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Operator solutions for fractional Fokker-Planck equations
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We obtain exact results for fractional equations of Fokker-Planck type using the evolution operator method.
We employ exact forms of one-sided Lévy stable distributions to generate a set of self-reproducing solutions.
Explicit cases are reported and studied for various fractional order of derivatives, different initial conditions, and
for different versions of Fokker-Planck operators.
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I. INTRODUCTION

Ordinary derivatives account for the variation of a given
function with respect to a given variable. Fractional derivatives
have a more subtle meaning. We use throughout the Euler’s
definition of the fractional derivative according to which the
derivative of order α (0 < α < 1) of a constant is indeed
not zero, but ∂α

x 1 = x−α

�(1−α) [1]. Their role in modeling
physical phenomena is not intuitive and the treatment of
the associated fractional differential equations (FDE) requires
extreme care, not only from the mathematical point of view.
The generalization of a relaxation equation, with a constant
force term, to a fractional form reads [2,3]

∂α
t Pα(t) = −κPα(t) + t−α

�(1 − α)
P + f, (1)

where P = Pα(0) is the initial condition and κ is a constant.
Equation (1) is an αth order FDE with f being the nonhomoge-
neous part. The term with P is not a genuine nonhomogeneous
contribution, but it accounts for the nonvanishing of a constant
under fractional derivative. We use in Eq. (1) the Euler
definition of fractional derivative because it appears most
suitable to treat the dynamical behavior governed by the
fractional Fokker-Planck (FFP) equation we will discuss later.
The problem (1) is mathematically well defined. The apparent
singularity at t = 0 can be removed by multiplying both sides
of the equation by ∂1−α

t , thus getting

∂tPα(t) = ∂1−α
t [−κPα(t) + f ]. (2)

The notion of stationary solution is well defined for an ordinary
relaxation differential equation, but not for its fractional
counterpart. In common terms stationary means that the
solution is no more sensitive to time variations and, hence, its
(ordinary) time derivative is zero. The notion should be revised
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for FDE, in accordance with the order of the derivative. The
solution of Eq. (1) reads [3,4]

Pα(t) = Eα(−κtα) + f tαEα,α+1(−κtα), (3)

where Eα,β(z) = ∑∞
r=0 zr/�(αr + β) is the modified Mittag-

Leffler function and reduces to its ordinary case for β = 1,
Eα(z) = Eα,1(z) [1].

The solutions, plotted in Fig. 1 for different values of α, do
not display any long time stationary behavior. Quasistationary
behavior is reached for α approaching the unity. For large t we
find Pα(t) ∝ tα−1, for which the αth derivative is vanishing. We
can therefore conclude that the solution reaches α-derivative
stationary form.

II. FRACTIONAL FOKKER-PLANCK EQUATIONS AND
EVOLUTION OPERATORS

Equation (2) can be generalized to the following partial
differential equation:

∂α
t Fα(x,t) = L̂FPFα(x,t) + t−α

�(1 − α)
γ (x), (4)

which has been shown to be tailor suited for study of
problems of anomalous diffusion [5]. The initial condition is
Fα(x,0) = γ (x). From a mathematical point of view, Eq. (4)
is a well-posed Cauchy problem and it is the two-variables
generalization of Eq. (1). In Ref. [5] Eq. (4) has been used to
model the continuous time random walk with the inclusion
of effects of space dependent jump probabilities and L̂FP

denotes the Fokker-Planck (FP) operator involving the spatial
derivative ∂x . The presence of the term with γ (x) ensures that
Eq. (4) is well defined and describes a process preserving the
norm of the distribution Fα(x,t), when the time evolves. For
any function h(x) its average value over Fα(x,t) is defined as

〈h(t)〉α =
∫ ∞

−∞
h(x)Fα(x,t)dx. (5)

The formal solution of Eq. (4) is obtained by using an
extension of the evolution operator formalism, introduced by
Schrödinger, therefore getting

Fα(x,t) = Ûα(t)γ (x), Ûα(t) = Eα(tαL̂FP). (6)
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GÓRSKA, PENSON, BABUSCI, DATTOLI, AND DUCHAMP PHYSICAL REVIEW E 85, 031138 (2012)

FIG. 1. Logarithmic plot of Pα(t) [see Eq. (3)], for κ = 1, P = 1,
f = 2, and α = 1/4 (I), 1/2 (II), and 5/6 (III).

Below we shall apply Eqs. (6) to three different versions of
Fokker-Planck operators L̂FP. Limiting for the moment the
discussion to L̂FP = k∂2

x , where k is the generalized diffusion
constant, Eq. (4) can be interpreted as the fractional version of
the heat equation [6] and its solution reads

Fα(x,t) =
∞∑

r=0

(ktα)r

�(1 + αr)

[
∂2r
x γ (x)

]
, (7)

which, for γ (x) = xn (n ∈ Z), gives

Fα(x,t) = αH
(2)
n (x,ktα) = n!

