x and y lying on separate
loops.

However, while the colors solve this problem, they intro-
duce another one. The sum over color indices for each loop
modifies the weight for a given configuration of loops by the
unwanted factor n"*1°°PS: We are no longer describing the
problem of vortices, but a completely different problem where
loops have a fugacity equal to n.

One way to get around this is to take a replicalike limit
n — 1 at the end of any calculation [48]. A more concrete
alternative [27-29] is to exchange z for a supervector

v=" LT X, (1)

with k + 1 bosonic and k fermionic components. Fermionic
loops come with a minus sign. Thus, summing over the
possible colors for a loop yields a fugacity of k +1 —k =1
as desired, independently of k.

We now ask what the Lagrangian for ¥ should be. It must
be invariant under supersymmetry transformations preserving
¥y, At a technical level, this ensures that the partition
function is independent of the number of fermions k. In terms
of loops, the invariance is a consequence of the fact that the
color index we have introduced is just a label: the weight of a
configuration does not change if we alter the color of one of the
loops (except by minus signs associated with fermionic colors).
It is tempting also to assume that since w(x) is short-range
correlated, interactions between vortices will be short range
and therefore that we should write down a field theory with
local interactions. The natural candidate is

Lincorrect = |VYI* + w1y * + Ay [*. 2)

However, this is not what we want. The phase transition (as a
function of p) at which ¥ condenses does indeed represent a
proliferation of ¢ world lines. However, this phase transition
is thermodynamically nontrivial (by setting k = 0 we see it is
in the XY universality class) and so cannot represent the vortex
phase transition we are discussing, where all local degrees of
freedom are short-range correlated.

As a hint toward a better candidate, notice that correlation
functions of the form

([ 1M [P )M (- ), 3)

where (---) contains insertions away from x (and we omit
color indices), have no meaning in the vortex problem unless
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Nin = Noy: for obvious topological reasons, the number of
vortex strands entering the vicinity of x must equal the number
leaving. We are thus free to set these correlation functions to
zero, which can be done by introducing a gauge symmetry:

L=V =i +uly P+ 1yt + - )

The significance of this change depends on what Lagrangian
for the gauge field is hidden in the ellipsis in Eq. (4). In the triv-
ial limit of zero-gauge coupling, when nongauge fluctuations
of A are completely suppressed, the thermodynamics of Eq. (2)
will be unchanged and we will not have made any progress.
However, a nontrivial action for A will mediate interactions
between particles that depend on their charge. This is what we
want: it reflects the fact that the weight of a given configuration
of vortices depends on their relative orientations, as is clear
from thinking about the winding of arg w(x).

Our previous assumption of local interactions for ¥ was
in fact incorrect. The weight for a vortex configuration C
comes from integrating over all compatible configurations of
w and this yields a long-range interaction between vortices.
The role of the integral over A is to simulate this part of the
statistical weight. This is the fundamental idea of XY duality
[3-5,36-39,49]; in the context of the present discussion, see
especially Refs. [4,38]. The coupling of loops to a gauge field
has also been exploited to derive exact results for self-avoiding
loops in two dimensions [50,51].

Specifically, in the presence of the gauge field each con-
figuration C of oriented loops is weighted by the expectation
value

W(C) = <expi / A- dx> 5)
C A

of a Wilson loop calculated using the functional integral over
A only, and it is the desired form of this weight that determines
the required action for A. It is particularly easy to see what this
should be in the limit of large bias. Suppose that (w) is large
and positive, and consider W(C) for a single large loop. Then
arg w(x) will be close to zero for most x, but the vortex must
be the boundary of a sheet where arg w(x) = 7. This sheet
will cost an ‘energy’ scaling as the minimal area A enclosed
by C, so that InW(C) ~ —A.

Such an area law for the Wilson loop implies that A should
be a compact gauge field [38,52,53]: we must include singular
Dirac monopole configurations in the functional integral over
A. While we used large bias for this discussion, monopoles are
in fact present at any nonzero bias. (Since they are irrelevant
in the extended phase, the zero-bias point is not distinguished
from the rest of the extended phase as far as the universal
statistics of vortices are concerned.)

The field theory we have arrived at, with a supervector
coupled to a compact gauge field A as in Eq. (4), will appear
naturally in our derivations. However, it is often more con-
venient to use alternative formulations that describe the same
universal physics. We now discuss two such formulations. We
temporarily simplify the discussion by exchanging ¢ for the
n-component bosonic vector z, with the replica limit n — 1
in mind.
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FIG. 2. (Color online) Phase diagram for vortices in short-range-
correlated w(x).

For the first, we switch to a o model, with the constraint
z'z = 1 rather than a potential for z, and the Lagrangian:

1
Lepr = ;<|Vz|2 —z'vz?), zlz=1. (6)

The peculiar-looking kinetic term is designed to be insensitive
to the phase of z, so that we retain the gauge symmetry
z — e'?z. Because of this gauge symmetry, the local degrees
of freedom take values in CP"~!, the manifold of #-component
complex unit vectors z subject to the identification z ~ ¢/?z
[30,31]. The o model describes the ordering transition of spins
living on this space. At long distances it is equivalent to the
compact gauge theory, in which the effect of the gauge field
is to confine the charged particles z in neutral composite
particles, or alternately to render the overall phase of z a
redundant degree of freedom.

The order parameter for the transition in this o model is a
gauge-invariant traceless n X n matrix

trQ = 0. (7

In the limit n — 1, or in the supersymmetric formulation
described below, the transition is that between localized and
extended vortex phases, and the extended phase is that in which
(Q) # 0. The phase diagram is shown in Fig. 2.

When n = 2, the order-disorder transition is simply that
of the O(3) model, to which the CP! model is equivalent.
This equivalence is seen by using the Pauli matrices to form
a three-component Heisenberg spin §' = Tro'Q = zlo'z:
when written in terms of S, the ¢ model Lagrangian (6)
becomes that of the O(3) o model. The fact that n = 1 (the
CP° model) must be regarded as a limiting case is seen in the
fact that O = 0 in this limit.

A familiar idea in the context of the O(3) model is that
a soft-spin formulation in which S? is unconstrained is often
more useful than a & model in which §? = 1. The second for-
mulation we will need is an analogous soft-spin theory for Q,

Lofespin = (VO + ptrQ* +vrQ® + - - ®)

(the cubic term vanishes in the special case n = 2). This
formulation, in the n» — 1 limit, will be useful to us in
Sec. IV in considering the effect of perturbations to the vortex
problem. An immediate inference from it is that the upper
critical dimension for this universality class (and for the
related problem of the Anderson transition in class C [43])
is 6. Exponents for vortices can thus be computed in a 6 — €
expansion similar to that for percolation [40—42].

The supersymmetric replacement for the replica limit of the
o model (6) is obtained simply by replacing z with ¥,

0=z — sz/n,

1 ,
Ecpk‘k=?(|v'/f|2—|'/ﬂv'/f|2), viy=1. 9

In two dimensions, these supersymmetric o models and
their connection with loop models have been studied in
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Refs. [29,32]. The gauge-invariant operator Q becomes a
supermatrix [54],

0=yy' -@'y). swo=0. (10)
The transition into the ordered (extended) phase as a function
of the coupling g is equivalent to the spontaneous breaking
of supersymmetry and the appearance of an expectation value
(Q).

This simple phase diagram can be extended in various
ways. We can, for example, modify the problem so as to
induce a crossover to the universality class of conventional
percolation or to that for nematic vortices (Sec. IV). The
gauge theory (4) also prompts us to ask about the geometrical
critical behavior described by the version with a noncompact
gauge field. Adopting the standard terminology for the case
without fermions [55], we will call this the noncompact
CP** model, or NCCP*¥. Since compactness (the presence
of Dirac monopoles) is a consequence of bias, the NCCP*/*
model describes the case without an applied bias. It is a
supersymmetric extension of the well-known dual theory for
the XY transition [3-5,36-39] and is relevant to the statistics
of vortices in the XY model at zero magnetic field [17,18].
Here we regard w(x) as the order parameter for an XY
model and we are no longer necessarily in the domain of
short-range correlations. We will consider this noncompact
theory in Sec. IV E. An added complication, in comparison to
the compact case, is that it may show two separate phase
transitions, one thermodynamic (associated with the onset
of the Higgs mechanism) and one geometrical (associated
with the breaking of supersymmetry). This is suggested by
numerical results for XY vortices [17,18]. Surprisingly, in this
scenario the geometrical transition may again be described by
a compact CP** model.

III. VORTICES IN A SHORT-RANGE-CORRELATED
RANDOM ENVIRONMENT

We now turn to derivations of the CP** model for
vortices, beginning (Sec. III A) with a lattice model in which
geometrical observables can be explicitly related to correlation
functions of ¥. We then present a derivation directly in the
continuum in order to emphasize the universality of the results
and to see the relation with more standard treatments of duality
(Sec. III B). Section III C then gives simple consequences of
the field-theory description.

