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Crossover in growth laws for phase-separating binary fluids: Molecular dynamics simulations

Shaista Ahmad,1,2 Subir K. Das,1,* and Sanjay Puri2
1Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur Post Office, Bangalore 560064, India

2School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
(Received 7 February 2012; published 27 March 2012)

Pattern and dynamics during phase separation in a symmetrical binary (A + B) Lennard-Jones fluid are
studied via molecular dynamics simulations after quenching homogeneously mixed critical (50:50) systems to
temperatures below the critical one. The morphology of the domains, rich in A or B particles, is observed to be
bicontinuous. The early-time growth of the average domain size is found to be consistent with the Lifshitz-Slyozov
law for diffusive domain coarsening. After a characteristic time, dependent on the temperature, we find a clear
crossover to an extended viscous hydrodynamic regime where the domains grow linearly with time. Pattern
formation in the present system is compared with that in solid binary mixtures, as a function of temperature.
Important results for the finite-size and temperature effects on the small-wave-vector behavior of the scattering
function are also presented.
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I. INTRODUCTION

When quenched inside the miscibility gap, a homogeneous
binary (A + B) mixture, prepared at a high temperature, phase
separates into coexisting A-rich and B-rich phases. Starting
from the mixed phase, the system’s progress toward the new
equilibrium state is a complex nonlinear process [1–5] and
proceeds via formation and growth of domains rich in A or B
particles. This domain coarsening is a scaling phenomenon,
e.g., the two-point equal-time (t) correlation function C(r,t)
(r being the separation between two points) and its Fourier
transform, the structure factor S(k,t) (k being the magnitude
of the wave vector), obey the scaling forms:

C(r,t) ≡ g(r/�(t)), (1)

S(k,t) ≡ �(t)df (k�(t)). (2)

In Eqs. (1) and (2), �(t) is the average size of domains at time
t and d is the system dimensionality. Typically �(t) grows in a
power-law fashion as

�(t) ∼ tα, (3)

where the exponent α depends on the transport mechanism
dominant during the coarsening process. There has been
much recent interest [6–18] in understanding the pattern and
dynamics in bulk phase separating systems as well as in
systems under confinement. Below we summarize some of
the primary results in the context of the kinetics of bulk phase
separation.

For diffusive transport, relating the growth of domains
with the chemical potential (μ = γ /�, γ being the interfacial
tension) gradient, one has

d�(t)

dt
∝ 1

�

γ

�
= γ

�2
. (4)

Solution of Eq. (4) provides α = 1/3, which is referred to
as the Lifshitz-Slyozov (LS) [19] growth law and is found to
be the primary mechanism in the kinetics of phase separation
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in binary solid mixtures. On the other hand, in fluids and
polymers, hydrodynamics plays a very important role. In that
case, one expects much faster coarsening due to advective
transport of material [20–22]. For a critical quench, giving rise
to an interconnected domain structure, in spatial dimension
d = 3, one balances the surface energy density (γ /�) and the
viscous stress [6πηv�/�, v� being the interface velocity and η

the shear viscosity], to obtain

v� = d�(t)

dt
= γ

6πη
. (5)

Solution of Eq. (5) predicts a linear growth with α = 1, a
picture that holds for low Reynolds numbers and is referred
to as the viscous hydrodynamic growth. A crossover from the
diffusive to this linear regime is expected to occur for �(t) �
�vis ∼ (Dη)1/2, D being the diffusion constant. On the other
hand, for �(t) � �in [the inertial length = η2/(ργ ), ρ being
the density], the surface energy is balanced by the kinetic
energy density ρv�

2, so that

d�(t)

dt
=

(
γ

ρ�

)1/2

. (6)

This yields α = 2/3, which is known as the inertial hydro-
dynamic growth exponent. In this work, however, we do not
aim to obtain this growth regime. For off-critical quenches,
however, where one has a droplet-like morphology of the
minority component, a single regime with α = 1/3 is expected
from Brownian droplet diffusion and collision mechanism
[23,24]. In this paper, we present extensive results for the
situation where one has a critical composition of A and B
particles. Some preliminary results on this topic were reported
in a recent communication [7]. In this case, as discussed above,
we anticipate three different regimes of growth, with exponents
1/3, 1, and 2/3, respectively. Of course, at very early times (for
both solid and fluid mixtures) the possibility of an exponent
1/4 due to interface diffusion [25], particularly at very low
temperatures, cannot be ruled out.