[n/2]∑
r=0

xn−2r (ktα)r

(n − 2r)!�(1 + αr)
, (8)

which are polynomials in x. For α = 1, they are known as
heat polynomials [6]. Any initial function γ (x) = ∑∞

n=0 cnx
n

allows therefore a solution of the fractional heat equation as
the following expansion:

Fα(x,t) =
∞∑

n=0

cn αH (2)
n (x,ktα). (9)

As in the case of the conventional heat equation, the series
in terms of fractional heat polynomials αH (2)

n are of limited
usefulness since it converges for short times only. As an
example, for α = 1 and

γ (x) = 1√
2πσx

e−x2/(2σ 2
x ), (10)

the convergence is limited to t < σ 2
x /(4k). The use of the

Gauss-Weierstrass transform [7] provides solutions with a
well-behaved long time behavior and therefore we look for
an analogous transform relevant for the fractional case.

We make therefore the assumption that such a transform
exists and that we can write

Eα(atα) =
∫ ∞

0
nα(s,t)easds, (11)

with nα(s,t) being not yet specified functions. The evolution
operator in Eq. (6) can therefore be written as

Ûα(t) =
∫ ∞

0
nα(s,t)Û1(s)ds, Û1(t) = etL̂FP , (12)

and, equivalently,

Fα(x,t) =
∫ ∞

0
nα(s,t)F1(x,s)ds (13)

holds. Equation (13) provides the link between fractional and
ordinary Fokker-Planck equations through the knowledge of
nα(s,t). This equation, specified to the case of Eq. (8), leads
to the following relation:

αH (2)
n (x,tα) =

∫ ∞

0
nα(s,t)1H

(2)
n (x,s)ds, (14)

which yields, as a direct consequence of Eq. (11),∫ ∞

0
nα(s,t)

sm

m!
ds = tαm

�(1 + αm)
. (15)

According to Eq. (16) in [8], the functions nα(s,t) can be
identified as

nα(s,t) = 1

α

t

s1+1/α
gα

(
t

s1/α

)
. (16)

The functions gα(z) are the one-sided Lévy stable distributions,
recently obtained for α rational in [9,10]. For related considera-
tions, compare [11]. Equation (12) is similar to the one reported
in Refs. [5] and [8]. The meaning of the fractional evolution
operator is that the solution of the fractional Fokker-Planck
(FFP) equation of order α is known whenever the ordinary
case, α = 1, is available. By simple manipulation of the
previous equations [see Eqs. (11) and (12)], we can also
conclude that

Ûβ(t) =
∫ ∞

0
nβ/α(s,t)Ûα(s)ds, β < α. (17)

Therefore, the solution of the FFP equation of order β can
be derived from its α counterpart by a self-reproducing
procedure. It should also be noted that, for α 	= 1, Ûα(t2 +
t1) 	= Ûα(t2)Ûα(t1). The evolution at different times t2 > t1 is
therefore given by

Ûα(t2)Ûα(t1) =
∫ ∞

0
nα(s1,t1)ds1

×
∫ ∞

0
nα(s2,t2)Û1(s1 + s2)ds2. (18)

This formula turns out extremely useful to deal with successive
approximations, when the nature of the FP operator does not
provide any close form for the operator Û1(t). The functions
nα(x,t) defined in Eq. (16) turn out to be, for α = 1/k,
k = 2,3, . . ., solutions of general heat equations ∂tu1/k(x,t) =
(−1)k∂2

xu1/k(x,t) with the initial condition u1/k(x,0) = δ(x).
These heat equations have been also obtained in [12] from
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FIG. 2. Plot of the solution of Eq. (4), Fα(x,t), with FP operator
L̂FP = ∂2

x + 2∂x and initial condition γ (x) = 1√
2π

e−x2/2, for t = 2
and α = 1/4 (I), 1/2 (II), and 3/4 (III).

purely probabilistic arguments. The case of uα(x,t) for α =
l/k and l > 1 will be the subject of a forthcoming study.

III. SPECIFIC EXAMPLES

We can now apply the wealth of the operator techniques
known for the conventional FP equation to solve its fractional
version. For instance, starting with Gaussian initial condition
of Eq. (10), we evaluate Û1(s) γ (x) with the Glaisher formula
[13,14] and obtain

Û1(s)γ (x) = 1√
2πσx

(
1 + 2κ1s

σ 2
x

)−1/2

× exp

[
− x2

2σ 2
x

(
1 + 2κ1s

σ 2
x

)−1
]

, (19)

which, according to formula (5), gives 〈x2(s)〉1 = σ 2
x (1 + 2ks

σ 2
x

),
and, by using Eq. (16), allows us to conclude that the α- and
t-dependent variance of x is given by

σ 2
x,α(t) =

∫ ∞

0
nα(s,t)〈x2(s)〉1ds

= σ 2
x + 2ktα

�(1 + α)
. (20)

Note that for γ (x) = δ(x), we have formally σ 2
x = 0 and

Eq. (20) reproduces the defining equation of subdiffusive
behavior.