A. Tricolor percolation

Tricolor percolation is an elegant discretization of the
vortex problem [6,8], which has become a standard setup
for numerical simulations, partly because some more obvious
alternatives to this model suffer from aesthetic deficiencies.
For example, while it would be natural to consider random
phases 6 = argw on the sites of a cubic lattice, with vortex
lines piercing the plaquettes, this requires an additional rule
for deciding when a plaquette is pierced by a vortex line.
Also, in such a model nothing prevents vortex lines from
intersecting each other, requiring a further decision about how
to resolve the intersections. For a generic function w(x) in the
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FIG. 3. (Color online) Lattice for tricolor percolation. Shown on
the left is the relation to the bcc lattice. On the right the locations of
the dual degrees of freedom (¥ on sites and U on links) are indicated.

continuum, by contrast, zero lines intersect with probability
zero. (Intersections will be discussed in detail in Sec. IV B.)

Tricolor percolation avoids these issues by a smart choice of
lattice and by discretizing not only real space but also the target
space for the degrees of freedom. This idea is familiar from
2D percolation, where a single universality class encompasses
both continuum percolation, which deals with zero lines of a
continuous random function v(x), and lattice site percolation,
where the function takes only the values v = %1 and the
intersection of cluster boundaries is avoided by using sites
on the triangular rather than the square lattice. For a random
complex function, the minimal discretization is to let w run
over the cube roots of unity, w = 1, ¢2*/3, and ¢**//3 [7]. The
configurations are therefore configurations in percolation with
three colors [6] and vortices (or tricords) are lines where all
three colors meet (Fig. 4).

The construction described below was introduced by
Scherrer and Frieman [8] as an improvement on the model
of Vachaspati and Vilenkin [7] and continues to be used for
numerics in the context of cosmic strings [10]. It was intro-
duced independently and simulated extensively by Bradley,
Debierre, and Strenski [6], who realized that the model
displays an interesting geometric phase transition at nonzero
bias. Their interest came from a different direction: they were
looking for an efficient means of generating configurations of
self-avoiding polymers and were inspired by earlier work on
smart walks [56].

1. Model

Figure 3 depicts a tiling of space with cells of a certain
shape (truncated octahedra). The centers of these cells lie on a
bec lattice and they are the Wigner-Seitz cells for this lattice.
The loops will exist on the edges of the cells, which form a
second lattice known as the tetrakaidekahedral lattice. Its key
features are that each link is surrounded by three cells and that
its sites are four-coordinated.

Tricolor percolation configurations are generated by ran-
domly and independently coloring the cells either red, green,
or blue, with probabilities pr, ps, and pp. Assigning each
color to a cube root of unity

R,G,B} — {l,0,0%}, =¢"/3, (11)

gives the relation with a discrete random field w(x); the
threefold anisotropy in its distribution is not expected to
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FIG. 4. (Color online) Section of tricord in tricolor percolation.

change the universality class of the transition (Sec. IIIB).
Vortices are the lines along which all three colors meet. The
design of the lattice ensures that these curves are nonbranch-
ing, self- and mutually-avoiding, and have an orientation
defined by the order in which the three colors encircle the
link.

Close to the symmetric point pgr = pg = pp = 1/3,
tricords are in the extended phase [6,10]. Moving sufficiently
far from this point, we enter the localized phase. Numerical
studies of the transition have been performed only on the
line pgr # pc = pg, which intersects the critical line at the
two points pgr = 0.417(1) and 0.255(5) [6], but the derivation
below leads us to believe that the critical behavior will be
the same at all points on the critical line, as expected by the
authors of Ref. [6]. Note that the critical line lies inside the
region in which all three colors percolate, so the transitions
do not coincide with percolation transitions of the colors (the
critical probability for site percolation on the bcc lattice is
0.2460(3) [6]).

2. Symmetric point

We begin with the symmetric point, where the mapping to
lattice gauge theory is simplest. The gauge theory we will need
is unconventional in that its Boltzmann weight is not naturally
written as the exponential of something simple. This situation
is standard in the study of loop ensembles: lattice magnets with
Boltzmann weights of nonexponential form are useful because
they give straightforward graphical expansions, which can be
interpreted as loop models [57]. For a pedagogical introduction
to these ideas, see Ref. [58]. The motivation here is similar:
A graphical expansion of the kind standard in lattice gauge
theory [1] will yield tricolor percolation configurations.

Leti,j, ... label sites of the tetrakaidekahedral lattice and
let (ij) denote a link directed from i to j. We introduce gauge
fields U;; on the links, which are unimodular numbers with

U = U]’.‘l., and unit supervectors [27,28]

a8, vlvi=1 (12

o= (el

at sites. The trace Tr will denote an integral over all degrees of
freedom, with the normalization Trl = 1. The normalization
of ¥ then implies that Try @y, = 5%
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FIG. 5. (Color online) Possibilities for the graphical expansion at
a link, as described in the text. In the mapping to tricolor percolation,
the shaded surfaces become domain walls between different colors.

Letting F denote a face (where two cells meet) and / a link,
the partition function for the lattice gauge theory is

z:nﬂ(u{1w+ﬂqﬂ
F leF leF
< [T+ Uivlv; +cc). (13)
(i)
The links in the product [[,., are oriented consistently
around the face F—changing the orientation corresponds to
exchanging [JU and [] U*.

To see the relation to tricolor percolation, we expand the
two products in Eq. (13) (one over faces F and one over links
(ij)) and represent the terms graphically. The diagram for a
given term is built up as follows. For each face F, we must
choose either 1, [ U, or [ U*. If we choose 1 we add nothing
to the diagram, while if we choose [[U or [ U* we draw
in the face F together with an orientation (equal or opposite
to that of the links in the product, respectively). We represent
this orientation by a normal vector as in Fig. 5. For each link
we must choose either 1, in which case we draw nothing, or

Ufjiﬁ;tﬁ j» in which case we draw in the link with an arrow

from jtoi,or U f’l. ‘/’T,"ﬁi’ in which case we orient the arrow the
other way.

Only a subset of the diagrams generated this way survive
after integrating over U, namely those having an equal number
of U; and U} on each link /. For each link there are three
possibilities (shown in Fig. 5). Either (i) none of the three
faces bordered by the link is included in the diagram and
neither is the link; (ii) two of the faces are included, they are
consistently oriented so as to form part of a sheet of oriented
surface, and the link is not included; or (iii) the link is included
and so are all three of the faces, with orientations determined
by that of the link and the right-hand rule. We are then left
with sheets of oriented surface that close on themselves or
meet along directed lines £. On a finite lattice, these lines are
closed loops. They are self- and mutually-avoiding and neither
branch nor terminate.

Such configurations are easily mapped to tricolor percola-
tion by regarding the sheets as boundaries between domains
of different color. Fixing the color of one cell, we can color all
the others by the rule that the color changes cyclically,

R— G — B> R, (14)

upon crossing a sheet in the same direction as its normal.
The lines £ where three sheets meet are then the tricords.
A convenient convention is to consider a finite bcc lattice and
define the color outside the lattice to be (say) red. Thus a cell on
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the boundary is red if its exterior faces (those on the boundary)
are not covered by surface in the graphical expansion.

Let 7 denote a tricolor percolation configuration with loops
L. At this point, having integrated over U but not ¥, we have

ZZZ Trl_[(lﬂ'/’z)(’ﬁz'ﬁ]) ) (15)
T LeT
where 1, ..., L label the sites on a given loop L. To evaluate

the integral over the supervectors, note that each loop gives
Tr(y (s s (W) - (wiwit)ur). - (16)

The formula Trv/}* xpf * = §F requires all color indices to be
equal, say, to «, to give a nonzero result. For the fields ¥
and v, however, a reordering is necessary in order to use
this formula: This gives a minus sign when « corresponds
to a fermionic component of ¥. Thus the sum on « yields
a fugacity per loop of k+1—k =1 and Z becomes as a
sum over equally weighted tricolor percolation configurations
7 = ZT 1 = 3no. cells.

In addition, we can use ¥ to construct geometrical correla-
tion functions. Let the operators O; depend only on . Then
the graphical expansion goes through as before and we have

(O1,...,0pN)

1
= — TrO,, ..
ZZT: !

This formula allows us to translate correlators of ¥ into
the probabilities of various geometrically defined events. The
other input required is a formula for the single-site traces,

Tr(Y® - - @y *Pr. . y*ha)

1
= gyt a7

Lon [Jwivy - @iv).

LeT

where (---)¢ is a Gaussian average evaluated using Wick’s
theorem and (Y*y*f); = 8. A simple example is the
two-point function (Qi12 Q?l) of the gauge-invariant operator
Q) = z/z}*. The operator insertions restrict the sum over 7
to configurations in which i and j lie on the same tricord and
so gives the probability of this event. Note that in order to
construct this correlation function we require k > 1. We will
return to correlation functions in Sec. III C.

The naive continuum limit of the lattice gauge theory (13)
involves a superfield ¥ coupled to a gauge field A. The
compactness of the microscopic gauge degrees of freedom
U, translates in the continuum into the presence of Dirac
monopoles in A [52,53]. However, because ¥ couples to U 3
rather than to U in Eq. (13), these monopoles are of three
times the minimal charge allowed by the Dirac quantization
condition. [We will take the minimal value allowed by the
Dirac quantization condition as our unit of monopole charge,
hence the factor of 3 in Eq. (18) below.]