While a crossover from the diffusive to the viscous
hydrodynamic regime was observed in experiments [26–28]
and model H simulations [29,30], both viscous and inertial

031140-11539-3755/2012/85(3)/031140(9) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.85.031140


SHAISTA AHMAD, SUBIR K. DAS, AND SANJAY PURI PHYSICAL REVIEW E 85, 031140 (2012)

regimes were observed in lattice-Boltzmann simulations [3].
In the latter case, one essentially solves the model H equations
for the coarse-grained density order parameter (φ) and velocity
(�v) fields. Using the incompressibility condition ( �∇ · �v = 0),
these can be written as (note that ⊥ stands for the transverse
component [3])

∂φ

∂t
+ �v · �∇φ = D∇2μ, (7)

ρ
∂ �v(�r,t)

∂t
= η∇2v − [φ �∇μ + ρ(�v · �∇)�v]⊥, (8)

where ρ is the density of the fluid. This model is a combination
of the Cahn-Hilliard and Navier-Stokes equations [1,3], the
latter being introduced to model the velocity field. On the
other hand, molecular dynamics (MD) simulations, where
hydrodynamics is naturally included, have been relatively rare,
due primarily to their demanding nature in terms of computer
time. Early MD simulations [31–33] have been inconclusive—
either due to a lack of data over a significant period of time
or due to inappropriate analysis of the results. Moreover,
these early MD results were obtained for low-density fluids,
where a possible coupling between liquid-liquid and gas-liquid
transitions could have added further complexity. While recent
focus has turned toward systems with realistic interactions and
boundary conditions [9,10,16–18], our understanding of phase
separation dynamics in bulk fluids, thus, remains incomplete.

In this paper, we present results from large-scale MD
simulations, in conjunction with a numerical renormalization
procedure [9,34]. We address questions related to the similarity
in morphologies during kinetics of phase separation in fluids
to that in solids. In addition, we make quantitative statements
about the domain growth law. These state-of-the-art MD
results provide the first unambiguous confirmation of a
crossover from the LS to the viscous hydrodynamic regime.
On the issue of pattern formation, our observation of a
quantitative similarity between the domain morphologies in
fluids and solids is significant and nullifies earlier claims
[30] of dissimilar structures. These results comparing pattern
formation in segregating solids and fluids have important
theoretical implications, since a universal analytical form for
the scaling function for phase-separating systems remains an
outstanding task in this area. We quantify the structural details
via calculations of C(r,t) and S(k,t). Our simulation results
for S(k,t), for deep quenches, obey

S(k,t) ∼ k4, k → 0,
(9)

S(k,t) ∼ k−(d+n), k → ∞,

where the former is known as Yeung’s law [35] and the latter
as the generalized Porod’s law [36–38]. Note that in addition
to the pattern dynamics in the density (concentration) field, we
also explore the pattern formation in the velocity field. Thus,
from here onward, the structure factors for the density and
velocity fields are represented as Sφφ and Svv , respectively. In
Eq. (9), n is the order-parameter dimensionality, which has
values n = 1 for the density field and n = 3 for the velocity
field.

This paper is organized as follows. In Sec. II, we describe
the details of the model and methodology. We present results

for both structure and dynamics in Sec. III. Finally, in Sec. IV
we conclude the paper with an outlook on future possibilities.