We now move on to more general Fokker-Planck op-
erators. We start by considering the operator L̂FP = k∂2

x +
[F/(m0ηα)]∂x , where the second term is due to the action of
a constant force F , ηα is the fractional friction coefficient,
and m0 is the particle mass. The solution of our problem can
be written by adding to the Glaisher form a shift term in the
Gaussian provided by F t/(m0ηα). The solution for different
values of α and t = 2 are given in Fig. 2 and the first moment
of the distribution is, see Refs. [5] and [8],

〈x(t)〉α = − F tα

m0ηα�(1 + α)
. (21)

The operator L̂FP = 2
τ

(σ 2
ε ∂2

x + ∂xx) is used in storage ring
physics to model the effect of diffusion and damping (τ is the

FIG. 3. Double logarithmic plot of 〈x2(t)〉α [see Eq. (23)], for
σ = 2, σε = 1, and α = 3/5 (I), 4/5 (II), and 9/10 (III).

damping time) of the electron beam due to the synchrotron
radiation emitted by the electron in the bending magnets of
the ring [15]. σε is the variance of so-called equilibrium distri-
bution (see below). The two processes, damping and diffusion,
yield eventually a stationary solution in the conventional case.
Such a condition does not exist for the fractional version.

The evolution operator Û1(t) associated with the last FP
operator can be written in a simple form. By setting indeed
Â = 2 t

τ
σ 2

ε ∂2
x and B̂ = 2 t

τ
∂xx, we obtain [Â,B̂] = 4t

τ
σ 2

ε Â, so
that the use of conventional operator ordering methods yields
[13]

Û1(t) = eÂ+B̂ = exp

(
1 − e−4t/τ

4t/τ
Â

)
eB̂ . (22)

In the case in which the initial distribution is the Gaussian
the fractional evolution will be characterized by the following
variance:

〈x2(t)〉α =
∫ ∞

0
nα(s,t)〈x2(s)〉1ds, (23)

with

〈x2(t)〉1 = (
σ 2 − σ 2

ε

)
e−4t/τ + σ 2

ε , (24)

where σ is the variance of the initial distribution. In Eq. (23)
〈x2(t)〉α is obtained by replacing, according to Eq. (11), in the
second term e−4t/τ with Eα(−4tα/τ ). (Note that the physical
dimension of the damping time τ is [tα]). In Fig. 3, we reported
the 〈x2(t)〉α and, as expected, equilibrium conditions in the
conventional sense are not reached. The plot shows, however,
the onset of analogous regimes after the knee-shaped decrease.
This is a consequence of the fact that for increasing time the
second term in Eq. (24) becomes dominating with respect to
the first, and all solutions approach the α-derivative stationary
form.
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IV. DISCUSSION AND CONCLUSION

We can also consider the case of partial fractional differen-
tial equations in which the fractional derivatives are acting on
the spatial coordinates. From the mathematical point of view,
we have the following Cauchy problem:

∂tGα(x,t) = −λ∂α
x Gα(x,t)

Gα(x,0) = h(x). (25)

In such a context, the Lévy stable distribution function is going
to play a role in the theory of FFP of type Eq. (25). The use
of the evolution operator yields a formal solution of the type
Gα(x,t) = e−λt∂α

x h(x). The series expansion of the exponential
may have a limited use only; we look therefore for a more
useful representation of the evolution operator. The use of the
identity [9]

e−apα =
∫ ∞

0
gα(ξ ) exp(−a1/αpξ )dξ (26)

is the naturally suited choice, so that we find

Gα(x,t) = (λt)−1/α

∫ x

−∞
gα

[
x − σ

(λt)1/α

]
h(σ )dσ. (27)

This technique (albeit limited to the case α = 1/2) has
been applied to the study of the relativistic heat equation

[∂tG1/2(x,t) = −√
1 − ∂2

xG1/2(x,t)] in [16] and appears a
very promising tool in further applications, possibly involving
relativistic quantum mechanics.

Finally, we emphasize that the solutions of Eq. (4) for
1 < α � 2 can also be obtained with the help of the evolution
operator and of two-sided Lévy stable distributions obtained
in [10]. The form of Eq. (11) has to be however modified, as
then the nα(s,t) function has to be replaced by its two-variable
counterpart discussed in [10]. In this context, we refer to
Eqs. (5.21) and (5.22) of [12] where the two-sided case is
studied for the heat-type FP equation.

The different topics touched on in this paper have shown
that the combined use of techniques from various fields
(including statistical mechanics, theory of fractional calculus,
ordinary quantum mechanics, etc.) offers the appropriate tool
to study new phenomena in the theory of anomalous diffusion.

Note added in proof: An alternative method of obtaining
gα (x) based an integral tranform has been proposed in [17].
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