Crudely, monopoles arise because there is a 67 ambiguity
in the magnetic flux By passing through each face F (here F
denotes a face together with a choice of orientation) and thus
also in the divergence of this quantity. The flux By is a vector
field on the links of the dual lattice, which pierce the faces F,
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and is defined modulo 67 by

exp(%) =[]u. (18)

The divergence (V - B)p is defined at each site of the dual
lattice or, equivalently, each tricolor percolation cell 3 by the
sum of By over the (outwardly oriented) faces of the cell.

Recall that an ambiguity of this kind can be resolved in two
ways, which correspond to thinking about B either as a vector
field whose divergence is nonzero at monopole defects or as a
vector field with strictly zero divergence but with Dirac strings.
If we resolve the ambiguity by restricting By to the domain
[—37m,37), it can have nonzero divergence at the locations of
monopoles, whose charge p is a multiple of 3. Letting 3 denote
a site of the dual lattice or, equivalently, a tricolor percolation
cell,

(V-B)g=2mpg, p5e€3L. (19)

Alternatively, we can resolve the ambiguity (call the new
version B’) in such a way that

(V-B)z=0. (20)

Here B’ differs from B by the inclusion of Dirac strings,
which carry 6z flux away from the monopoles along strings
of adjacent plaquettes and on which B’ lies outside the region
[—3m,3m).

In a continuum formulation, the functional integral over
A must include configurations with pointlike monopoles (of
charge p € 3Z), together with singular Dirac strings, which do
not incur any weight in the action [53,59]. A fugacity will also
be associated with each monopole. Anticipating Sec. III B,
these charge-3 monopoles are a result of threefold anisotropy
in the argument of our random field argw [38]. We postpone
further discussion until Sec. III B since they will not play an
important role. The symmetric point lies in the phase where
¥ is condensed and A is massive by the Higgs mechanism;
the appropriate description here is in terms of Goldstone
modes associated with the breaking of supersymmetry, and
the monopoles are irrelevant.! However, monopoles of charge
one appear on moving away from the symmetric point and will
play an important role at the transition.

3. Alternative view of the graphic expansion

For an alternative view on the graphical expansion and to
connect with the discussion in Sec. II, we can expand only the
second product (that over links) in the partition function (13).
The diagrams now consist only of oriented links (to each of
which is attached a factor U3y ). Next, integrating over ¥
kills all configurations except those in which the links form
closed loops. However, it does not prevent these loops from

!Charge-3 monopoles would play an important role in a transition
into the localized phase, at zero bias, induced by Potts-like inter-
actions between the colors of the cells [these can be included by
modifying the Boltzmann weight for the gauge field of Eq. (13)].
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intersecting. If C denotes such a configuration of loops, then

z:ZC:TrU]_[(lJr]_[U,Jr]_[UZ*) I1 <]_[U,3).

F leF leF loops £ \leL

In the world-line picture, we see that each loop configuration
is weighted by the expectation value of a Wilson loop W(C),

Z oy W W(C)=<]_[]_[Uf> . Q@D
¢ U

LeClel

evaluated using the U-dependent part of the Boltzmann
weight:

(- v= ZLUTr(m)H (1 +HU, +]_[U,*> . (22
F

leF leF

The expectation value W(C) assigns the correct entropic
weight to each tricord configuration. This is a nontrivial
weight given by summing over the possible domain wall
configurations compatible with a given set of tricords. In
particular the weight is zero for loop configurations that are
not allowable tricord configurations, including those with
intersections of loops.

4. Away from the symmetric point

At first sight, extending the correspondence between
tricolor percolation and lattice gauge theory away from the
symmetric point presents a problem, since the basic objects
in the graphical expansion of the lattice gauge theory are the
domain walls between colors rather than the colors themselves.
However, this is not in fact the case. To begin with we consider
changing the probabilities for a single cell: This allows the
appearance of a Dirac monopole of unit charge at the center
of that cell (Fig. 6).

Again we consider a system with a boundary and stipulate
that the color outside the boundary is R. The color of an interior
cell Bis then determined by the signed number of domain walls
we must cross (modulo 3) in order to reach a point outside the
boundary, starting from 5.

Pick any path P from the interior of B to the boundary.
Now introduce a variable 7 that will run over the cube roots of

FIG. 6. (Color online) Away from the symmetric point,
monopoles of unit charge appear. In the presence of monopoles, the
Boltzmann weight for the gauge field is modified on the plaquettes
crossed by Dirac strings.
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unity, and modify the Boltzmann weight for the lattice gauge
theory on the faces crossed by P by the substitution

<1~|—HU;+1_[U1*> — <1+nnU1+n*HUI*).
leF leF leF leF

The factor 1 goes with the term in which the plaquette’s normal
is parallel to the path P and the factor n* with the term where
the normal and P are antiparallel.

For a given term in the graphical expansion, we can read
off the color of B from the power of  mod 3: if all the n* and n
cancel, B is red, and if there is an n* or an ) left over, BB is green
or blue, respectively. Thus, to change the probabilities away
from 1/3 for this cell, we make 7 a dynamical variable and
include in the partition function a sum over 1 with the weight

> (pr+ pon+ pen)C-), (23)

n=1,w,w?

where the ellipsis stands for the other factors in the partition
function. The graphical expansion goes through as before,
with each tricolor percolation configuration acquiring a power
of n determined by the color of B. Performing the sum over 7,
only one of the three terms pg, pgn, or ppn™ gives a nonzero
contribution, yielding the appropriate probability.

We now specialize to the line pr > pg = pp (we will
briefly discuss the general case in Sec. I1I B). Writing n = »”?,
where pp € {0,21} will become the monopole charge in the
cell, the above weight is

3 1
losl¢. .. — _
E RPPIC-),  h 2(PR 3>~ (24)

pg:(),il

At the symmetric point, pg is forced to be zero and the
modification disappears. Moving away from the symmetric
point allows pp to fluctuate.

To see the effect of this on the gauge theory, consider
the Boltzmann weight in terms of gauge field configurations,
rather than in terms of the graphical expansion. The Boltzmann
weight for the plaquettes on P is now maximized not by a
magnetic flux By = 0 (mod 67), but by a flux Br = 2mpp
(mod 67r) oriented antiparallel to /P. Thus P is a Dirac string
for a monopole of charge pp located at B, and 4 is a fugacity
for monopoles.

We may immediately extend the above argument to a
uniform (rather than local) change in the probabilities. Each
cell acquires a monopole charge pg and we write

7 = Z hNeTr ]_[(1 + e/ Br=Dr3 4 ¢ o)

{p5} F

<[TO+ Ui, +U¥lw). @9
(ij)

Here N,, is the total number of monopoles N, = ) s |osl; Br
is the magnetic flux through the face F, defined in Eq. (18); and
Dy is the flux through F due to the Dirac strings P emanating
from the monopoles. Since the geometry of these strings is
arbitrary, Dy is arbitrary except that it must be a multiple of
27 on every face and (viewed as a vector field on the dual
lattice) must have the right divergence (V - D)g = —2mpp.
We fix it by any suitable convention, for example by setting
all the Dirac strings to be parallel to a given axis.
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A peculiarity of the above mapping is that monopoles
appear in two distinct ways: as a result of the microscopic
compactness of U and as a result of a modification to the
Boltzmann weight for the gauge field. In the continuum
derivation (Sec. III B) all monopoles appear in the same way.

5. Interpretation

The lattice model (25) describes a supersymmetric matter
field, whose world lines are the tricords, coupled to a gauge
field. The partition function includes a sum over monopole
configurations, with monopoles weighted by a fugacity that
tends to zero at the symmetric point. If we write a continuum
Lagrangian with a gauge field

L=|(V—iAW*+uly* + Ay +«B> (26

we must take into account that in the kinetic-energy term B>
for the gauge field we should not include contributions from
Dirac strings and that the monopole fugacity is hidden in the
measure for the path integral [53,59] (Sec. III B). However,
as mentioned in Sec. II, the universal behavior is equally well
captured by a 0 model formulation. The Lagrangian for this o
model is given in Eq. (9).

The microscopic form of the action (25) does not of course
give us the values of the parameters (such as p or g) in the
coarse-grained action. However, it is easy to identify the phases
of tricolor percolation with the phases of the above theory.

The extended phase is the ordered phase of the o model at
small g, or the Higgs phase (at negative renormalized @) in
the language of the gauge theory. The gauge symmetry (Higgs
mechanism) removes one Goldstone mode, but 2k bosonic and
2k fermionic Goldstone modes remain. They are governed by
free-field theory and this leads to Brownian behavior for the
vortex lines (see Sec. III C for further details). Note that that
while the symmetric point may seem special in that charge-1
monopoles are forbidden there, it is no different from the rest of
the extended phase as far as universal properties are concerned.

The localized phase is the disordered phase of the o model.
In the gauge theory, both ¥ and A are massive, the latter
because of the proliferation of monopoles.

Note that when k = 0 the two phases collapse into one,
and the Goldstone modes that distinguish the extended from
the localized phase disappear. This reflects the fact that when
k = 0 we can no longer construct the geometrical correlation
functions needed to probe the transition.