II. MODELS AND METHODS

For the study of phase separation in a binary fluid, we use a
high-density (ρ = 1) continuum model, where the ith and j th
particles, at positions �ri and �rj (r = |�ri − �rj |), interact via the
potential

u(�ri, �rj ) =

⎧⎪⎪⎨
⎪⎪⎩

U (r) − U (rc) − (r − rc)
(

dU
dr

)
r=rc

, r < rc;

0, r > rc.

(10)

In Eq. (10),

U (r) = 4εαβ

[(
σαβ

r

)12

−
(

σαβ

r

)6]
(11)

is the standard Lennard-Jones (LJ) pair potential. In Eq. (11),
σαβ is the interaction diameter between α and β [∈(A,B)]
particles and εαβ is the interaction strength. The cutoff distance
rc in Eq. (10) is introduced to facilitate faster computation.
The presence of the third term on the right-hand side of
Eq. (10), after a shifting of the potential by its value at r = rc

(second term), ensures that both the potential and the forces
are continuous for all values of r . For the choices

εAA = εBB = 2εAB = ε,

σAA = σBB = σAB = σ, (12)

mA = mB = m

(m being the mass), we have a fully symmetric model, which
belongs to the Ising universality class of equilibrium critical
phenomena. Its phase diagram is symmetric about the critical
composition of 50% A and 50% B. We set rc = 2.5σ , according
to convention. The phase behavior and equilibrium static as
well as the dynamic critical properties of this model, with
kBTc � 1.423ε, are well studied [39–41]. For the sake of
convenience, we set ε, kB , m, and σ to unity. At the chosen
density, ρ = 1, the model is found to be nearly incompressible
so that a coupling between a gas-liquid and a liquid-liquid
transition is safely avoided. Also, for the temperature range of
interest, we do not face any crystallization problems.

The phase-separation kinetics of the 50:50 LJ model was
studied via MD simulations by quenching the homogeneous
configurations, prepared at a very high temperature (T = 10;
far above Tc), below the critical temperature. The MD runs
were performed by using the Verlet velocity algorithm [42,43]
with periodic boundary conditions in all directions. The
integration time step was set to 
t = 0.01τ , with the LJ
time unit τ = (mσ 2/ε)1/2 = 1. This provides integration error
within an acceptable limit. The temperature was controlled
by the application of a Nosé-Hoover thermostat (NHT) [42],
which is known to preserve hydrodynamics well. Of course,
more advanced thermostats [44,45] have recently become
available with better hydrodynamics-preserving capability.
However, the NHT is adequate for our simulation. To ensure
the usefulness of our methodology, the results obtained via
the NHT are compared with those obtained by application
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of an Andersen thermostat (AT) [42], which is stochastic in
nature. Notice that the AT does not preserve hydrodynamics.
Therefore, we expect the LJ-AT model to mimic the diffusive
segregation, as in the binary solid mixtures.

For analysis of the results, the continuum fluid configura-
tions were mapped onto a simple cubic lattice. A lattice site
occupied by an A particle was assigned the spin value of +1,
and that occupied by a B particle was assigned the value of
−1. This ensures that the rest of the analysis is similar to the
solid binary mixture, where the kinetics of phase separation
was studied via Monte Carlo (MC) [46] simulations of the
spin-1/2 Ising model,

H = −J
∑
〈ij〉

SiSj , J = 1. (13)

The critical temperature for this model in d = 3 is Tc � 4.51.
The conserved order-parameter dynamics, where the compo-
sition of A and B particles remains fixed, was implemented
via the standard Kawasaki-exchange mechanism [47]. For
an MC move, an interchange of positions between a pair of
nearest-neighbor particles is attempted and accepted according
to the standard Metropolis criterion [46]. This mimics the
diffusive transport in solid mixtures. A single MC step consists
of Ld trial moves, where L is the linear dimension of the
cubic box used for the simulation. Again, we applied periodic
boundary conditions in all directions. All results (for both solid
and fluid mixtures) were presented after averaging over at least
five independent initial configurations.