B. Vortices in the continuum

Focusing on tricolor percolation allowed us to introduce
the dual degrees of freedom in an explicit way, but it had
the disadvantage that the more general applicability of the
CP** model was obscured by microscopic details specific to
that model, such as threefold anisotropy. In order to make the
universality of the result plausible, we now give an alternative
derivation in the continuum, building on standard duality
arguments for the XY model [3-5,36-39].

Let 0(x) denote the phase of the random complex function

0(x) = arg w(x). 27

This field is compact, 8(x) = 0(x) 4+ 27, and ill-defined at
the vortices. We expect universal features of their statistics
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to be independent of the precise details of its probability
distribution so long as correlations in 8(x) are short range (just
as universal quantities in percolation are robust to changes in
the probability distribution of the microscopic variables). Thus
we choose the most convenient distribution, taking 6(x) to be
governed by the Lagrangian Lxy of the classical XY model,

K
Lyy = 3(V6>)2 — H cosf. (28)

When H = 0, this has a phase transition at a critical coupling
K., with short-range correlations in the disordered regime
K < K.. The magnetic field H allows us to introduce bias,
i.e., to tune the mean value of the random function w(x): at
K < K. and sufficiently small | H| vortices are in the extended
phase, and we enter the localized phase by increasing |H|.
This gives a critical line separating extended from localized
vortices. Note that in this formulation the core energy of a
vortex is hidden in the short-distance regularization.

As is well known, the phase transition of the 3D XY model
at zero magnetic field is dual to a Higgs transition for a
Lagrangian with a noncompact gauge field coupled to a single
complex scalar z [3-5,36-39],

Lawa = [(V — i A)z[* + k(V x A + ulz|* + Alzl*,

where the role of the gauge field A is to encode the long-
range interactions between vortices that come from integrating
over all 6(x) compatible with a given vortex configuration.
The disordered phase of the XY model, in which vortices
proliferate, corresponds to the Higgs phase of the gauge theory
(at negative renormalized (), where the field z has condensed
and A is massive by the Higgs mechanism. The ordered phase
of the XY model corresponds to the disordered phase of the
noncompact dual theory in which z is massive and A massless.

This dual theory differs from the one we require in
two ways. First, we must consider the theory at nonzero
H. The operators ¢*'? correspond in the dual language to
the insertion of magnetic monopoles, so the perturbation
H cosf leads to compactness of the gauge field, a point also
stressed by Kleinert [38]. Usually this perturbation would
lead simply to a massive theory. However, in order to capture
geometrical correlation functions, we must extend the theory,
using supersymmetry to introduce extra degrees of freedom.
This allows us to obtain a nontrivial field theory (the CP*/*
model) at finite H.

Following the general approach described in Ref. [39], the
functional integral over 6 (x) can be split into a sum over vortex
configurations C, and for each C an integral over compatible
field configurations. To do this we associate a representative
field configuration ¢(x) with each vortex configuration (by
any suitable convention) and write 0(x) in terms of ¢(x) and a
vortex-free field 8(x):

0(x) = ¢p(x) + O(x). (29)

Here 6(x) should be treated as a single-valued field in
[—00,00): while Eq. (29) defines 0(x) only modulo 27, this
ambiguity can be removed using the line integral of V[0 — ¢].

The path integral over 6 now becomes [, [ D6, where |,
is shorthand for the sum over vortex configurations. To make
this precise we would have to fix a regularization of the theory.
This will not be necessary for our present purposes; however, it

031141-9



ADAM NAHUM AND J. T. CHALKER

is important to note that |, ¢ includes a local weight determined
by physics on the scale of the UV cutoff. This will include
an action cost per unit length of vortex and local interactions
between vortex strands. Note that one way to think of the o
model action (28) is as an extreme case in which fluctuations
in the amplitude of w ~ ¢’ are restricted to vortex tubes with
a thickness on the scale of the short-distance cutoff.

Inserting the expression (29) for 6 into the action and
making a Hubbard-Stratonovich transformation with a three-
component vector field £ [39], one obtains the Lagrangian

Ly = QK)'E* —i£ - (VO + V$) — Hcosh.  (30)

When H = 0, the integral over § forces & to be divergence-
free. A nonzero H relaxes this constraint, allowing pointlike
monopole defects where V - & # 0. This can be seen by a
standard trick [53]: expanding the Boltzmann weight in H
gives

exp (H / d’x cos@(x)) = / exp (i / d*x p(x)e(x)>,
P

€2V

where p(x) is a density for a variable number N of monopoles,
of strengths p; = %1, at locations r;,

N
p(x) =Y pid(x —r),
i=1

and fp is shorthand for an integral over monopole configura-
tions, weighted by a fugacity H/2 per monopole and with a
factor of 1/N! for indistinguishability:

o N N
/ denotes Z (H]sz) l_[ Z /d3ri . (32)
p N=0 =1 \pi=%1

Integrating over @, the XY partition function is

zxy=/cfp/DsS<vos—p>

X exp/d3x(—%§2+i§ : v¢+ip¢). (33)

Since the pointlike charges in p are quantized, the 2x
ambiguity in ¢ does not affect the Boltzmann weight.

We resolve £ into a divergence-free part V x A and a
collection of Dirac strings D that carry the flux away from
the monopoles along singular flux lines, by writing

1
S:E(VXA—D) for V.-D = -2mp. (34)

(The geometry of the Dirac strings is chosen by some
convention and does not fluctuate.)

As a consequence of Eq. (34), the functional integral over A
includes Dirac monopole configurations with singular strings
D. The form of the kinetic-energy term for the gauge field,
involving & rather than (V x A)?, means that these strings do
not cost any energy. Actions of this form for compact gauge
fields are discussed in Refs. [53,59].

We now simplify the action in Eq. (33). Since V¢ is not the
derivative of a continuous, single-valued function (in terms of
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such a derivative, V¢p = —ie ¢ Ve'?), the last two terms do
not cancel on integrating by parts. Instead they yield

i / Px(E -V + p)

L N . o
_Zn/d x A (v><v¢>)+l/mmf D -d*s.

discontinuity

(35)

The second integral counts intersections of the Dirac strings
with the surfaces on which ¢ jumps by 2. Since this is an
integer multiplied by 2, the term does not contribute to the
Boltzmann weight. However, the first term provides a coupling
of the gauge field to a singular current

J = LV x Vo, (36)
2
which runs along the vortices.
At this point we have a theory of fluctuating vortex lines
(flux lines of J) coupled to a compact gauge field, with the
partition function

ny:/C/p/DAexp(—/d3x(%§2+iA-J)).

Note that because of the quantization of the monopole charge
and of the vortex flux, the Dirac strings do not couple to
J. The dependence on H is in the integral over monopole
configurations (32); when H = 0, monopoles are absent and
A is noncompact.

The integral over vortex configurations, so far denoted only
symbolically by fc’ is over configurations of oriented loops,
with local interactions between segments of loop. The key
point of XY duality is that we can equally well view these loops
as world lines of charged particles [39]. In order to be able to
construct geometrical correlation functions, we must introduce
additional species of bosonic and fermionic particles, using a
supervector ¥ rather than a single complex scalar z [28]. A
concrete example of this correspondence between loops and
supervectors was displayed in Sec. IIl A. The A - J term in the
action implies that the gauge field couples to ¥ in the usual
way. The interactions between vortex segments in |, ¢ translate
into local interactions for ¥ :

Lawa = (V=i DY + puly > +Aly* +---. (37

The line of transitions out of the extended phase at K < K. and
|H| > 0is governed by the (compact) CP** model. When H =
0 we obtain instead the NCCP** model, a supersymmetric
extension of the conventional dual theory for the XY transition.
We will consider the phase diagram of this noncompact theory
in Sec. IVE.

The discussion of tricolor percolation in Sec. III A focused
on the line pg = pp in the two-dimensional parameter space
of the model. As a caricature of tricolor percolation away from
this line, we can modify the potential of Eq. (28) to H cosf +
Hiscos3(0 — ®). Expanding in H; leads to the charge-3
monopoles we expect from Sec. III A (the connection between
monopoles and anisotropy has been noted in Ref. [38]). For
general ® these have a complex fugacity H;e*¥®/2, just as
Eq. (23) leads to complex monopole fugacities for general
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Pr, Pc, and pp.? Changing the bare values of Hz or ® is
not expected to change critical behavior in the extended phase
or at the CP** critical point, where the low-energy degrees
of freedom are the neutral ones in the supermatrix Q. In
particular, we expect to see the same behavior for tricolor
percolation everywhere on the critical line.?

C. Statistics of vortex lines

Having identified the field theory for vortex lines in short-
range correlated w(x), we now use it to answer some natural
questions about their statistics.

1. Geometrical correlation functions

The geometrical correlation functions of interest to us, the
probabilities of various geometrically defined events, can be
expressed as correlation functions of ¥. At a formal level the
relationships follow from Eq. (17), as indicated in Sec. II1 A2,
but they can easily be anticipated by thinking of vortices as
particle world lines.

Let G(x — y) be the probability that a single vortex visits
both x and y. (Strictly, since we are working in the continuum
and taking the vortices to be of infinitesimal thickness, we
should define a small € and say “visits regions of size € around
x and y.”) At the critical point and in the localized phase
all vortices are finite, and the contributions to G(x — y) come
from configurations in which a finite loop visits the two points.
In the extended phase there are also contributions of a different
type, with x and y lying on a single infinite strand. We first
discuss the cases where these infinite strands are absent.

The operators needed to construct geometrical correlators
are combinations of the gauge-invariant bilinear operators
Q% = 2y — (Y )8 . In fact, we will need only Q% for
a,B<k+1and o #B,ie., 29" for a # B. As discussed
in Sec. II, such an insertion restricts the loop expansion of the
partition function to configurations in which the point x has
an incoming strand of color @ and an outgoing strand of color
B —or equivalently, configurations in which there is a loop
passing through x that changes color from « to 8 at x. Thus
we see that the correlation function (Q**(x) Q% (y)) forces a
single loop to visit both x and y:

G(x —y) o (0" ()0 (v)). (38)

Similarly, the probability that m loops connect the vicinity
of x to the vicinity of y scales like (Q'?(x)" Q*'(y)"). As
a further example, the probability that the three sites x, y,
and z all lie on the same vortex can be written F(x,y,z)

()P0 (2)).
2. Vortices in the critical region

At the critical point, the two-point function decays as
G(x) ~ 1/|x|'*", where n is the anomalous dimension of

’It is a matter of convention whether the charge-1 or the charge-3
monopoles have the nonpositive fugacity.

3While a complex fugacity for monopoles may seem a drastic
perturbation, note that this fugacity will naturally renormalize toward
positive values. Crudely, after a coarse-graining step we cannot
distinguish a charge-3 monopole from three charge-1 monopoles,
so the renormalized fugacity ~a H;e¥® + bH?3 + - - - with a,b > 0.
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Q. Moving slightly away from criticality, a finite correlation
length appears, scaling as & ~ |h — h.|™" if h parametrizes
the bias: in the localized (disordered) phase £ is a measure
of the typical size of a large loop [e.g., G(x) decays with
the Ornstein-Zernicke form |x|~'e™*1/¢] and in the extended
(ordered) phase, anticipating the following section, it sets the
scale beyond which correlations are Brownian. In this phase O
acquires a nonzero expectation value (Q) ~ (h. — h)?, which
gives the probability that a given point lies within a fixed small
distance of an infinite vortex or that a given link in tricolor
percolation lies on an infinite tricord.

A scaling argument [60,61] relates 7 to the fractal dimen-
sion d s of the critical vortices and to the exponent T governing
the number density n(/) of vortex loops of length [. With
n(l) ~ 177,

11—n

dy = ——, = . 39
f T 5_1 (39)

Hyperscaling in three dimensions gives 8 = v(1 + n)/2.

Precise numerical values are available from simulations of
a lattice loop model [24] that is also in the CP** universality
class [33]:

dy =2.534(9), 1 =2.184(3),

This yields n = —0.068(18).

Clearly, this critical point is not accurately described by
mean-field theory, which would require v = 1/2. However, it
is interesting to consider what the mean-field prediction for
dy is: surprisingly, it is not the trivial value dl}”F = 2, but the

v = 0.9985(15). (40)

fairly accurate value d}'" = 5/2. The reason one might have
expected dMF = 2 is that mean-field theory corresponds to a
free-field description of the critical point and free-field theory
is usually associated with Brownian walks (as in the extended
phase, where free-field theory for the Goldstone modes leads
to Brownian behavior). Here, however, that is not the case
because the appropriate free theory is formulated in terms not
of ¥ but of the composite field Q: in a replica approach,

Liree = tr(VQ)*. (41)

This leads to 7 = 0 and a fractal dimension d}'" = 5/2. Since
n is small, as is typical for critical points in three dimensions,
this approximation is quite accurate. The fact that d is close
to 5/2 rather than to 2 is a clear symptom of confinement
and the fact that vortices are world lines not of Q but of its
square root ¥ . [In the context of quantum magnets described by
CP'/NCCP' models [55], a large value of n has been used as a
diagnostic for deconfinement, i.e., the noncompactness of the
U(1) gauge field.] The above assumes a soft-spin formulation
for Q, which we discuss further in Sec. I'V.

3. Extended phase: Goldstone modes and Brownian loops

In three dimensions, a random walker need never return to
its starting point, but can escape to infinity. The same is true
of vortices in the extended phase. Of course, in a finite system
there is no such thing as escape to infinity: what takes its place
depends on the boundary conditions. The simplest and most
natural choice is to allow vortices to terminate on the boundary.
The possibility of escaping to infinity then means that a vortex
strand passing through the origin has a finite probability of
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3 oo’

FIG. 7. (Color online) Dominant contributions to the correlation
functions (Q*(x)Q*(y)) ~ lx — y|7* and (Q"(x)Q*'(y)) ~ |x —
y|~! in the extended phase as described in the text. The orientations
of the loops are not indicated.

reaching the boundary, even in the thermodynamic limit. If the
linear size of the system is L, then these system-spanning lines
have an arc length of order L2, since their fractal dimension
is 2. In contrast, if we were to impose periodic boundary
conditions, these lines would join up into loops with typical
length L3 [25,33,62].

In order to discuss geometric correlation functions in the
extended phase we must separate out the infinite strands.
We take a finite system in which vortex lines can end on
the boundary and require that any line that does so has a
specific (bosonic) color, say, @ = 1. With this protocol the
fugacity per vortex is still one, regardless of whether the vortex
forms a closed loop or ends on the boundary. In the CP**
language, these boundary conditions correspond to applying
a symmetry-breaking field for the CP** order parameter on
the boundary.* The extended phase is the ordered phase of the
field theory and this boundary condition fixes the direction of
the order parameter to be ¥ (1,0, ...,0). We may fix the
gauge freedom by taking the first component to be real and
positive. Fluctuations involve k (complex) bosonic Goldstone
modes, ¢, ...,¢*T!, as well as k fermionic ones, which are
just the original fermions x: ¥ ~ (/1 — |¢|> — |x|%,¢,x). To
leading order in these modes (for o, =2, ...,k + 1),

Q' ~1, Q' ~¢%, 0% ~ ¢
Since (¢%(x)¢*P(y)) oc 8*F|x — y|~! we therefore have

(0P ()% (y) ~ (Q2(x)0*' (y) ~

lx — yI* lx =yl
The first of these gives the probability that x and y lie on the
same finite loop since strands of colors 2 and 3 are prohibited
from escaping to infinity (Fig. 7). In contrast, the second of
them is dominated by configurations in which a single infinite
vortex passes through both points, that is, they are connected
by a single finite strand rather than by two strands as for points
sharing a finite vortex.

In general, one finds that the probability G(x) that two
regions separated by a distance | x| are connected by M (finite)
strands of vortex scales like |x|™™:

Gu(x) ~ |x|™.

“For tricolor percolation this is done by modifying the Boltzmann
weight for the boundary links, replacing U} ¢ ¥ ; with U} z;'z}. In
the scaling limit this yields a boundary magnetic field having the
effect described.
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(The correlator G discussed in the context of the localized
phase and critical point corresponds to G;; in this regime
Gy = 0 for odd M.) These simple exponents indicate that the
vortices behave on large scales like free random walks —each
factor of 1/|x| is just the probability that a random walker,
starting in one of the regions, happens to visit the other. It
follows that the fractal dimension is 2 and the number density
of loops of length [ behaves as n(l) ~ [7>/2.

As another example, we easily check that the probability
that three distant sites lie on the same vortex behaves as

ri2 413+ 13

F(xy,x2,x3) ~ rij = |xi — xjl,

r12123r3;

being dominated by contributions from infinite vortices, while
the probability that they lie on the same finite vortex scales as
(riarasrs) "

This result—Brownian statistics for vortices in the extended
phase—is expected on the basis of numerical simulations
[7,8,10]. Surprisingly, a clear theoretical derivation has not
previously been provided, although a heuristic explanation [8]
has been given by analogy with polymers in the melt [26].

IV. VARIATIONS AND PERTURBATIONS

So far we have discussed universal behavior for vortices
in short-range-correlated environments. In this section we
consider the stability of this universality class to perturbations,
including long-range correlations in the complex field and a
perturbation leading to a crossover to conventional percolation,
and also the universal behavior of other kinds of vortex
problem: unoriented vortices in nematics and vortices in the
vicinity of the XY critical point. We also briefly discuss the
6 — € expansion for vortices.

A useful language for considering perturbations of the CP*/*
model is the soft-spin Lagrangian for the gauge-invariant com-
posite field Q [Eq. (8)]. Since some perturbations cannot be
written in the supersymmetric theory, and also for simplicity,
we use the replica formulation in which Q isann x n traceless
Hermitian matrix with the implied limit n — 1.