The correlation function was calculated as

C(r,t) = 〈Si(t)Sj (t)〉. (14)

For a conserved order-parameter system, C(r,t) exhibits
damped oscillations around 0, the value which it asymptot-
ically decays to. The average domain size, �(t), was obtained
from the first zero crossing of C(r,t). Of course, there exist
other suitable definitions for computing �(t), e.g., the inverse
of the first moment of S(k,t) and moments of the domain size
distribution. We confirmed that all these definitions differ only
by constant multiplicative factors. For the sake of brevity, we
present results only from the first definition, mentioned above.

At high temperatures, bulk domains contain fluctuating spin
clusters, with linear dimension of the equilibrium correlation
length ξ . The presence of these impurity spins hampers the
calculation of �(t) significantly. Thus, we have calculated all
the observables from the renormalized domain morphologies
obtained after eliminating the thermal noise via a majority spin
rule. In this method, a spin at a lattice site j is replaced by the
sign of the majority of the spins sitting at j and its nearest
neighbor [9]. Of course, depending on the proximity to the
critical point, one may need to consider further neighbors as
well. This numerical procedure [34] eliminates the thermal
fluctuations in bulk domains.

III. RESULTS

In this section, we present results for both structure and
dynamics. Unless otherwise mentioned, all results for the LJ
fluid correspond to the case with the NHT.

FIG. 1. (Color online) Three-dimensional snapshots during the
molecular dynamics evolution of the symmetrical binary Lennard-
Jones (LJ) fluid, starting from a homogeneously mixed system
prepared at a high temperature (�Tc). Results for (a) T = 1.1
(0.77Tc) and (b) T = 1.2 (0.84Tc). For both temperatures we used
systems of linear dimension L = 64. The times t mentioned are in
LJ units. A particles are shown in black (blue) and B particles in gray
(green).

A. Characterization of morphologies

Figure 1 shows the evolutionary snapshots of the binary
LJ fluid obtained from our MD simulations at two different
temperatures. Growth at the lower temperature appears to be
faster than that at the higher temperature. This is because the
surface tension γ , which provides the driving force for segre-
gation, is higher for larger values of (Tc − T ). There is also
a faster crossover, as demonstrated later, to the hydrodynamic
regime at lower T . For a box of linear size L = 64, containing
262 144 particles, the system segregates completely after
approximately t = 8000, at T = 1.1 (=0.77Tc). All results
presented in the paper are from times significantly earlier than
this time, so the data do not suffer from undesirable finite-size
effects.

Another important difference between the snapshots at the
two temperatures is in the noise level. As discussed earlier, at
the higher temperature, the presence of spin clusters of length ξ

[∼(Tc − T )−ν ; ν � 0.63] makes the unambiguous calculation
of �(t) very difficult. For this reason, we have eliminated the
noise, employing the method discussed in the previous section.
In Fig. 2(a), we compare an original configuration obtained
at t = 2000 for T = 1.2 (=0.84Tc), with the corresponding
renormalized snapshot (mapped to a simple cubic lattice). It is
seen that our method preserves the domain morphology very
well. For further check, 2-d cross-sectional views are shown
in Fig. 2(b).
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FIG. 2. (Color online) (a) Left: Three-dimensional snapshot at
t = 2000 during the evolution of a binary LJ system with L =
64 at T = 0.84Tc. Right: The corresponding configuration after
mapping onto a simple cubic lattice. Note that the noise seen in
the original snapshot was removed in the mapped version by a
majority particle renormalization procedure (see text for details). The
same color coding is used as in Fig. 1. (b) Two-dimensional cuts
of the configurations shown in (a). Again, the left one corresponds
to the original continuum picture and the right one to the lattice
configuration after removing the noise. Only A particles are shown.