Microscopically, this matrix is given by Q = zz! — 1/n,
with z'z = 1, and thus satisfies the nonlinear constraint (Q +
1/n)2 = (Q + 1/n) in addition to the linear one trQ = 0. In
a soft-spin approach, we might imagine imposing a softened
version of the former via a potential

tr((Q + 1/n)* — (Q + 1/n))*

2
= const + quZ + M trQ® +trQ*.
n n

Of course these bare coefficient values have no significance
except to draw our attention to the fact that (except in the
case n = 2, where there is an additional symmetry Q@ — —Q)
there is a symmetry-allowed cubic term [41,43,63]. Forn > 2,
this term implies that the mean-field prediction (expected
to be valid in a large number of spatial dimensions) is a
first-order transition. However, this conclusion does not apply
to the replica limit n — 1. Such a situation is familiar from
percolation [64].
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A. Upper critical dimension and 6 — € expansion

The cubic term implies that the upper critical dimension
for CP"~! in the limit n — 1 (and CP*¥) is expected to be
6. Certain correlation functions for Anderson localization in
symmetry class C are also described by this field theory and
can in fact be mapped to correlation functions in classical loop
models described by CPkI [24,29,33,44-46], so we expect 6
to be an upper critical dimension for that problem too [43].

We may also consider the 6 — € expansion, which was
performed for theories with a single cubic invariant in
Refs. [40—42]. Equation (8) at n > 1 is precisely the theory
considered in Ref. [41], in the form given by writing Q in
terms of n% — 1 real scalar fields # and the SU(n) generators
T; via Q = 1;T;. With the tensor d;j; defined by {T;,T;} =
18i; + dijiTx.

I

v
—l2+ Zdijktitjtk- 42)

1
Esoftspin = E(Vt)z + )

Coefficients in the € expansion are given by contractions of
the ds [40]. In the limit n — 1, to order €2,

1 N 5¢ N 733¢2 N
V= — - P ceey
2 76 " 27436 )
€ 166¢2 N
T= 779~ 6859 :

In three dimensions, this gives v ~ 0.94 and n >~ —0.38, to be
compared with Eq. (40). The expressions (43) are compatible
with the O(e) results for class C localization in Ref. [43].
Note that the o model formulation (9) leads to an alternative
approximation scheme for exponents via the 2 + € expansion,
which has been performed to high orders; see Ref. [44] and
references therein.

The field theory in higher dimensions can again be related to
loops, and it is natural to conjecture that in d dimensions these
have the statistics of zero lines in a random (d — 1)-component
vector field (wy, ...,w4—1). (Such lines are oriented in any
number of dimensions, with orientation given by the vector
€ttty O W1+ + Oy Wai—1.)

B. Vortex gluing and percolation

In cases where intersections of vortices cannot be neglected
(such as in the lattice XY model), a convention is required
for defining geometrical correlation functions or, in other
words, for determining which vortex strands are regarded as
connected. We may either adopt a convention in which vortices
remain topologically one dimensional, or ‘glue’ intersecting
strands together to form branching, netlike clusters [17,18];
our choice may affect the observed critical behavior. We now
address this issue. The conclusion is that with the former
convention (when vortices are topologically one dimensional),
the results of the supersymmetric dual theory continue to
apply even in the presence of intersections, whereas vortex
gluing induces a crossover to conventional percolation. This
crossover can be seen in the soft-spin language. Another
reason for clarifying the relation to percolation is that it has
previously been believed that some or all of the exponents
for tricolor percolation coincide with those for conventional
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FIG. 8. Shown on the left are vortex strands intersecting at a site
of the dual lattice (cube of the original lattice) in a cubic lattice XY
model. According to the stochastic rule, we choose randomly from
the ways of resolving the intersection (middle and right).

percolation [6,10,65]. The soft-spin formulation makes clear
that this is not the case.

A microscopic model with intersections can be got by
modifying the lattice for tricolour percolation (specifically, we
can replace the bce with the fec lattice, so the cells are rhombic
dodecahedra). Alternately, we can use the lattice XY model.
Considering such models shows that the dual supersymmetric
theory (CPX* or NCCP*) still applies if we resolve vortex
intersections according to the stochastic rule used in some
numerical simulations [17,18]: at an intersection with g
incoming and g outgoing vortex strands, we choose randomly
from the g ! ways of pairing the former with the latter (Fig. 8).
This rule is a simple consequence of formulas like Eq. (17) for
the traces at a single site.

To induce a crossover to percolation, we modify the
rule by gluing intersecting vortices with a probability ¢ > 0
[17,18].° In the replica language, each strand acquires a color
o =1, ...,n, and to glue strands we must force their colors to
coincide; the probability Gpere of two links lying in the same
cluster will then be given by

Gperc ~{(Q*Q*), 44)

being simply related to the probabilities of their being the
same or different colors. We can check in the graphical
expansion of a lattice model with intersections (we omit
details) that the perturbation induced by the gluing is of the
form £ ~ —c Y, |z%|*. As expected, this operator creates
a meeting of four world-line strands of the same color. The
perturbation breaks rotational symmetry in replica space,
yielding an additional mass term for the off-diagonal elements
of Q in Lo spin- Subtracting a multiple of ter, which in the
absence of the symmetry-breaking term would merely shift
the critical point,

8L~ 101 (45)
aFp

8L is expected, on the basis of its naive scaling dimension,
to be relevant at the CP** critical point. (Both £ and the
perturbation discussed in Sec. IV C can be written in terms
of the traceless symmetric tensor Sg; built out of Q* Q7%

modulo a trQ? term.) Symmetry considerations then lead us
to anticipate a crossover to behavior in the universality class
of the n-state Potts model in the limit » — 1, which is a well-
known description of percolation [58]. Note that the Goldstone

5In terms of connectivity, setting ¢ = 1 is equivalent to the maximal
definition of Ref. [17].
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modes in the extended phase acquire a mass, consistent with
the fact that in conventional percolation the percolating phase
is massive.

The above picture implies that the bias-induced vortex
transition is in a distinct universality class from that of
percolation. Previously this has been obscured by the fact that
some exponents are similar [6,10,65]. In particular, the fractal
dimension of critical tricords was found [6] tobe dy = 2.54(1)
[see also Eq. (40)], close to that of critical percolation clusters,
for which a more recent study [66] gives d:ﬁem = 2.5226(1).
In light of the above, this similarity is not surprising and
just reflects the small anomalous dimension of Q at each
of the respective critical points. (The result d%" ~ 5/2 can
also be seen without invoking field theory via a Flory-like
argument due to de Gennes [67].) The correlation length
exponents for the two transitions are clearly different; compare
VP = 0.8733(5) [66] with Eq. (40).

C. Unoriented vortices

So far we have discussed oriented vortices in random
complex fields, which are associated with the fundamental
group m1(S') = Z. It is natural to expect unoriented vortices,
which appear when the relevant fundamental group is equal to
Z,,to correspond to a different field theory since the distinction
between positively and negatively charged fields (¢ and ¥*) in
the CP** model is due to the distinction between vortices and
antivortices. To obtain the field theory for Z, vortices from the
CP** model, we must introduce a perturbation that reduces
the symmetry (from superunitary to orthosymplectic); the
introduction of crossings into 2D loop models for noncrossing
loops leads to the same symmetry breaking [68].

Unoriented vortices occur, for example, in nematic order
parameters, where the order parameter manifold is RPV~!
with N > 2. This is the space of N-component unit vectors
v with the identification v ~ —v. Vortices of this kind, for
N = 3, have been observed in nematic liquid crystals [69,70]
and their fractal geometry has been studied numerically in the
context of cosmic strings [10,13].

As for oriented vortices, we may consider the phase diagram
of vortices in short-range correlated RPY ™! fields as a function
of bias favoring some point in the order parameter manifold.
At small bias, there is an extended phase similar to that for
oriented vortices [10,13]. We argue below that this phase is
again Brownian (thus we disagree with earlier suggestions
that the fractal dimension is less than 2 in this phase [10]).
However, this Brownian behavior results from the Goldstone
phase of a field theory different from the CP** model, so the
bias-induced critical point is in a different universality class
from that for oriented vortices. The initial investigation of
this transition by Strobl and Hindmarsh [10] is probably not
sufficiently precise to confirm this and further numerical work
would be interesting.

To determine the field theory, we access the unoriented
vortex problem by applying a perturbation to that of oriented
vortices. Take an RP? order parameter v = (vy,v2,v3) with
v =1 and v~ —v. The subspace v3 =0 is RP! =§';
thus in the limit where fluctuations in v are completely
suppressed, we return to the oriented vortex problem. Turning
fluctuations in vs back on allows the orientation of a vortex
to fluctuate along its length. Specifically, the leading effect of
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FIG. 9. (Color online) Rewiring of vortices induced by perturbing
the oriented vortex problem.

=

reintroducing fluctuations in vs is to allow configurations of
the type shown in Fig. 9, where two vortices passing close
to each other are rewired in a manner incompatible with the
orientations of the strands.

This perturbation is most easily discussed in the replica
theory. In terms of world lines, the right-hand side of Fig. 9 cor-
responds to the annihilation of two particles of the same color 8
and the creation of two particles of color «, so the perturbation
leads to the following SU(n)-symmetry-breaking term:

L= 3 @ PH=-LTP (6
o, =1

In the soft-spin theory for Q, which we decompose into real
and imaginary parts Q = Qg + i Qy, this yields

L~ Y ()" 47)

a,p=1

We see that allowing fluctuations of the vortex orientation
yields a mass term for the imaginary part of Q. The simplest
assumption is that this leads to a crossover to a similar theory
but with real rather than complex Q. The resulting traceless
symmetric matrix is the order parameter for RP"~! as opposed
to CP"~'. (This RP""' field should not be confused with
the RPV~! field that hosts the vortices.) This can easily be
checked in the case n = 2, where the CP*~' model is the
O(3) model and the perturbation is a mass term for one of
the components of the O(3) spin, leading to a crossover to the
XY or, equivalently, RP! universality class.