In Fig. 3(a), we show a scaling plot of the correlation
function for the LJ fluid at T = 0.77Tc. We plot C(r,t)
as a function of the scaled distance r/�(t) at three times.
The reasonably good data collapse suggests that a scaling
regime has been reached. A similar exercise is done in
Fig. 3(b) for another temperature, T = 1.35 (=0.95Tc). A
difference that one observes between the two temperatures
is in the amplitude of oscillation. In Fig. 3(c), we directly
compare the scaling functions and, also, present results for one
additional temperature, viz., T = 0.95 (=0.66Tc). Essentially,
at the temperature closest to Tc, the amplitude appears lower.
Here we must mention that the scaling functions in domain
growth are expected to be temperature independent. Indeed
the correlation functions from T = 0.66Tc and 0.77Tc are
consistent with this fact. However, the deviation of the T =
0.95Tc data set could well be due to interface roughening at
T close to Tc and we expect it to overlap with the other two
only at much later times. Note that there are corrections to
scaling due to the factor ω/�, where ω is the typical interface
thickness. These become negligible when ω/� → 0, which
occurs at delayed times, for larger values of ω.

Before discussing the above fact in greater detail, we ask
whether there are morphological similarities of the fluid system
to the solid mixture. The various lines in Fig. 3(c) denote
the scaled correlation functions, obtained from the 3-d Ising
model, at the corresponding temperatures (0.66Tc, 0.77Tc, and
0.95Tc). While the excellent agreement of data from fluid and
solid confirms similar pattern formation, the strikingly similar
temperature dependence of the scaling function in both cases
is interesting.

FIG. 3. (a) Scaling plot of C(r,t) vs r/�(t) at T = 0.77Tc showing
a collapse of the data, from three different times (as indicated),
onto a single master curve. All results correspond to the LJ fluid.
(b) Same as (a) but for T = 0.95Tc. (c) Comparison of the scaled
correlation functions of the LJ fluid for three temperatures; solid,
dashed, and dotted lines are corresponding functions obtained from
the MC simulation of the Ising model at 0.66Tc, 0.77Tc, and 0.95Tc,
respectively.

To understand the reason behind this T dependence, we
examine the evolution snapshots in Fig. 4. In Fig. 4(a), we
show a 2-d cross section of the snapshots at T = 0.77Tc and
0.95Tc for the LJ fluid. On the other hand, Fig. 4(b) shows the
corresponding snapshots for the Ising solid. All the snapshots
were obtained for the same system size and approximately the
same domain size. The morphologies for the two systems at
comparable temperatures are strikingly similar. The interfaces
exhibit a more fractal structure at higher T values and are
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FIG. 4. (a) Two-dimensional cross sections of evolution snap-
shots for an LJ fluid at T = 0.77Tc and 0.95Tc (as indicated),
demonstrating the dissimilarities in pattern formation during phase
separation for deep quench and quench close to criticality. For both
temperatures, the snapshots correspond to an average domain size
of �12 (t = 2000 LJ units for 0.77Tc and t = 4000 LJ units for
0.95Tc). Note that only mapped and noise-eliminated pictures are
shown. (b) Same as (a) but for the Ising model. Here the snapshot
for 0.77Tc was obtained at t = 25 000 MC steps and the one for
0.95Tc at t = 13 000 MC steps. In both (a) and (b), only A particles
are shown. Note that in (b) the second time is shorter than the
first, as opposed to the situation in (a). This is due to the fact
that in the case of solids there is no crossover to a faster-growing
regime at lower temperatures (whereas in fluid, the crossover
occurs more rapidly at lower temperatures, to the hydrodynamic
regime).

rougher at temperatures closer to Tc. Note that the interfaces
are always rough for fluids with a higher roughness at larger
T values. On the other hand, in 3-d Ising systems, one expects
a roughening transition at T = TR � 0.55Tc [48]. Below TR ,
the interface is smooth, while for T > TR , the width (ω) of the
rough interface increases logarithmically with the system size.
In a nonequilibrium situation like ours, the length analogous
to the system size is the average domain size �(t). Considering
that �(t) grows in a power-law fashion with time, one expects
a logarithmic growth of ω with t . Since the growth of �(t)
is much faster than that, the contribution from the interface
is expected to be negligible in the long-time limit (longer
for higher temperatures) and the correlation function should
have a universal shape independent of the temperature [49,50].
However, due to the limited access to time, we are unable to
reach this asymptotic regime.

In Fig. 5, we compare the structure factors from the
LJ and Ising systems at two temperatures. Again, for both
temperatures there is a striking similarity between the Ising
solid and the LJ fluid. These results are similar to the
conclusion of Refs. [51] and [52], where the authors argued
that the domain growth morphologies should be independent

FIG. 5. (a) Scaling plot of the structure factor involving appropri-
ate variables along the abscissa and ordinate. The circles correspond to
the LJ fluid and the dashed line to the Ising solid, both being obtained
at T = 0.77Tc. These master curves were obtained by combining
results from different times. (b) Same as (a) but at T = 0.95Tc. The
dotted line at the left corresponds to the expected increase in the
structure factor according to the prediction of Yeung (∝k4), while
the solid line at the right represents the Porod decay of the structure
factor.

of kinetic mechanisms of coarsening. Those authors compared
the structures arising from bulk diffusion of material with
those from the interface diffusion. They found that the
resultant structures are characterized by a universal scaling
function. While our results show that this universality is
of a more general validity, they are at variance with the
findings of Ref. [30], which reported structural dissimilarity
during the kinetics of phase separation in fluids and solids
from simulations of cell dynamical systems. Reference [30]
emphasizes the differences in the shoulder region of the scaled
structure factors for segregating fluids and solids. However,
the results presented here indicate that these differences are
nonuniversal features arising from nonzero interfacial width.

The large-k structure factor data are in excellent agreement
with the expected Porod law, S(k,t) ∼ k−(d+1). While at the
lower temperature, the small-k behavior of the structure factor
is consistent with Yeung’s prediction [S(k,t) ∼ k4], results
at the higher temperature deviate from it. This could be
understood as a consequence of the deviation of C(r � 1)
at the high temperature from the expected universal scaling
behavior. Nevertheless, in Fig. 6 we take a closer look at the
small-k behavior, where we present results only for the Ising
model. This, as we will see, will provide further information
related to finite-size effects.
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FIG. 6. (a) Plots of master curves for the Ising model structure
factor at three temperatures, as indicated. All results were obtained
for L = 64. The dotted straight line at the left corresponds to Yeung’s
law; the solid straight line at the right, to Porod’s law. (b) Plots
of master structure functions for three system sizes at T = 0.77Tc.
Again, only the results for the Ising model are shown. In both (a) and
(b), the objective is to demonstrate the small-wave-vector behavior.

Figure 6(a) shows the structure-factor scaling curves for a
system of size L = 64 at three temperatures. It demonstrates
gradual deviation from Yeung’s law with increasing temper-
ature. Of course, as pointed out in the context of C(r,t), we
need data at much longer times for temperatures very close to
Tc to access the asymptotic regime. In addition, anticipating
that finite-size effects could well be the reason behind this,
we present in Fig. 6(b) the results for T = 0.77Tc for three
system sizes, as indicated. With an increase in system size,
one sees a systematic trend toward a clearer k4 increase
for smaller k. Thus, here we conclude that, to confirm the
temperature-independent universal behavior of the correlation
function and structure factor, one needs to run big enough
systems for much longer times.

B. Domain growth

Here, we present detailed results for the time dependence
of the domain size. Figure 7(a) shows a plot of �(t) vs t for
an LJ fluid with a NHT, at T = 0.77Tc. The solid line denotes
the linear viscous hydrodynamic growth regime. After a brief
period of sublinear behavior, the data, starting from t � 2000,
are consistent with linear behavior. Note that we present data
only up to t = 7000, because beyond this time we encountered
finite-size effects. Before drawing a more concrete conclusion
about this linear behavior, in Fig. 7(b) we examine a similar