So we expect that unoriented vortices in a (short-range-
correlated) random nematic field are described by the replica
limit of the RP"~' & model. Although for brevity we have
given only a perturbative argument, additional evidence comes
from the existence of lattice loop models with RP"~! degrees
of freedom [33]. It is also possible to construct a tricolor-
percolation-like model that can be formulated as a lattice gauge
theory with the same symmetry.

Note that in the extended phase it makes no difference
whether we think of the field theory for unoriented vortices
as the replica limit of an RP"~! & model, with target space
RP"™! = §"71/7,, or an O(n) o model, with target space
S"=1. The topological difference between these manifolds is
not seen by the Goldstone modes. However, the difference does
become important at the critical point: The O(1) o model has a
thermodynamic (Ising) transition, whereas the vortex problem
has a geometric transition that is invisible in thermodynamic
quantities. This is reflected in the fact that the manifold RP"~!
becomes a point whenn = 1.

In SUSY language, the replica limit of the RP"~!' model
becomes a o model for a real supervector field & =
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(SY, ..., 8%+ o), with DAD = 1, where
Iygr 0O
A=]| 0 0 1
0 -1, 0

(the subscripts give the dimensions of the unit matrices),
similar to the 2D supersymmetrized O(n) model described in
Ref. [68] in the context of lattice loop models with unoriented
loops, but with the additional identification ® ~ —&. Note
that we can also cast the perturbation (46) in supersymmetric
language. We must take the CPX* model with k = 2/. Then
Eq. (46) should be replaced with

L =—TAYWTAYY).

It can be checked in a lattice model (such as the modification
of tricolor percolation described in Sec. IV B) that this is the
desired perturbation and that it gives all loops the correct
fugacity of one.

D. Stability to long-range correlations in w(x)

We have discussed short-range-correlated w(x) at length.
The question arises as to how short ranged the correlations
must be in order not to alter the universal behavior in the
extended phase or at the critical point.

Weak correlations in w(x) can be addressed in a standard
way using the extended Harris criterion [58,71]. Correlations
in |w| are more relevant than correlations in arg w and we
will consider only the former. Letting these correlations decay
as 1/|x — y|# at large distances, one finds that the extended
phase is extremely robust, being unaffected by sufficiently
weak correlations for any A > 0. (The statistics of vortices
in correlated complex fields have been studied numerically in
Ref. [14] and the results appear to be compatible with this
claim.) The critical theory, in contrast, is stable so long as

A > 2/v ~2.003(3). (48)

These criteria may be derived by viewing correlations in w(x)
as due to quenched, correlated disorder in the parameters
of the probability distribution for w [71] (for example,
quenched disorder in the parameters pg, pg, and pp of
tricolor percolation) and averaging over this disorder to give
an effective Lagrangian with nonlocal couplings between the
operators of the CPM* model, whose relevance or irrelevance
can then be determined. This average does not require use
of the replica trick, since the partition function takes a trivial
value that is independent of the disorder realization.

In addition, correlations decaying slower than Eq. (48) may
still count as short range if they oscillate with distance [72].
This phenomenon occurs for random superpositions of plane
waves exp(ik - x) with fixed |k|. According to Berry’s random
wave model [73], such superpositions

w(x) = f Ak a(k)e’*, (49)
2—F

with Gaussian §-correlated a(k), give a good description of the
statistics of eigenfunctions of the Laplacian,

—V2w = Ew, (50)
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in chaotic d-dimensional domains. In two dimensions the
version of this problem with real w has been studied exten-
sively in the context of quantum chaos [74] and the nodal
lines w(x) =0 have been found to have the statistics of
percolation cluster boundaries. Bogomolny and Schmit [72]
reconciled this with the square-root decay of the correlation
function at large distances (w(x)w(y)) ~ cos(E'?|x — yl —
w/4)/+/1x — y|, which would usually be slow enough to make
percolation results inapplicable [71], by taking oscillations into
account. A simple generalization of this analysis shows that
in three dimensions, for complex w, the collapse transition of
the lines w(x) = h induced by increasing |/] is expected to be
in the CP** universality class despite the slow decay of the
correlator (w*(x)w(y)) o sin(E'/2|x — y|)/|x — yl.

E. Vortices near the XY critical point

It has long been recognized that vortices play an important
role in the phase transition of the 3D XY model. XY duality
makes this more concrete, giving a dual formulation in which
the transition is represented by the condensation of a vortex
field. A natural question is thus whether the thermodynamic
phase transition coincides with the geometric phase transition
for the vortices, or whether the two transitions are separate.
Simulations of lattice XY models [17,18,75] suggest that the
geometric transition occurs slightly inside the XY ordered
phase, but very close to the thermodynamic transition [letting
K be the coupling for an XY model on the cubic lattice,
the most accurate determination of the geometrical critical
pointin Ref. [17] gives (K& — Kherm)/ gtherm ~ 4 5 1074].
Vortices must of course be defined using the stochastic rule
(Sec. IV B).

At first sight, the NCCP** formulation of this problem

Lycepts = [(V =i AP > 4+ k(V x A? + pul¢)* + Alypl*

implies that the transitions should coincide, occurring where
the field ¥ condenses. However, this assumption is not
justified, because in the theory with a noncompact gauge field
we must distinguish between the condensation of ¥ and the
condensation of the bilinear Q.

The geometric transition into the extended phase is signaled
by the appearance of an expectation value for Q, i.e., by
the spontaneous breaking of supersymmetry: (Q) # 0. By
contrast, the thermodynamic transition into the XY disordered
phase is signaled by the onset of the Higgs mechanism, due
to the condensation of ¥, and the generation of a mass for the
gauge field. Following standard convention, we denote this
(¥) # 0 (though, of course, this expectation value is zero by
gauge invariance). In the simplest scenario, these events would
occur simultaneously. However, the numerical results® [17,18]
lead us to consider the possibility of a phase with (¢) = 0 but
(Q) # 0.Heuristically, this is a pair condensate [77] of vortices

®While Refs. [17,18] appear to show two separate transitions,
scaling collapse for the geometrical observables in Ref. [18] required
the use of the standard XY correlation length exponent [76], which
is surprising unless either it or the splitting of the transitions can be
attributed to finite-size effects.
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in which the XY order is not disrupted because vortices and
antivortices are locally paired.

If the geometric transition does occur within the XY ordered
phase in, for example, lattice XY models, a natural guess is that
itisin the same universality class as the bias-induced transition.
Note that the nonzero value of the XY order parameter yields
a bias. In this scenario, long-distance behavior precisely at
the geometrical phase transition would be described by a
Lagrangian of the form

L=k(V x A + Leigea cpt[ 0], (51)

where the massless noncompact gauge field A (describing
Goldstone fluctuations in the XY order) is decoupled, at long
wavelengths, from the neutral degrees of freedom in Q. These
are then described by a critical compact CP** model. The
symmetry-allowed couplings between A and Q are irrelevant
at this critical point. This scenario is also compatible with the
extended Harris criterion (note that in the Goldstone phase
correlations in the modulus of the complex field decay much
faster than correlations in its argument).

Previous attempts have been made to relate the fractal
dimension of vortices in critical XY or Abelian Higgs models
to local correlators in field theory using the duality between
these two theories [21,75,78]. However, the authors did not
make use of SUSY or replica, which are necessary in order
to form nontrivial geometrical correlators. As a result, the
scaling relations put forth were not correct, as has been
previously noted [22,79]. Note that vortices in Abelian Higgs
models, with the Lagrangian Lsc = |(V — ia)®|> + &(V x
a)?> + V(®P), can be treated in a similar manner to vortices
in ungauged fields, leading to a dual SUSY theory without a
gauge field, Eq. (2).7

V. LOOPS IN TWO DIMENSIONS

We now turn to a different topic, namely, 2D percolation.
It is interesting to see how the relation to a lattice gauge
theory is modified for two-dimensional deterministic walks in
a random environment in the universality class of percolation
hulls (cluster boundaries). Essentially the idea will be to take
the black clusters in percolation (Fig. 10) to be sheets of
random surface in the graphical expansion of a lattice gauge
theory. This can be compared with the treatment of tricolour
percolation in Sec. IIT A, where the random surfaces generated
by a lattice gauge theory were interpreted as domain walls.

The end result in two dimensions is again a CP** model, but
this time with a topological 6 term. This is a known continuum
representation of percolation [29,32], derived previously by
mapping bond percolation to a supersymmetric spin chain.
The present approach makes the appearance of the 6 term
transparent. There is also closely related work mapping (non-
SUSY) lattice CP"~! models with a 6 term to solid-on-solid
models on the honeycomb lattice [47]. That work considers
a graphical expansion in terms of loops very similar to the
one described below. However, since it is not concerned with
percolation, it uses a more conventional Boltzmann weight for

"Here a is a dynamical field. The phase structure of the XY model
in a fixed external gauge field has been considered in Ref. [80].
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FIG. 10. (Color online) Percolation cluster boundaries. We will
view the black clusters as surfaces in the graphical expansion of a
lattice gauge theory.

the gauge field, which does not yield the simple expansion in
terms of percolation configurations that we desire.

A. Lattice gauge theory for 2D loops

The heuristic argument of Sec. II can be adapted to the
2D case, but it is just as easy to give a concrete lattice
construction. For definiteness, let us consider site percolation
on the triangular lattice. The unit cells of the triangular lattice
are faces of the honeycomb lattice, which are colored black
or white with probabilities p and 1 — p; the critical point is
p = 1/2. We orient the cluster boundaries (hulls) so as to have
the black hexagons to the left; see Fig. 10.

As for tricolor percolation (Sec. III A), we introduce
supervectors ¥; = (zil, . ,z;’+k,xi1, o ,X,-k) on the sites i of
the honeycomb lattice (now with arbitrary numbers of bosonic
and fermionic components and ¥y = n) and gauge degrees
of freedom U;; on the links. We also introduce a fugacity x per
unit length of loop, with x = 1 for uncorrelated percolation.
Letting F denote a hexagon, the partition function we need is

Z:Trl_[|:(l—p)+p I1 U,-,}
F

(ij)eF

< [0 +xUs9 v, +ccl.
(ij)
In the products over the links in a hexagon, the links are
oriented counterclockwise. To be definite, we consider a finite
lattice (made up of complete hexagons) with the topology of
the disk.

Now consider two different approaches to the graphical
expansion of this partition function. In the first, we begin by
expanding the first product, representing the terms via the rule
that a hexagon is colored white if we take the first term and
black if we take the second. Each term then corresponds to a
percolation configuration P and comes with a product of Us
along the links of the cluster boundaries. Fixing P, we then
expand the second product (over links). Only one term survives
after tracing over U, namely, that which cancels the Us on the
on the cluster boundaries, and this term comes with ¥ world
lines, which encircle the black clusters counterclockwise. The
trace over ¥ gives the loops a fugacity:

7 — § pB(l _ p)Wnno.loopsxtotallooplength.
P

Here B and W are the numbers of black and white hexagons in
the configuration P. Note that our boundary conditions mean
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that the region outside the lattice is considered to be white
for the purposes of drawing the cluster boundaries. Percolation
is the case n = 1; by varying n at p = 1/2 we can consider
the well-known O(n) loop models for various n [47,57,58].
For the second approach, we expand only the second
product in Z, representing the terms by drawing in oriented
links (ji) of the lattice for each U; ﬂ/f}tﬁ ; we take. Tracing
over ¥, only configurations of mutually avoiding closed
oriented loops survive (see also Ref. [47]). Then for each loop
configuration C we trace over U to get a Wilson loop:

Zazn‘C‘W(C), W(C)=< ]_[ U> ) (52)
C U

linkseC

The Wilson loop W(C), which is evaluated using the Boltz-
mann weight [[-[(1 — p) + p [[;j,cr Ui;]1for the gauge field,
has simple properties. It is zero if C is not equivalent to
a percolation configuration: loops must alternate in their
orientations (along any line) so as to allow the hexagons to
be consistently colored. Then W(C) (1 — p)" pB. There
is exponential suppression of black areas (regions encircled
counterclockwise) when p < 1/2 and of white areas (regions
encircled clockwise) when p > 1/2. When p = 1/2, this
exponential suppression disappears.

These properties suggest that the continuum action for the
gauge field A will have a topological term i(6/2m) [ d*x E,
where E = ¢€,,0,A,, and that & = 7 corresponds to p = 1/2.
Particles coupled to a gauge field at this value of € are known as
half asymptotic: In a (1 + 1)-dimensional quantum language,
they can be separated at no energy cost so long as they alternate
(particle and antiparticle) in space [47,81]. An illuminating
discussion of half-asymptotic particles is given by Shankar
and Murthy in Ref. [81], who also mention a world-line
interpretation pertinent to our considerations here.

This topological action in fact arises from the naive
continuum limit of the Boltzmann weight for our lattice gauge
theory. The product of the U’s around a hexagon gives the flux
through that hexagon,

[T Ui ~exp <i / d’x E) (53)
(ij)eF F

Using this, a formal expansion in E turns the part of the
Boltzmann weight dependent only on E into

expfdzx[i(Q/Zn)E —p(l=p)E*/2+---1,  (54)

with & = 2pm. Since E is not small, we should be suspi-
cious of these values of the couplings. However, the fact
that & =7 when p = 1/2 is robust because it reflects an
additional symmetry that is present at p = 1/2, where the
loop ensemble is invariant under switching black and white
hexagons. Neglecting boundary effects, this exchange equates
to reversing the orientation of each loop or, equivalently, to
complex conjugation of ¥ and ¥' (note that the necessary
convention is x** = —x for the fermions [54]). This reversal
of the charge of ¥ is equivalent to a change in the sign of 6
in the continuum description below. Thus the value of 6 that
corresponds to p = 1/2 must be physically equivalent to —6,
up to boundary effects; this is the case for 6 = 7.
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Taking account of the symmetries and dropping higher-
order terms, the continuum action is

L=i0/27)E +|(V —iAY >+ ply > + 2y, (55)

with (6 — ) ~ (p — 1/2).

Let us briefly discuss the phase structure of this theory when
n = 1and p = 1/2, under the assumption that A > 0. In order
to vary u, we introduce an Ising coupling of strength J between
the colors of the hexagons, setting x = ¢~2/ in the partition
function for the lattice gauge theory. For strong Ising coupling
J > J., domain walls are suppressed and ¥ is a massive field.
Decreasing J, we pass through the Ising transition, at which
¥ condenses; since this is a thermodynamic transition as well
as a geometrical one, it is nontrivial even when we remove
the fermions by setting k = 0, leaving a single complex scalar
7 [47]. [Itis interesting that the Ising transition can be described
either in terms of a single boson z coupled to the § = 7 gauge
field or, as we can deduce from Eq. (55) by using bosonic
duality and then the bosonization rules, as a single Dirac
fermion coupled to a & = w gauge field; the Ising transition
in the latter theory has been discussed in Ref. [81].] Finally,
for weak Ising coupling J < J., we flow to the percolation
critical point. In this regime domain walls proliferate and ¥ is
condensed. Since ¥ is condensed, it is natural here to use a o
model with a fixed length for Illeﬁ, as in Refs. [29,32].

VI. CONCLUSION

Linelike topological defects are ubiquitous in three-
dimensional systems and continue to be of theoretical in-
terest; for example, an exciting recent development is the
realization that in certain quantum systems vortices can
sustain topologically protected zero-energy states [82]. Here
we have addressed the universal fractal geometry of vortices in
disordered systems, a topic that has been studied numerically
in diverse contexts but has lacked a field-theoretic description.
By mapping a lattice model for vortices in a random complex
field to a lattice gauge theory, and also via a continuum
treatment based on XY duality, we related geometrical
correlation functions for vortices to correlation functions in
the CP** model and explored simple consequences of this
correspondence. For unoriented line defects, such as vortices
in nematic fields, we argued that the appropriate field theory
is the RP?? model. These models play an important role in
the classification of universality classes of geometrical critical
phenomena in three dimensions.

We also argued that similar mappings can be fruitfully
applied to 2D random curve ensembles, such as contour lines
in a random height field, for which a lattice regularization is
provided by site percolation and which are described by CP*/*
with a 6 term. Future work will apply similar ideas to other
random curve problems in two dimensions.

Although we have focused on vortices, we know from the
results of Ref. [33] that CP‘¥ and RP** models also apply
to a class of three-dimensional loop models that undergo
thermodynamically trivial geometrical phase transitions, and
we expect these field theories to be generic descriptions for line
defects that are topologically one dimensional (and cannot
branch or terminate at a dangling end) or for deterministic
walks in arandom environment such as trajectories in a Lorentz
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lattice gas. Note that while at first sight the loop models seem
remote from vortices, configurations in one of them (that on
Cardy’s L lattice [35]) can be specified in terms of percolation
configurations on two interpenetrating lattices, and thus in
terms of two height fields (albeit on different lattices) taking
values +1. Heuristically, then, there is a relation to zero lines
of a complex (i.e., two-component real) function here too.

It is interesting that the distinction between compact and
noncompact CP"~! models, much discussed recently in the
context of deconfined criticality [55], appears even in the
replicalimitn — 1. It remains to be seen whether this actually
gives a new universality class for vortices, or whether the
geometrical transition described by NCCP** is inevitably
separate from the thermodynamic (inverted XY) transition
and reduces to the universality class of the compact CP**
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model (Sec. IVE). On the other hand, we do believe that
unoriented vortices (or loops in an appropriate loop model)
will show alocalized-extended transition in a universality class
distinct from that of oriented vortices; it remains to perform
detailed simulations for this universality class and to confirm
that distinct exponents are indeed obtained.
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