FIG. 7. (a) Plot of average domain size �(t) as a function of time
t for an LJ fluid, obtained from MD simulations using a Nosé-Hoover
thermostat at T = 0.77Tc with L = 64. The solid line corresponds to
linear viscous hydrodynamic growth. (b) Plot of �(t) vs t at the same
temperature as in (a), but here, in MD simulations, the temperature
was controlled through a stochastic Andersen thermostat. The solid
line is a fit to the form Eq. (15).

plot for the same system, but with the application of an AT.
In this case, it is quite clear that the growth is much slower.
This difference in results obtained via the NHT versus the AT
is indeed expected, as discussed in the previous section. The
solid line in Fig. 7(b) is a fit to the form

�(t) = B1 + B2t
1/3. (15)

A very good quality of fit confirms diffusive growth all along,
as expected, due to the stochastic nature of the thermalization
algorithm. On the other hand, no region in the data set in
Fig. 7(a) provides even a reasonable fitting to the form Eq. (15).
This confirms the utility of the NHT in the MD study of
hydrodynamic phase separation.

The diffusive regime appears to be extremely short-lived
at T = 0.77Tc. To obtain an appropriate confirmation of this
expected early-time dynamics, in Fig. 8 we plot �(t) vs t

at a higher temperature, viz., 0.95Tc, where the crossover is
delayed. Indeed, data for the whole time window show a good
agreement with the t1/3 behavior, shown by the solid line.
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FIG. 8. Plot of �(t) vs t for an LJ fluid at T = 0.95Tc using an
NHT. The solid line is a fit to the form Eq. (15).

Figure 9(a) shows a log-log plot of �(t) vs t , for two
temperatures, T = 0.77Tc and T = 0.88Tc. From this figure it
is quite clear that a crossover from a slower diffusive to a linear
hydrodynamic behavior occurs very early at T = 0.77Tc.
However, the data for T = 0.88Tc show consistency with the
t1/3 behavior over a noticeable fraction of the time window,

FIG. 9. (a) A log-log plot of �(t) (obtained using the NHT) for an
LJ fluid vs. t for two temperatures, as indicated. Solid lines correspond
to diffusive (1/3) and viscous hydrodynamic (1) growth. (b) Plot of
the instantaneous exponent αi (see text for details) as a function of the
inverse domain length, for both the AT and the NHT at T = 0.77Tc

and only for the NHT at T = 0.88Tc. The dotted arrow corresponds
to a linear convergence to the value 1/3 in the case of pure diffusive
growth.

before it gradually enters the viscous regime. In Fig. 9(b), we
plot the instantaneous exponent αi , calculated as

αi = d[ln�(t)]

d(lnt)
, (16)

as a function of 1/�(t). Here, two curves were obtained, at
T = 0.77Tc and T = 0.88Tc, by using the NHT, while the
third curve (note that in this case a very long run length is
required to match the x range of the other two curves) is for
T = 0.77Tc using the AT. As already mentioned, due to the
stochastic nature of the AT, one expects that diffusive growth
will be seen at all times [see Fig. 7(b)]. However, αi smaller
than 1/3, seen at early times, is due to the presence of a large
offset at t = 0 [9]. The αi is expected to converge to 1/3
(as shown by the dotted line) only in the limit �(t) → ∞.
The results for the NHT, on the other hand, look consistent
with those for the AT at early times but deviate at later times,
gradually converging to the exponent value 1.

To further confirm the hydrodynamic exponent, in the
following we investigate the behavior of αi in a different way.
Here we introduce a time t0 and assume that the growth kinetics
follows a power-law behavior with time t ′ = t − t0 as

�′(t ′) = �(t) − �(t0) = B ′t ′α (17)

and use this equation to calculate αi [=d(ln�′)/d(lnt ′)].
Equation (17) is invariant under an arbitrary choice of t0
inside the linear regime. Thus, if t0 is chosen appropriately
(i.e., t0 > tc; the crossover time from a diffusive to a viscous
hydrodynamic regime), αi � 1 for all values of t ′. However,
as noted by other authors [9,30], in computer simulations
with finite systems, one finds an oscillation of αi around the
expected value, the amplitude of which grows with the increase
in �. This is due to increasing separation between the domains
of like particles, thus delaying effective collisions between
them. Figure 10 plots αi vs 1/�′ for t0 = 2500, which lies in
the linear region [see Fig. 7(a)]. Indeed, this plot is consistent
with the above expectation and αi oscillates around the mean

FIG. 10. Plot of αi vs 1/�′(t) for t0 = 2500 (see text for definitions
of t0 and �′). The result is presented only for an LJ fluid with the NHT
at T = 0.77Tc. The dashed horizontal line corresponds to viscous
hydrodynamic growth.
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FIG. 11. (a) Part of a 2-d cross section showing the in-plane
velocity field of the LJ particles with the NHT at T = 0.77Tc with
L = 64 at t = 7000. (b) A coarse-grained version of the snapshot
shown in (a). Velocity vectors were coarse-grained by taking an
average over all the particles contained in a 3σ × 3σ × 3σ cube
symmetrically located around the point of interest.

value αi � 1, providing an unambiguous confirmation of the
viscous hydrodynamic growth law.

Finally, we present results for the velocity field. Figure 11(a)
shows the 2-d cross section of the system evolved via the
NHT at T = 0.77Tc and t = 7000. The particle velocities are
projected onto the plane. While in this picture, the orientations
of the velocity vectors look quite random, interesting structure
starts emerging upon coarse-graining over large length scales,
as shown in Fig. 11(b). However, we have found the structure to
be static in time and it is not characterized by a divergent length
scale, unlike the findings of lattice-Boltzmann simulations
[3,11]. It would be more interesting, though challenging, to
study the dynamics of the velocity field in the neighborhood
of the domain boundaries. Nevertheless, to characterize the
structure shown in Fig. 11(b), which appears to be vortex-like
(monopole in d = 3), in Fig. 12 we present the plot of structure
factor Svv(k,t) vs k, on a log scale. The decay of the Svv(k,t)
tail in fact follows the generalized Porod’s law [38]. Note
that for ordering of a three-component (for the velocity field,
n = 3) vector order parameter field in d = 3, one expects
Svv ∼ k−6. This confirms the monopole-like defect formation
(a point defect in d = 3), consistent with the pattern shown in
Fig. 11(b).

FIG. 12. Plot of Svv(k,t) vs k for a velocity field at T = 0.77Tc

and t = 7000 for an LJ fluid with the NHT. The solid line represents
k−6 decay of the tail in accordance with the generalized Porod law.

IV. SUMMARY

We have presented results for the kinetics of phase sepa-
ration in solid and fluid binary mixtures, the latter being the
primary focus of the article. The results for fluid mixtures were
obtained via MD simulations of a symmetric LJ model. On
the other hand, for solid mixtures we have applied Kawasaki
spin-exchange MC simulations to the Ising model.

Our extensive results confirm a striking similarity in
pattern formation during phase separation in solid and fluid
mixtures. This aspect has not been thoroughly explored
previously. Even though the growth mechanisms in the two
cases are different, this observation of similarities in domain
morphologies is certainly interesting. We have also discussed
the temperature and time dependence of structure in both
cases. For the small-wave-vector behavior of the structure
factor, we have provided comprehensive results for the
corresponding finite-size effects as well.

Finally, this is the first MD work that unambiguously con-
firms the linear domain growth in the viscous hydrodynamic
regime. We observe a clear crossover from a diffusive to a
hydrodynamic regime. This is the first such observation, as far
as MD results are concerned.

Even though our choice of system sizes appeared to be ap-
propriate for obtaining viscous growth, they are not really big
enough to study the growth in the inertial regime. To achieve
the latter objective, multiscale modeling may be required, in
addition to parallel programming and a graphics card [53].

In a future paper, we will address the aging properties of
coarsening in this fluid model. Another interesting project
would be to study domain growth with an off-critical compo-
sition, where hydrodynamic transport is effectively eliminated
by lack of connectivity between domains.
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